Homework 5B - solution

1. Express 160 in base
a) 3
b) 5

We follow our algorithm. Let's start with (a). We begin with writing down all the powers of 3 until we found one, which is higher than the number $n=160$.

$$
3^{0}=1, \quad 3^{1}=3, \quad 3^{2}=9, \quad 3^{3}=27, \quad 3^{4}=81, \quad 3^{5}=273
$$

Clearly, $3^{4} \leq 160<3^{5}$. Now, we do the division:

$$
\begin{aligned}
160 & =1 \cdot 81+79 \\
79 & =2 \cdot 27+25 \\
25 & =2 \cdot 9+7 \\
7 & =2 \cdot 3+1
\end{aligned}
$$

Hence $160=1 \cdot 3^{4}+2 \cdot 3^{3}+2 \cdot 3^{2}+1 \cdot 3^{1}+1=(12221)_{3}$.
Similarly, we obtain $160=1 \cdot 125+1 \cdot 25+2 \cdot 5+0$, so $160=(1120)_{5}$.
2. Compute the remainder when dividing
a) 13^{35} by 7
b) 18^{45} by 23

For (a), notice that $13 \equiv-1(\bmod 7)$, so $13^{i} \equiv(-1)^{i}(\bmod 7)$. In particular $13^{35} \equiv-1 \equiv 6(\bmod 7)$, so the remainder is 6 .

For (b), we can use little Fermat's theorem that says $a^{p-1} \equiv 1(\bmod p)$ if p is a prime and $a \perp p$. In this case $p=23$ is a prime, so $18^{22} \equiv 1(\bmod 23)$. Consequently, $18^{44} \equiv 1(\bmod 23)$ and $18^{45} \equiv 18(\bmod 23)$.

