## Homework 8B - solution

1. Find the remainder when dividing $2022^{1000}$ by 55 .

We use the Euler's formula. First, we check that 55 is coprime with 2022 . Since $55=5 \cdot 11$, it is enough to check that 2022 is not divisible by 5 and 11. It is clearly not divisible by 5 since it does not end by 0 or 5 . It is also not divisible by 11 since the alternating sum of digits is not. (Alternatively, you might also use Euclid's algorithm to find that.)

Now since $55=5 \cdot 11$, we have $\phi(55)=4 \cdot 10=40$. So, by Euler's theorem $2022^{40} \equiv 1(\bmod 55)$. Raising this to the power 25 , we get $2022^{1000} \equiv 1(\bmod 55)$.
2. Find all invertible elements in $\left(\mathbb{Z}_{12}, \cdot\right)$.

We know that the invertible elements of $\left(\mathbb{Z}_{n}, \cdot\right)$ are exactly those classes $[i]$ with $1 \leq i<n$ such that $i \perp n$. In this case, those are $1,5,7,11$. A good way how to check that you did not forget anything is to compute $\phi(n)$, which should give the number of integers coprime with a given one. In this case $12=2^{2} \cdot 3$, so $\phi(12)=\left(2^{2}-2^{1}\right)(3-1)=4$, which seems correct.

