Positional numeral systems

Theorem. Consider $q \in \mathbb{N}, q \geq 2$. Then every number $n \in \mathbb{N}$ can be uniquely expressed as $n=\sum_{i=0}^{k} a_{i} q^{i}$, where $k \in \mathbb{N}_{0}, a_{0}, \ldots, a_{k} \in\{0,1, \ldots, q-1\}, a_{k} \neq 0$.

The number q is called the base, the numbers a_{0}, \ldots, a_{k} are the digits, so the number k represents the number of digits. We use the notation $n=\left(a_{k} a_{k-1} \cdots a_{1} a_{0}\right)_{q}$.
Example. We usually represent numbers in base 10 . Here, the digits are $0,1,2, \ldots, 9$. For instance, if we write 174, what we mean is one hundred seventy four, so more precisely, one hundred, seven tens, and four ones, so $174=1 \cdot 10^{2}+7 \cdot 10^{1}+4 \cdot 10^{0}$.
Problem. Write $n=174$ in base 3 .
First, we determine the number of digits. We do this by finding $k \in \mathbb{N}_{0}$ such that $3^{k} \leq n<3^{k+1}$. Here, $3^{1}=3,3^{2}=9,3^{3}=27,3^{4}=81,3^{5}=273$. So, the appropriate k is four. Secondly, we want to determine the actual digits. We go from the most significant (the leftmost) to the least (rightmost). Here, the most leftmost digit is a_{4}, which stands for the eighty-ones. So, we ask: How many eighty-ones fit into $n=174$. The answer is two since $2 \cdot 81=162$ (but $3 \cdot 81=243$, which is too big already). So, the leftmost digit is two and we are left over with $174-162=12$, which we need to represent by the other digits. We essentially do the division with remainder. We continue in a similar manner:

$$
\begin{aligned}
174 & =\underbrace{2}_{a_{4}} \cdot \underbrace{81}_{3^{4}}+12 \\
12 & =\underbrace{0}_{a_{3}} \cdot \underbrace{77}_{3^{3}}+12 \\
12 & =\underbrace{1}_{a_{2}} \cdot \underbrace{9}_{3^{2}}+3 \\
174 & =\underbrace{1}_{a_{1}} \cdot \underbrace{3}_{3^{1}}+\underbrace{0}_{a_{0}}
\end{aligned}
$$

So, we found out that $174=(20110)_{3}$.
Algorithm. Input: Numbers $n, q \in \mathbb{N}, q>2$. Output: Expressing n in base q.

```
find \(k: q^{k} \leq n<q^{k+1}\)
    for \(j=k, k-1, \ldots, 1,0\) do
        find \(a_{j}, r: n=a_{j} q^{j}+r\),
        \(n \leftarrow r\)
    return \(\left(a_{k}, \ldots, a_{0}\right)\)
```

Proof of thm. Existence: Basically follows from the algorithm. As an exercise, try to formulate a formal proof using mathematical induction.

Uniqueness: For the sake of contradiction, suppose $n \in \mathbb{N}$ is the smallest number that has two different possible expressions in base q. So, $n=\left(a_{k} \cdots a_{1} a_{0}\right)_{q}=\left(b_{l} \cdots b_{1} b_{0}\right)_{q}$. We will study two cases either $k \neq l$ or $k=l$. In both we are going to derive a contradiction.

So, assume $k=l$. Then $n-q^{k}$ would also have two different expressions, namely $\left(\left(a_{k}-1\right)\right.$ $\left.a_{k-1} \cdots a_{1} a_{0}\right)_{q}$ and $\left(\left(b_{k}-1\right) b_{k-1} \cdots b_{1} b_{0}\right)$. This is a contradiction with the assumption that n is the smallest with non-unique expression.

Now, assume $k \neq l$. Without loss of generality, suppose $k>l$. Then using the first expression, we have

$$
n=\sum_{i=0}^{k} a_{i} q^{i} \geq q^{k}
$$

but at the same time

$$
n=\sum_{j=0}^{l} b_{j} q^{j} \leq \sum_{j=0}^{l}(q-1) q^{j}=(q-1) \frac{q^{l+1}-1}{q-1}=q^{l+1}-1<q^{k} .
$$

This is obviously a contradiction.

