
RSA cryptosystem
We describe the public key encryption algorithm by Rivest, Shamir, Adleman (1977).

Suppose Bob wants to send a secret message to Alice, but they did not have the opportunity to agree
on some secret code beforehand. The solution is as follows:

Alice chooses randomly two very large prime numbers 𝑝 and 𝑞 and computes 𝑛: = 𝑝𝑞. Let us denote1

𝜑(𝑛): = (𝑝 − 1)(𝑞 − 1). Then Alice chooses some number 𝑖 ∈ {2, 3, . . . , 𝜑(𝑛) − 1} such that 𝑖 is coprime
with 𝜑(𝑛). She can do that by choosing 𝑖 randomly and then checking that gcd(𝑖, 𝜑(𝑛)) = 1 by Euclid’s
algorithm. The Euclid’s algorithm then produces a number 𝑗 such that 𝑖𝑗 − 𝑘𝜑(𝑛) = 1 (in other words,
𝑖𝑗 ≡ 1 (mod 𝜑(𝑛))). This equation actually has infinitely many solutions, but we can choose one such
that 𝑗 ∈ {2, 3, . . . , 𝜑(𝑛) − 1}.

Now the pair (𝑛, 𝑖) is called the public key and Alice can send it to Bob or put it on the Internet.
She keeps the rest of the data (primes 𝑝 and 𝑞 and the number 𝑗) private. Note that in principle, it is
possible to compute these data from the public key. (We just do the prime decomposition of 𝑛 and then
run the Euclid’s algorithm.) Nevertheless, if the primes 𝑝 and 𝑞 are large enough, it is computationally
practically impossible.2

Now, suppose Bob wants to send a message to Alice. In this setting a message is a number3 𝑥,
0 < 𝑥 < 𝑛. Before sending the message through a public channel he encrypts it as follows: He computes
𝑦: = 𝑥𝑖 mod 𝑛, that is, the remainder when dividing 𝑥𝑖 by 𝑛 (based on the public key). Try to think about
how to do such an exponentiation quickly!

Now Alice receives 𝑦. The claim is that the original message 𝑥 can be recovered as 𝑦𝑗 mod 𝑛, that is,
as the remainder when dividing 𝑦𝑗 by 𝑛.

Before proving this, let us have a look on an example.

Example. Suppose Alice chooses 𝑝 = 11, 𝑞 = 13, 𝑛 = 𝑝𝑞 = 143, 𝜑(𝑛) = (𝑝 − 1)(𝑞 − 1) = 120, 𝑖 = 17. Let
us compute 𝑗. This is easy in this case as 120 = 7 ⋅ 17 + 1. So, 1 = 120 − 7 ⋅ 17 = −16 ⋅ 120 + 113 ⋅ 17, so
𝑗 = 113. Alice publishes the public key 𝑛 = 143, 𝑖 = 17.

Now, suppose Bob wants to send the number 𝑥 = 69 to Alice. But he would feel somewhat embarras-
sed to send such a number publicly, so he wants to encrypt it. So, he needs to compute 6917 mod 143.
How to do this effectively? Using exponentiation by squaring (the following computation goes mod 143):

69 ≡ 69
692 = 4761 ≡ 42
692 ≡ 422 ≡ 48
698 ≡ 482 ≡ 46

6916 ≡ 162 ≡ 113

Finally, 6917 = 6916 ⋅ 69 ≡ 113 ⋅ 69 ≡ 75. So, 𝑦 = 75, which looks pretty innocent, so Bob can send this
to Alice.

Now Alice is wondering, what is Bob sending to her, so she wants to decrypt the message. Therefor
she needs to compute 𝑦113 mod 143. Try to do the computation yourself beforehand!

75 ≡ 75
752 ≡ 48
754 ≡ 482 ≡ 16
758 ≡ 162 ≡ 113

7516 ≡ 1132 ≡ 42
7532 ≡ 422 ≡ 48
7564 ≡ 482 ≡ 46

Now, 113 = 64 + 32 + 16 + 1 (in other words 113 = (1110001)2), so 75113 = 7564 ⋅ 7532 ⋅ 7516 ⋅ 75 ≡
46 ⋅ 48 ⋅ 42 ⋅ 75 ≡ 69.

1 This is actually the Euler’s totient function. We will learn about it later in the course.
2 In fact, this is still an open question, i.e. it is not proven yet, that there is no quick algorithm for prime decomposition.

We just do not know any.
3 Remember that all data in a computer is stored as numbers.

1



So, it really works! Now, you may feel that doing the prime decomposition of 113 is actually fai-
rly easy and, in particular, it is much easier than the rest of the stuff we did here. But now imagine
that we double the primes. Then the prime factorization will take (about) twice as long, but the ex-
ponentiation or the Euclid’s algorithm takes (about) just one more step. Double it again and the same
happens. Once the primes 𝑝 and 𝑞 are large enough, the prime factorization becomes impossible, while
the encryption/decryption process is still quite easy to handle.

Now, we prove that the algorithm works.

Theorem. Let 𝑝, 𝑞 be prime numbers. Denote 𝑛: = 𝑝𝑞 and 𝜑(𝑛): = (𝑝 − 1)(𝑞 − 1). Let 𝑖, 𝑗 ∈ ℕ satisfy
𝑖𝑗 ≡ 1 (mod 𝜑(𝑛)). Then for every 𝑥 ∈ ℤ, we have 𝑥𝑖𝑗 ≡ 𝑥 (mod 𝑛).

Proof. First, recall that 𝑖𝑗 ≡ 1 (mod 𝜑(𝑛)) means that 𝑖𝑗 = 𝑘𝜑(𝑛) + 1 = 𝑘(𝑝 − 1)(𝑞 − 1) + 1 for some 𝑘.
Secondly, note that 𝑥𝑖𝑗 ≡ 𝑥 (mod 𝑛) is equivalent to 𝑥𝑖𝑗 ≡ 𝑥 (mod 𝑝) and 𝑥𝑖𝑗 ≡ 𝑥 (mod 𝑞) (try to prove!).
So, we will prove that 𝑥𝑖𝑗 ≡ 𝑥 (mod 𝑝) and the proof for 𝑞 is then literally the same.

Suppose first that 𝑥 ⟂ 𝑝. Then by the little Fermat’s theorem, we have 𝑥𝑝−1 ≡ 1 (mod 𝑝). We can
raise this to the power 𝑘(𝑞 − 1) and then multiply by 𝑥 to obtain

𝑥𝑝−1 ≡ 1 (mod 𝑝)
𝑥𝑘(𝑝−1)(𝑞−1) ≡ 1𝑘(𝑞−1) = 1 (mod 𝑝)

𝑥𝑖𝑗 = 𝑥𝑘(𝑝−1)(𝑞−1)+1 ≡ 𝑥(mod 𝑝)

Now, suppose that 𝑥 /⟂ 𝑝. This means that 𝑥 = 𝑎𝑝 for some 𝑎. But then 𝑥 ≡ 0 (mod 𝑝) as well as
𝑥𝑖𝑗 ≡ 0 (mod 𝑝). □

2


