DEN Homework 01 - solution

1. Important observation: Restriction $x \neq \pm 1$.
1) General solution: Attempt at separation leads to stationary solution $y(x)=0, x \neq \pm 1$.

Separation and integration yields $\ln |y|=\ln \left|x^{2}-1\right|+C$, then $y= \pm e^{C}\left(x^{2}-1\right)$, apply our favourite trick $\pm e^{C}=D \neq 0$.
Setting $D=0$ we also include the stationary solution, so a general solution is $y(x)=D\left(x^{2}-1\right), x \neq \pm 1$. Three possible intervals for solutions, for a given initial condition we choose the interval containing x_{0}.
2) Initial conditions:
a) $y_{a}(x)=1-x^{2}, x \in(-1,1)$.
b) $y_{b}(x)=1-x^{2}, x \in(1, \infty)$.

This is not the same as a). While the formulas agree, these two take place at different times.
c) $y_{c}(x)=2\left(x^{2}-1\right), x \in(-\infty,-1)$.
b) $y_{d}(x)=0, x \in(1, \infty)$. We get this either by finding $D=0$, or recalling the stationary solution.
2. No restriction from the equation. Routine separation:
$\frac{d y}{d x}=\frac{e^{x}}{e^{y}} \Longrightarrow e^{y} d y=e^{x} d x \Longrightarrow \int e^{y} d y=\int e^{x} d x \Longrightarrow e^{y}=e^{x}+C$,
hence the general solution is $y(x)=\ln \left(e^{x}+C\right), e^{x}+C>0$. This cannot be simplified further.
When x grows really huge, then the C becomes sooner or later negligible compared to e^{x} and thus it can be ignored. Therefore the answer is:
For $x \sim \infty$ we have $y(x) \sim \ln \left(e^{x}\right)=x$.

