DEN Homework 04 - solution

1. a) This could do it: $h=\frac{b-a}{n}$.
(0) x_{0}, y_{0} given by the initial condition;
(1) $x_{i+1}=x_{i}+h, y_{i+1}=y_{i}+f\left(x_{i}, y_{i}\right) h$ for $i=0, \ldots, n-1$.
b) For $\langle 1,6\rangle$ and $n=5$ we get $h=1$, hence
(0) $x_{0}=1, y_{0}=1$,
(1) $x_{i+1}=x_{i}+1, y_{i+1}=y_{i}+\frac{y_{i}}{2 x_{i}}$.
c) Points are $(1,1),\left(2, \frac{3}{2}\right),\left(3, \frac{15}{8}\right)$ or $(1,1),(2,1.5),(3,1.875)$ if you prefer.
2. For a method of order two, making the step size smaller five time should decrease the error approximately 5^{2} times. The error estimate is therefore

$$
E_{0.1}=\frac{1}{5^{2}} E_{0.5}=\frac{0.01}{25}=\frac{0.04}{100}=0.0004
$$

b) Decreasing the step a-times means decreasing the error a^{2} times for a method of order 2 . How many times do we want to decrease the error? $\frac{E_{0.5}}{E}=\frac{0.01}{0.0025}=\frac{0.04}{0.01}=4=2^{2}$.
If we want to decrease the error 2^{2} times, so it is enough to decrease the step twice, that is, we recommend the step $h=\frac{1}{2} 0.5=0.25$. To be on the safe side we would probably take the step 0.2 .
Other arguments are also possible. For instance, the known error tells us that $0.01=c(0.5)^{2}$, hence $c=\frac{0.01}{0.25}=0.04$. We want $0.0025=c h^{2}=0.04 h^{2}$, thus $h^{2}=\frac{0.0025}{0.04}=\frac{1}{100} \frac{25}{4}$, and so

$$
h=\sqrt{\frac{1}{100} \frac{25}{4}}=\frac{1}{10} \frac{5}{2}=0.25 .
$$

Of course, if you have a calculator, you do not have to play like that and just pour some numbers into it.

