DEN Homework 07 - solution

1. a) Given $\left[a_{0}, b_{0}\right]=[1,5]$. Check: $f(1)=-1<0, f(5)=11>0$, opposite signs.

Middle $m_{0}=\frac{1}{2}(1+5)=3, f(3)=1>0$, opposite sign compared to $f(1)$, hence a root in $\left[a_{1}, b_{1}\right]=[1,3]$.
Middle $m_{1}=2, f(2)=-1<0$, opposite sign compared to $f(3)$, hence a root in $\left[a_{2}, b_{2}\right]=[2,3]$.
We offer the root approximation $m_{2}=2.5$.
b) Formula: $x_{k+1}=x_{k}-\frac{f\left(x_{k}\right)}{f^{\prime}\left(x_{k}\right)}, f^{\prime}(x)=2 x-3$.
$x_{0}=1, x_{1}=1-\frac{f(1)}{f^{\prime}(1)}=0, x_{2}=0-\frac{f(0)}{f^{\prime}(0)}=\frac{1}{3}$.
Bonus: Those who wanted prepared the interation formula $x_{k+1}=x_{k}-\frac{x_{k}^{2}-3 x_{k}+1}{2 x_{k}-3}=\frac{x_{k}^{2}-1}{2 x_{k}-3}$ and saved some calculations.
c) We use the "three-value test".
$f\left(x_{2}\right)=\frac{1}{9}-1+1=\frac{1}{9}>0$.
$f\left(x_{2}-\varepsilon\right)=f\left(\frac{1}{12}\right)=\frac{1}{144}-\frac{36}{144}+1=\frac{109}{144}>0$.
No change of sign yet, so we do not know whether there is a root between $x_{2}-\varepsilon$ and x_{2}.
$f\left(x_{2}+\varepsilon\right)=f\left(\frac{7}{12}\right)=\frac{49}{144}-\frac{252}{144}+1=-\frac{59}{144}<0$.
The sign changed, so there is a root between x_{2} and $x_{2}+\varepsilon$. Our approximation is good enough.
2. The scheme: $x_{k+1}=x_{k}-\frac{f\left(x_{k}\right)}{f^{\prime}\left(x_{k}\right)}=x_{k}-\frac{x_{k}^{2}-x_{k}+1}{2 x_{k}-1}=\frac{x_{k}^{2}-1}{2 x_{k}-1}$.

Then $x_{0}=2, x_{1}=1, x_{2}=0, x_{3}=1, x_{4}=0, x_{5}=1$.
Iterations oscillate. It seems that the function is shaped like a valley that does not drop below the x-axis, and the iterations swing left and right in this valley. Since the given function is a polynomial of order two, we guess that it is a parabola above the x-axis, without any root.
Bonus: Using the formula one gets $x_{2}=\frac{f\left(x_{1}\right) x_{0}-f\left(x_{0}\right) x_{1}}{f\left(x_{1}\right)-f\left(x_{0}\right)}=\frac{1 \cdot 2-3 \cdot 1}{1-3}=\frac{1}{2}$.
In detail: The line through the points $(2,3)$ and $(1,1)$ is given by $y=3+\frac{1-3}{1-2}(x-2)=2 x-1$.
Choosing $y=0$ we get the x-intercept: $0=2 x-1 \Longrightarrow x_{2}=\frac{1}{2}$.

