DEN: ODE-transforms

Definition.

Let $a \in \mathbb{R}$.

By a **power series with center** a we mean any series of the form $\sum_{k=0}^{\infty} a_k (x-a)^k$, where $a_k \in \mathbb{R}$ and x is a variable.

Theorem. Let $\sum_{k=0}^{\infty} a_k (x-a)^k$ be a power series.

There exists a number $r \in \mathbb{R}_0^+ \cup \{\infty\}$ such that the series converges absolutely for |x - a| < rand diverges for |x - a| > r.

This number is called the radius of convergence of this series.

© pHabala 2018

Definition.

Consider a function f and a power series $\sum_{k=0}^{\infty} a_k (x-a)^k$. We say that the series $\sum_{k=0}^{\infty} a_k (x-a)^k$ converges to f uniformly on an interval I if for every $\varepsilon > 0$ there is $n_0 \in \mathbb{N}$ such that

$$\left|f(x) - \sum_{k=0}^{N} a_k (x-a)^k\right| < \varepsilon \text{ for } x \in I$$

whenever $N \geq n_0$.

Fact.

Let f be a function such that there is a power series with center a and r > 0 so that $f(x) = \sum_{k=0}^{\infty} a_k (x-a)^k$ on $U_r(a)$. Then for every $k \in \mathbb{N}_0$ we also have

$$a_k = \frac{f^{(k)}(a)}{k!}.$$

Definition.

Let a function f have derivatives of all orders at a point a. We define its **Taylor series** with center a as

$$\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} (x-a)^k.$$

Finding such a series is called expanding the given function into a power/Taylor series (with center a).

Theorem.

Let a function f have derivatives of all orders on some neighborhood $U_r(a)$ with r > 0. If there exists M > 0 such that $|f^{(k)}(x)| \leq M$ for all $k \in \mathbb{N}_0$ and $x \in U_r(a)$, then $f(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} (x-a)^k$ on $x \in U_r(a)$.

Fact.

$$\frac{1}{1-x} = \sum_{k=0}^{\infty} x^k = 1 + x + x^2 + x^3 + x^4 + \dots, \ x \in (-1,1);$$

$$e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \dots, \ x \in \mathbb{R};$$

$$\sin(x) = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{(2k+1)!} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots, \ x \in \mathbb{R};$$

$$\cos(x) = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k}}{(2k)!} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots, \ x \in \mathbb{R};$$

$$\ln(1+x) = \sum_{k=1}^{\infty} (-1)^{k+1} \frac{x^k}{k} = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots, \ x \in (-1,1].$$

© pHabala 2018

Theorem.

Let $a \in \mathbb{R}$, assume that power series $\sum_{k=0}^{\infty} a_k (x-a)^k = f(x)$, $\sum_{k=0}^{\infty} b_k (x-a)^k = g(x)$ have radii of convergence r_f and r_g . (i) For all $a, b \in \mathbb{R}$ we have

$$af(x) + bg(x) = a\left(\sum_{k=0}^{\infty} a_k(x-a)^k\right) + b\left(\sum_{k=0}^{\infty} b_k(x-a)^k\right) = \sum_{k=0}^{\infty} (aa_k + bb_k)(x-a)^k$$

and this series has radius of convergence $r = \min(r_f, r_g)$.

(ii) We have

$$f(x) \cdot g(x) = \left(\sum_{k=0}^{\infty} a_k (x-a)^k\right) \cdot \left(\sum_{k=0}^{\infty} b_k (x-a)^k\right) = \sum_{k=0}^{\infty} \left(\sum_{i=0}^k a_i b_{k-i}\right) (x-a)^k$$

and this series has radius of convergence $r = \min(r_f, r_g)$.

Theorem.

Let a power series $\sum_{k=0}^{\infty} a_k (x-a)^k = f(x)$ have radius of convergence r > 0. Then the following are true: (i) For every $c \in \mathbb{R}$ we have $f(x-c) = \sum_{k=0}^{\infty} a_k ((x-c)-a)^k = \sum_{k=0}^{\infty} a_k (x-(a+c))^k$. (ii) For every $n \in \mathbb{N}$ we have $(x-a)^n f(x) = \sum_{k=0}^{\infty} a_k (x-a)^{k+n} = \sum_{k=n}^{\infty} a_{k-n} (x-a)^k$. (iii) If $\lim_{x \to a} \left(\frac{f(x)}{x-a}\right)$ converges, then $\frac{1}{(x-a)} f(x) = \sum_{k=1}^{\infty} a_k (x-a)^{k-1} = \sum_{k=0}^{\infty} a_{k+1} (x-a)^k$. All these series have radius of convergence r_f .

Theorem.

Let a power series $\sum_{k=0}^{\infty} a_k (x-a)^k = f(x)$ have radius of convergence r > 0. Then the following are true: (i) The function f is continuous.

(ii) The function f is differentiable on $U_r(a)$ and on this set we have

$$f'(x) = \sum_{k=1}^{\infty} k a_k (x-a)^{k-1}$$

(iii) The function f has an antiderivative on $U_r(a)$ and

$$\int f(x) \, dx = \sum_{k=0}^{\infty} \frac{a_k}{k+1} (x-a)^{k+1} + C.$$

(iv) The function f has derivatives of all orders on $U_r(a)$ and for every $n \in \mathbb{N}$ we have

$$f^{(n)}(x) = \sum_{k=n}^{\infty} k(k-1) \cdot \ldots \cdot (k-n+1)a_k(x-a)^{k-n} = \sum_{k=n}^{\infty} \frac{k!}{(k-n)!}a_k(x-a)^{k-n}.$$

Principle of transformation

Consider a set A with an operation \circ_A and a set B with an operation \circ_B . Let T be a 1-1 mapping that satisfies

$$T(x \circ_A y) = T(x) \circ_B T(y)$$

for all $x, y \in A$. Then instead of evaluating $x \circ_A y$ we can use this procedure:

- 1. We transport the problem to the world B: T(x), T(y).
- 2. We solve the problem in the world $B: T(x) \circ_B T(y)$.
- 3. We move the result back to the world A: $T^{-1}(T(x) \circ_B T(y))$.

Fact.

Let $a \in \mathbb{R}$, let V be the space of functions that can be expanded into a power series with center a. For f define a mapping T by the condition $T(f) = \{a_k\}_{k=0}^{\infty}$ if $f(x) = \sum_{k=0}^{\infty} a_k(x-a)^k$ on some $U_r(a)$. Take any $f, g \in V$ and assume that $T(f) = \{a_k\}_{k=0}^{\infty}$ and $T(b) = \{b_k\}_{k=0}^{\infty}$. Then the following are true: (i) $T(\alpha f + \beta g) = \{\alpha a_k + \beta b_k\}_{k=0}^{\infty}$ for all $\alpha, \beta \in \mathbb{R}$. (ii) $T((x-a)f) = \{0, a_0, a_1, a_2, \dots\}$.

- (iii) If f(a) = 0, then $T\left(\frac{1}{x-a}f\right) = \{a_{k+1}\}_{k=0}^{\infty} = \{a_1, a_2, a_3, \dots\}.$
- (iv) $T(f') = \{(k+1)a_{k+1}\}_{k=0}^{\infty} = \{a_1, 2a_2, 3a_3, \dots\}.$