DEN: ODE-transforms

Definition.

Let $a \in \mathbb{R}$.
By a power series with center a we mean any series of the form $\sum_{k=0}^{\infty} a_{k}(x-a)^{k}$, where $a_{k} \in \mathbb{R}$ and x is a variable.

Theorem.

Let $\sum_{k=0}^{\infty} a_{k}(x-a)^{k}$ be a power series.
There exists a number $r \in \mathbb{R}_{0}^{+} \cup\{\infty\}$ such that the series converges absolutely for $|x-a|<r$ and diverges for $|x-a|>r$.

This number is called the radius of convergence of this series.

Definition.

Consider a function f and a power series $\sum_{k=0}^{\infty} a_{k}(x-a)^{k}$.
We say that the series $\sum_{k=0}^{\infty} a_{k}(x-a)^{k}$ converges to f uniformly on an interval I if for every $\varepsilon>0$ there is $n_{0} \in \mathbb{N}$ such that

$$
\left|f(x)-\sum_{k=0}^{N} a_{k}(x-a)^{k}\right|<\varepsilon \text { for } x \in I
$$

whenever $N \geq n_{0}$.

Fact.

Let f be a function such that there is a power series with center a and $r>0$ so that $f(x)=\sum_{k=0}^{\infty} a_{k}(x-a)^{k}$ on $U_{r}(a)$. Then for every $k \in \mathbb{N} N_{0}$ we also have

$$
a_{k}=\frac{f^{(k)}(a)}{k!} .
$$

Definition.

Let a function f have derivatives of all orders at a point a.
We define its Taylor series with center a as

$$
\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!}(x-a)^{k} .
$$

Finding such a series is called expanding the given function into a power/Taylor series (with center a).

Theorem.

Let a function f have derivatives of all orders on some neighborhood $U_{r}(a)$ with $r>0$. If there exists $M>0$ such that $\left|f^{(k)}(x)\right| \leq M$ for all $k \in N_{0}$ and $x \in U_{r}(a)$, then $f(x)=\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!}(x-a)^{k}$ on $x \in U_{r}(a)$.

Fact.

$$
\begin{aligned}
\frac{1}{1-x} & =\sum_{k=0}^{\infty} x^{k}=1+x+x^{2}+x^{3}+x^{4}+\ldots, x \in(-1,1) ; \\
e^{x} & =\sum_{k=0}^{\infty} \frac{x^{k}}{k!}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\ldots, x \in \mathbb{R} ; \\
\sin (x) & =\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{2 k+1}}{(2 k+1)!}=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\ldots, x \in \mathbb{R} ; \\
\cos (x) & =\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{2 k}}{(2 k)!}=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\ldots, x \in \mathbb{R} ; \\
\ln (1+x) & =\sum_{k=1}^{\infty}(-1)^{k+1} \frac{x^{k}}{k}=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\ldots, x \in(-1,1] .
\end{aligned}
$$

Theorem.

Let $a \in \mathbb{R}$, assume that power series $\sum_{k=0}^{\infty} a_{k}(x-a)^{k}=f(x), \sum_{k=0}^{\infty} b_{k}(x-a)^{k}=g(x)$ have radii of convergence r_{f} and r_{g}.
(i) For all $a, b \in \mathbb{R}$ we have

$$
a f(x)+b g(x)=a\left(\sum_{k=0}^{\infty} a_{k}(x-a)^{k}\right)+b\left(\sum_{k=0}^{\infty} b_{k}(x-a)^{k}\right)=\sum_{k=0}^{\infty}\left(a a_{k}+b b_{k}\right)(x-a)^{k}
$$

and this series has radius of convergence $r=\min \left(r_{f}, r_{g}\right)$.
(ii) We have

$$
f(x) \cdot g(x)=\left(\sum_{k=0}^{\infty} a_{k}(x-a)^{k}\right) \cdot\left(\sum_{k=0}^{\infty} b_{k}(x-a)^{k}\right)=\sum_{k=0}^{\infty}\left(\sum_{i=0}^{k} a_{i} b_{k-i}\right)(x-a)^{k}
$$

and this series has radius of convergence $r=\min \left(r_{f}, r_{g}\right)$.

Theorem.

Let a power series $\sum_{k=0}^{\infty} a_{k}(x-a)^{k}=f(x)$ have radius of convergence $r>0$. Then the following are true:
(i) For every $c \in \mathbb{R}$ we have $f(x-c)=\sum_{k=0}^{\infty} a_{k}((x-c)-a)^{k}=\sum_{k=0}^{\infty} a_{k}(x-(a+c))^{k}$.
(ii) For every $n \in \mathbb{N}$ we have $(x-a)^{n} f(x)=\sum_{k=0}^{\infty} a_{k}(x-a)^{k+n}=\sum_{k=n}^{\infty} a_{k-n}(x-a)^{k}$.
(iii) If $\lim _{x \rightarrow a}\left(\frac{f(x)}{x-a}\right)$ converges, then $\frac{1}{(x-a)} f(x)=\sum_{k=1}^{\infty} a_{k}(x-a)^{k-1}=\sum_{k=0}^{\infty} a_{k+1}(x-a)^{k}$.

All these series have radius of convergence r_{f}.

Theorem.

Let a power series $\sum_{k=0}^{\infty} a_{k}(x-a)^{k}=f(x)$ have radius of convergence $r>0$. Then the following are true:
(i) The function f is continuous.
(ii) The function f is differentiable on $U_{r}(a)$ and on this set we have

$$
f^{\prime}(x)=\sum_{k=1}^{\infty} k a_{k}(x-a)^{k-1}
$$

(iii) The function f has an antiderivative on $U_{r}(a)$ and

$$
\int f(x) d x=\sum_{k=0}^{\infty} \frac{a_{k}}{k+1}(x-a)^{k+1}+C
$$

(iv) The function f has derivatives of all orders on $U_{r}(a)$ and for every $n \in I N$ we have

$$
f^{(n)}(x)=\sum_{k=n}^{\infty} k(k-1) \cdot \ldots \cdot(k-n+1) a_{k}(x-a)^{k-n}=\sum_{k=n}^{\infty} \frac{k!}{(k-n)!} a_{k}(x-a)^{k-n} .
$$

Principle of transformation

Consider a set A with an operation \circ_{A} and a set B with an operation \circ_{B}. Let T be a 1-1 mapping that satisfies

$$
T\left(x \circ_{A} y\right)=T(x) \circ_{B} T(y)
$$

for all $x, y \in A$. Then instead of evaluating $x \circ_{A} y$ we can use this procedure:

1. We transport the problem to the world $B: T(x), T(y)$.
2. We solve the problem in the world $B: T(x) \circ_{B} T(y)$.
3. We move the result back to the world $A: T^{-1}\left(T(x) \circ_{B} T(y)\right)$.

Fact.

Let $a \in \mathbb{R}$, let V be the space of functions that can be expanded into a power series with center a. For f define a mapping T by the condition $T(f)=\left\{a_{k}\right\}_{k=0}^{\infty}$ if $f(x)=\sum_{k=0}^{\infty} a_{k}(x-a)^{k}$ on some $U_{r}(a)$.
Take any $f, g \in V$ and assume that $T(f)=\left\{a_{k}\right\}_{k=0}^{\infty}$ and $T(b)=\left\{b_{k}\right\}_{k=0}^{\infty}$. Then the following are true:
(i) $T(\alpha f+\beta g)=\left\{\alpha a_{k}+\beta b_{k}\right\}_{k=0}^{\infty}$ for all $\alpha, \beta \in \mathbb{R}$.
(ii) $T((x-a) f)=\left\{0, a_{0}, a_{1}, a_{2}, \ldots\right\}$.
(iii) If $f(a)=0$, then $T\left(\frac{1}{x-a} f\right)=\left\{a_{k+1}\right\}_{k=0}^{\infty}=\left\{a_{1}, a_{2}, a_{3}, \ldots\right\}$.
(iv) $T\left(f^{\prime}\right)=\left\{(k+1) a_{k+1}\right\}_{k=0}^{\infty}=\left\{a_{1}, 2 a_{2}, 3 a_{3}, \ldots\right\}$.

