DEN: ODE-Fourier transform

Definition.

Let f be a function defined on an interval $I=[a, a+T)$ for some $a \in \mathbb{R}, T>0$.
Its periodic extension is defined as the function

$$
f(t)=f(t-k T) \quad \text { for } \quad t \in[a+k T, a+(k+1) T)
$$

Theorem.

Let f be a function that is T-periodic. Let $\omega=\frac{2 \pi}{T}$.
If the series

$$
\frac{a_{0}}{2}+\sum_{k=1}^{\infty}\left[a_{k} \cos (k \omega t)+b_{k} \sin (k \omega t)\right]
$$

converges to $f(x)$ on \mathbb{R} uniformly, then necessarily

$$
\begin{aligned}
& a_{k}=\frac{2}{T} \int_{0}^{T} f(t) \cos (k \omega t) d t \text { pro } k \in \mathbb{N} N_{0} \\
& b_{k}=\frac{2}{T} \int_{0}^{T} f(t) \sin (k \omega t) d t \text { pro } k \in \mathbb{N}
\end{aligned}
$$

Definition.

Let f be a function integrable on an interval $[a, a+T]$.
We define its Fourier series as

$$
\frac{a_{0}}{2}+\sum_{k=1}^{\infty}\left[a_{k} \cos (k \omega t)+b_{k} \sin (k \omega t)\right]
$$

where $\omega=\frac{2 \pi}{T}$ and

$$
\begin{aligned}
& a_{k}=\frac{2}{T} \int_{0}^{T} f(t) \cos (k \omega t) d t \text { pro } k \in \mathbb{N}, \\
& b_{k}=\frac{2}{T} \int_{0}^{T} f(t) \sin (k \omega t) d t \text { pro } k \in \mathbb{N} .
\end{aligned}
$$

We write

$$
f \sim \frac{a_{0}}{2}+\sum_{k=1}^{\infty}\left[a_{k} \cos (k \omega t)+b_{k} \sin (k \omega t)\right]
$$

Theorem. (Jordan criterion)
Let f be a function that is piecewise continuous on some interval I of length T, assume that it has derivative f^{\prime} that is piecewise continuous on I.
Consider its periodic extension, call it f again for simplicity.
Let $f \sim \frac{a_{0}}{2}+\sum_{k=1}^{\infty}\left[a_{k} \cos (k \omega t)+b_{k} \sin (k \omega t)\right]$. Then for every $t \in \mathbb{R}$ we have

$$
\frac{a_{0}}{2}+\sum_{k=1}^{\infty}\left[a_{k} \cos (k \omega t)+b_{k} \sin (k \omega t)\right]=\frac{1}{2}\left[\lim _{x \rightarrow t^{-}}(f(x))+\lim _{x \rightarrow t^{+}}(f(x))\right] .
$$

If, moreover, f is continuous on \mathbb{R}, then $\frac{a_{0}}{2}+\sum_{k=1}^{\infty}\left[a_{k} \cos (k \omega t)+b_{k} \sin (k \omega t)\right]=f$ and the convergence of this series is uniform on \mathbb{R}.

Fourier series in amplitude-phase form:

$$
f \sim \frac{a_{0}}{2}+\sum_{k=1}^{\infty} A_{k} \sin \left(k \omega t+\varphi_{k}\right)
$$

Fourier series in complex form:

$$
f \sim \sum_{k=-\infty}^{\infty} c_{k} e^{i k \omega t}
$$

where

$$
c_{k}=\frac{1}{T} \int_{a}^{a+T} f(t) e^{-i k \omega t} d t
$$

Definition.

Let $f(t)$ be a function integrable on \mathbb{R}. Its Fourier transform $\mathcal{F}[f](\omega)$ is defined by the formula

$$
\mathcal{F}[f]: \omega \mapsto \int_{-\infty}^{\infty} f(t) e^{-i \omega t} d t
$$

Often we also write $\mathcal{F}[f]=\hat{f}$.

Theorem.

Let f be a function integrable on \mathbb{R} that is continuous with possible exception of finitely many jump discontinuities. If we redefine f as $f(x)=\frac{1}{2}\left(f\left(x^{-}\right)+f\left(x^{+}\right)\right)$at these points, then

$$
f(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \hat{f}(\omega) e^{i \omega t} d \omega
$$

Fourier transform:
Dictionary:

$$
\begin{array}{ll}
\mathcal{F}[1]=2 \pi \delta(\omega) ; & \mathcal{F}[\delta(t)]=1 ; \\
\mathcal{F}[H(t)]=\pi \delta(\omega)+\frac{1}{i \omega} ; & \mathcal{F}[\operatorname{sgn}(t)]=\frac{2}{i \omega} ; \\
\mathcal{F}\left[e^{i \omega_{0} t}\right]=2 \pi \delta\left(\omega-\omega_{0}\right) ; & \mathcal{F}\left[e^{-\omega_{0}|t|}\right]=\frac{2 \omega_{0}}{\omega_{0}^{2}+\omega^{2}} ; \quad\left(\omega_{0}>0\right) \\
\mathcal{F}\left[e^{i \omega_{0} t} H(t)\right]=\frac{1}{\omega_{0}+i \omega} ; & \mathcal{F}\left[t e^{i \omega_{0} t} H(t)\right]=\frac{1}{\left(\omega_{0}+i \omega\right)^{2}} ; \quad\left(\omega_{0}>0\right) \\
\mathcal{F}\left[\sin \left(\omega_{0} t\right)\right]=\frac{\pi}{i}\left[\delta\left(\omega-\omega_{0}\right)-\delta\left(\omega+\omega_{0}\right)\right] ; & \mathcal{F}\left[\cos \left(\omega_{0} t\right)\right]=\pi\left[\delta\left(\omega-\omega_{0}\right)+\delta\left(\omega+\omega_{0}\right)\right] .
\end{array}
$$

Grammar:

$\mathcal{F}[\alpha f+\beta g]=\alpha \mathcal{F}[f]+\beta \mathcal{F}[g] ;$
$\mathcal{F}[f(t-a)]=e^{-i a \omega} \hat{f}(\omega) ;$
$\mathcal{F}[t f(t)]=i \hat{f}^{\prime}(\omega) ;$
$\mathcal{F}\left[e^{i a t} f(t)\right]=\hat{f}(\omega-a) ;$
$\mathcal{F}\left[f^{\prime}(t)\right]=i \omega \hat{f}(\omega)$.
here $\hat{f}=\mathcal{F}[f]$

