DEN: Numerical derivation and integration (and $O\left(h^{a}\right)$)

Definition.

Consider some $a \in \mathbb{R}$ or $a= \pm \infty$, let f, g be functions defined on some (reduced) neighborhood of a. We say that $f=O(g)$ as $x \rightarrow a$ if there exist some constant C and a reduced neighborhood P of a such that $|f| \leq C|g|$ on P.

Fact.

If $b \geq a \geq 0$ and $\alpha, \beta \in \mathbb{R}$, then
(i) $\beta h^{b}=O\left(h^{a}\right)$,
(ii) $\alpha h^{2}+O\left(h^{b}\right) \sim \alpha h^{a}$
as $h \rightarrow 0$, resp. $h \rightarrow 0^{+}$.

Fact.

(i) For $b \geq a \geq 0$ and $\alpha, \beta \in \mathbb{R}: \alpha O\left(h^{a}\right) \pm \beta O\left(h^{b}\right)=O\left(h^{a}\right)$ as $h \rightarrow 0$.
(ii) For $a, b \geq 0: O\left(h^{a}\right) \cdot O\left(h^{b}\right)=O\left(h^{a+b}\right)$ as $h \rightarrow 0$
(iii) For $b \geq a \geq 0: \frac{1}{h^{a}} O\left(h^{b}\right)=O\left(h^{b-a}\right)$ as $h \rightarrow 0$.

Definition.

Consider a function f that is differentiable at a.
We consider the following approximating formulas for $f^{\prime}(a)$:

$$
\begin{aligned}
& f^{\prime}(a)=\frac{f(a+h)-f(a)}{h} \quad(\text { forward difference) } \\
& f^{\prime}(a)=\frac{f(a)-f(a-h)}{h} \quad(\text { back difference) } \\
& f^{\prime}(a)=\frac{f(a+h)-f(a-h)}{2 h} \quad(\text { central difference). }
\end{aligned}
$$

Fact.

Consider a function f that is three times continuously differentiable on some neighborhood of a point a. Then the following approximating formulas are true as $h \rightarrow 0$:

$$
\begin{aligned}
& f^{\prime}(a)=\frac{f(a+h)-f(a)}{h}+O(h) \\
& f^{\prime}(a)=\frac{f(a)-f(a-h)}{h}+O(h) \\
& f^{\prime}(a)=\frac{f(a+h)-f(a-h)}{2 h}+O\left(h^{2}\right)
\end{aligned}
$$

If f is four times continuously differentiable on some neighborhood of a, then

$$
f^{\prime \prime}(a)=\frac{f(a+h)+f(a-h)-2 f(a)}{h^{2}}+O\left(h^{2}\right) .
$$

For $k \in I N$ and functions with derivatives of sufficient order we have

$$
\begin{array}{r}
f^{(k)}(a)=\frac{1}{h^{k}} \sum_{i=1}^{k}(-1)^{i}\binom{k}{i} f(a+(k-i) h)+O(h) \\
\quad \quad \text { (forward difference) } \\
f^{(k)}(a)=\frac{1}{h^{k}} \sum_{i=1}^{k}(-1)^{i}\binom{k}{i} f(a-i h)+O(h) \\
\quad(\text { back difference) } \\
f^{(k)}(a)=\frac{1}{(2 h)^{k}} \sum_{i=1}^{k}(-1)^{i}\binom{k}{i} f(a+(k-2 i) h)+O\left(h^{2}\right)
\end{array} \quad(\text { central difference) }) ~ \$
$$

Definition.

Let f be a function integrable on an interval $[a, b]$. For $n \in \mathbb{N}$ denote $h=\frac{b-a}{n}$ and consider points $x_{i}=a+i h$.
By the method of left rectangles or rectangle rule with left endpoints for estimating the integral $\int_{a}^{b} f(x) d x$ we mean the formula

$$
R_{l}(n)=h \sum_{i=0}^{n-1} f\left(x_{i}\right)=h\left[f\left(x_{0}\right)+\cdots+f\left(x_{n-1}\right)\right]
$$

By the method of right rectangles or rectangle rule with right endpoints for estimating the integral $\int_{a}^{b} f(x) d x$ we mean the formula

$$
R_{r}(n)=h \sum_{i=1}^{n} f\left(x_{i}\right)=h\left[f\left(x_{1}\right)+\cdots+f\left(x_{n}\right)\right] .
$$

Theorem.

Consider a function f on an interval $[a, b]$, denote $M_{1}=\max _{x \in[a, b]}\left|f^{\prime}(x)\right|$. If we approximate the integral $I=\int_{a}^{b} f(x) d x$ using a rectangle rule, then we have the following error estimates:

$$
\begin{aligned}
& \left|I-R_{l}(n)\right| \leq \frac{1}{2}(b-a)^{2} M_{1} \frac{1}{n}=\frac{1}{2}(b-a) M_{1} h \\
& \left|I-R_{r}(n)\right| \leq \frac{1}{2}(b-a)^{2} M_{1} \frac{1}{n}=\frac{1}{2}(b-a) M_{1} h
\end{aligned}
$$

for $h=\frac{b-a}{n}$.

Definition.

Let f be a function integrable on an interval $[a, b]$. For $n \in \mathbb{N}$ denote $h=\frac{b-a}{n}$ and consider points $x_{i}=a+i h$.
By the trapezoid rule for estimating the integral $\int_{a}^{b} f(x) d x$ we mean the formula

$$
T(n)=\frac{1}{2} h\left[\sum_{i=0}^{n-1} f\left(x_{i}\right)+\sum_{i=1}^{n} f\left(x_{i}\right)\right]=\frac{1}{2} h\left[f\left(x_{0}\right)+\sum_{i=1}^{n-1} 2 f\left(x_{i}\right)+f\left(x_{n}\right)\right] .
$$

Theorem.

Consider a function f on an interval $[a, b]$, denote $M_{2}=\max _{x \in[a, b]}\left|f^{\prime \prime}(x)\right|$. If we approximate the integral $I=\int_{a}^{b} f(x) d x$ using the trapezoid rule, then we have the following error estimate:

$$
|I-T(n)| \leq \frac{1}{12}(b-a)^{3} M_{2} \frac{1}{n^{2}}=\frac{1}{12}(b-a) M_{2} h^{2}
$$

for $h=\frac{b-a}{n}$.

Definition.

Let f be a function integrable on an interval $[a, b]$. For $n \in \mathbb{N}, n$ even, denote $h=\frac{b-a}{n}$ and consider points $x_{i}=a+i h$.
By the Simpson rule for estimating the integral $\int_{a}^{b} f(x) d x$ we mean the formula

$$
\begin{aligned}
& S(n)=\frac{1}{3} h\left[f\left(x_{0}\right)+4 \sum_{i=1}^{n / 2} f\left(x_{2 i-1}\right)+2 \sum_{i=1}^{n / 2-1} f\left(x_{2 i}\right)+f\left(x_{n}\right)\right] \\
& =\frac{1}{3} h\left[f\left(x_{0}\right)+4 f\left(x_{1}\right)+2 f\left(x_{2}\right)+4 f\left(x_{3}\right)+\cdots+4 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right]
\end{aligned}
$$

Theorem.

Consider a function f on an interval $[a, b]$, denote $M_{4}=\max _{x \in[a, b]}\left|f^{\prime \prime \prime \prime}(x)\right|$. If we approximate the integral $I=\int_{a}^{b} f(x) d x$ using the Simpson rule, then we have the following error estimate

$$
|I-S(n)| \leq \frac{1}{180}(b-a)^{5} M_{4} \frac{1}{n^{4}}=\frac{1}{180}(b-a) M_{4} h^{4} \text { for } h=\frac{b-a}{n}
$$

Numerical integration overview:

$I=\int_{a}^{b} f(x) d x, \quad a=x_{0}<x_{1}<\cdots<x_{n}=b, \quad x_{i+1}-x_{i}=h=\frac{b-a}{n}$
Rectangle rule

$$
E=O(h)
$$

$$
\begin{aligned}
& R_{l}(n)=\sum_{i=0}^{n-1} h f\left(x_{i}\right) \\
& R_{r}(n)=\sum_{i=1}^{n} h f\left(x_{i}\right)
\end{aligned}
$$

Trapezoid rule

$$
E=O\left(h^{2}\right)
$$

$$
T(n)=\frac{1}{2} h\left[f\left(x_{0}\right)+\sum_{i=1}^{n-1} 2 f\left(x_{i}\right)+f\left(x_{n}\right)\right]
$$

Simpson rule

$$
E=O\left(h^{4}\right)
$$

$$
S(n)=\frac{1}{3} h\left[f\left(x_{0}\right)+\sum_{i=1}^{n / 2} 4 f\left(x_{2 i-1}\right)+\sum_{i=1}^{n / 2-1} 4 f\left(x_{2 i}\right)+f\left(x_{n}\right)\right]
$$

Definition.

We say that a method I_{n} for approximating an integral is of order p for $p \in \mathbb{N}$, provided that for every function f on an interval $[a, b]$ there is $C>0$ such that

$$
\left|\int_{a}^{b} f(x) d x-I_{n}\right| \leq C \frac{1}{n^{p}}
$$

That is, $\left|I-I_{n}\right|$ is $O\left(h^{p}\right)$ as $h \rightarrow 0^{+}$.

Fact.

Let f be a function integrable on some interval $[a, b]$. Let I_{n} for $n \in \mathbb{N}$ be an approximation of the integral $I=\int_{a}^{b} f(x) d x$ by some method of order p, assume that the error estimate is of the form

$$
\left|I-I_{n}\right| \sim C h^{p}+O\left(h^{q}\right)
$$

Then the formula $\frac{2^{p} I_{2 n}-I_{n}}{2^{p}-1}$ is an approximation of I of order q.
Moreover, $\frac{I_{2 n}-I_{n}}{2^{p}-1}$ is a good estimate of the error $I-I_{2 n}$.

