DEN: Numerical derivation and integration (and $O(h^a)$)

Definition.

Consider some $a \in \mathbb{R}$ or $a = \pm \infty$, let f, g be functions defined on some (reduced) neighborhood of a. We say that f = O(g) as $x \to a$ if there exist some constant C and a reduced neighborhood P of a such that $|f| \leq C|g|$ on P.

Fact.

If $b \geq a \geq 0$ and $\alpha, \beta \in \mathbb{R}$, then

(i)
$$\beta h^b = O(h^a)$$
,

(ii)
$$\alpha h^2 + O(h^b) \sim \alpha h^a$$

as
$$h \to 0$$
, resp. $h \to 0^+$.

Fact.

(i) For
$$b \ge a \ge 0$$
 and $\alpha, \beta \in \mathbb{R}$: $\alpha O(h^a) \pm \beta O(h^b) = O(h^a)$ as $h \to 0$.

(ii) For
$$a, b \ge 0$$
: $O(h^a) \cdot O(h^b) = O(h^{a+b})$ as $h \to 0$

(iii) For
$$b \ge a \ge 0$$
: $\frac{1}{h^a} O(h^b) = O(h^{b-a})$ as $h \to 0$.

Definition.

Consider a function f that is differentiable at a.

We consider the following approximating formulas for f'(a):

$$f'(a) = \frac{f(a+h) - f(a)}{h}$$
 (forward difference),

$$f'(a) = \frac{f(a) - f(a-h)}{h}$$
 (back difference),

$$f'(a) = \frac{f(a+h) - f(a-h)}{2h}$$
 (central difference).

Fact.

Consider a function f that is three times continuously differentiable on some neighborhood of a point a. Then the following approximating formulas are true as $h \to 0$:

$$f'(a) = \frac{f(a+h) - f(a)}{h} + O(h),$$

$$f'(a) = \frac{f(a) - f(a-h)}{h} + O(h),$$

$$f'(a) = \frac{f(a+h) - f(a-h)}{2h} + O(h^2).$$

If f is four times continuously differentiable on some neighborhood of a, then

$$f''(a) = \frac{f(a+h) + f(a-h) - 2f(a)}{h^2} + O(h^2).$$

For $k \in \mathbb{N}$ and functions with derivatives of sufficient order we have

$$f^{(k)}(a) = \frac{1}{h^k} \sum_{i=1}^k (-1)^i \binom{k}{i} f(a + (k-i)h) + O(h)$$

(forward difference)

$$f^{(k)}(a) = \frac{1}{h^k} \sum_{i=1}^k (-1)^i \binom{k}{i} f(a-ih) + O(h)$$

(back difference)

$$f^{(k)}(a) = \frac{1}{(2h)^k} \sum_{i=1}^k (-1)^i \binom{k}{i} f(a + (k-2i)h) + O(h^2)$$

(central difference)

Definition.

Let f be a function integrable on an interval [a,b]. For $n \in \mathbb{N}$ denote $h = \frac{b-a}{n}$ and consider points $x_i = a + ih$.

By the **method of left rectangles** or **rectangle rule** with left endpoints for estimating the integral $\int_a^b f(x) dx$ we mean the formula

$$R_l(n) = h \sum_{i=0}^{n-1} f(x_i) = h [f(x_0) + \dots + f(x_{n-1})].$$

By the **method of right rectangles** or **rectangle rule** with right endpoints for estimating the integral $\int_a^b f(x) dx$ we mean the formula

$$R_r(n) = h \sum_{i=1}^n f(x_i) = h [f(x_1) + \dots + f(x_n)].$$

Theorem.

Consider a function f on an interval [a, b], denote $M_1 = \max_{x \in [a, b]} |f'(x)|$. If we approximate the integral $I = \int_a^b f(x) dx$ using a rectangle rule, then we have the following error estimates:

$$|I - R_l(n)| \le \frac{1}{2}(b - a)^2 M_1 \frac{1}{n} = \frac{1}{2}(b - a)M_1 h,$$

 $|I - R_r(n)| \le \frac{1}{2}(b - a)^2 M_1 \frac{1}{n} = \frac{1}{2}(b - a)M_1 h,$

for $h = \frac{b-a}{n}$.

Definition.

Let f be a function integrable on an interval [a,b]. For $n \in \mathbb{N}$ denote $h = \frac{b-a}{n}$ and consider points $x_i = a + ih$.

By the **trapezoid rule** for estimating the integral $\int_a^b f(x) dx$ we mean the formula

$$T(n) = \frac{1}{2}h\left[\sum_{i=0}^{n-1} f(x_i) + \sum_{i=1}^{n} f(x_i)\right] = \frac{1}{2}h\left[f(x_0) + \sum_{i=1}^{n-1} 2f(x_i) + f(x_n)\right].$$

Theorem.

Consider a function f on an interval [a, b], denote $M_2 = \max_{x \in [a, b]} |f''(x)|$. If we approximate the integral $I = \int_a^b f(x) dx$ using the trapezoid rule, then we have the following error estimate:

$$|I - T(n)| \le \frac{1}{12}(b - a)^3 M_2 \frac{1}{n^2} = \frac{1}{12}(b - a)M_2 h^2$$

for $h = \frac{b-a}{n}$.

Definition.

Let f be a function integrable on an interval [a,b]. For $n \in \mathbb{N}$, n even, denote $h = \frac{b-a}{n}$ and consider points $x_i = a + ih$.

By the **Simpson rule** for estimating the integral $\int_a^b f(x) dx$ we mean the formula

$$S(n) = \frac{1}{3}h \Big[f(x_0) + 4\sum_{i=1}^{n/2} f(x_{2i-1}) + 2\sum_{i=1}^{n/2-1} f(x_{2i}) + f(x_n) \Big]$$

= $\frac{1}{3}h \Big[f(x_0) + 4f(x_1) + 2f(x_2) + 4f(x_3) + \dots + 4f(x_{n-1}) + f(x_n) \Big].$

Theorem.

Consider a function f on an interval [a,b], denote $M_4 = \max_{x \in [a,b]} |f''''(x)|$. If we approximate the integral

 $I = \int_a^b f(x) dx$ using the Simpson rule, then we have the following error estimate

$$|I - S(n)| \le \frac{1}{180}(b - a)^5 M_4 \frac{1}{n^4} = \frac{1}{180}(b - a)M_4 h^4 \text{ for } h = \frac{b - a}{n}.$$

Numerical integration overview:

$$I = \int_{a}^{b} f(x) dx$$
, $a = x_0 < x_1 < \dots < x_n = b$, $x_{i+1} - x_i = h = \frac{b-a}{n}$

Rectangle rule

$$E = O(h)$$

$$R_l(n) = \sum_{i=0}^{n-1} hf(x_i)$$
$$R_r(n) = \sum_{i=1}^{n} hf(x_i)$$

Trapezoid rule

$$E = O(h^2)$$

$$T(n) = \frac{1}{2}h\left[f(x_0) + \sum_{i=1}^{n-1} 2f(x_i) + f(x_n)\right]$$

Simpson rule

$$E = O(h^4)$$

$$S(n) = \frac{1}{3}h \left[f(x_0) + \sum_{i=1}^{n/2} 4f(x_{2i-1}) + \sum_{i=1}^{n/2-1} 4f(x_{2i}) + f(x_n) \right]$$

Definition.

We say that a method I_n for approximating an integral is of **order** p for $p \in \mathbb{I}N$, provided that for every function f on an interval [a, b] there is C > 0 such that

$$\left| \int_{a}^{b} f(x) \, dx - I_n \right| \le C \frac{1}{n^p}.$$

That is, $|I - I_n|$ is $O(h^p)$ as $h \to 0^+$.

Fact.

Let f be a function integrable on some interval [a, b]. Let I_n for $n \in \mathbb{N}$ be an approximation of the integral $I = \int_a^b f(x) dx$ by some method of order p, assume that the error estimate is of the form

$$|I - I_n| \sim Ch^p + O(h^q).$$

Then the formula $\frac{2^{p}I_{2n}-I_{n}}{2^{p}-1}$ is an approximation of I of order q.

Moreover, $\frac{I_{2n}-I_n}{2^p-1}$ is a good estimate of the error $I-I_{2n}$.