DEN: ODE - numerical approach

Algorithm (Euler (forward) formula for IVP $\left.y^{\prime}=f(x, y)\right)$
Given: ODE $y^{\prime}=f(x, y)$ on $\left[x_{0}, x_{0}+T\right]$, initial value y_{0}, and $n \in \mathbb{N}$.
0. Set $h=\frac{T}{n}$.

1. x_{0} and y_{0} are given.
2. For $i=0, \ldots, n-1$ set $x_{i+1}=x_{i}+h$ and $y_{i+1}=y_{i}+f\left(x_{i}, y_{i}\right) \cdot h$.

Definition.

Consider some numerical method for solving initial value problems $y^{\prime}=f(x, y(x)), y\left(x_{0}\right)=y_{0}$ that for given $T>0$ and $n \in \mathbb{N}$ produces approximations $\left\{\left(x_{0}, y_{0}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}$ of the solution on $\left[x_{0}, x_{0}+T\right]$. We say that this method is convergent if the following is true:
For any IVP with f Lipschitz in the second variable that has a solution $y(x)$ on some $\left[x_{0}, x_{0}+T\right]$ and every $n \in \mathbb{N}$, consider the corresponding approximations $\left\{\left(x_{0}, y_{0}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}$ and define

$$
E_{n}=\max _{i}\left|y\left(x_{i}\right)-y_{i}\right| .
$$

We require that $E_{n} \rightarrow 0$.

Definition.

Consider a one-step method Φ_{f} for solving initial value problems that for an equation $y^{\prime}=f(x, y(x))$ and a point $\left(x^{*}, y^{*}\right)$ generates an estimate $\Phi_{f}\left(x^{*}, y^{*}, h\right)$ for the value of the corresponding solution at $x^{*}+h$.
Given an ODE $y^{\prime}=f(x, y)$, we define the local error of the method as

$$
d_{f}\left(x^{*}, y^{*}, h\right)=y_{*}\left(x^{*}+h\right)-\Phi_{f}\left(x^{*}, y^{*}, h\right)
$$

for all $x^{*}, y^{*} \in \mathbb{R}$ and all step sizes $h>0$ such that the IVP $y^{\prime}=f(x, y), y\left(x^{*}\right)=y^{*}$ has a solution $y_{*}(x)$ on $\left[x^{*}, x^{*}+h\right]$.

Definition.

Consider a one-step method Φ_{f} for solving initial value problems that for an equation $y^{\prime}=f(x, y(x))$ and a point $\left(x^{*}, y^{*}\right)$ generates an estimate $\Phi_{f}\left(x^{*}, y^{*}, h\right)$ for the value of the corresponding solution at $x^{*}+h$.
We say that the method is of order p, or that it has error of order p, if the following is true: For every differential equation $y^{\prime}=f(x, y)$ and rectangle $I \times J$ such that f is Lipschitz with respect to y in $I \times J$ and sufficiently smooth there is some $C>0$ so that

$$
\left|d_{f}\left(x^{*}, y^{*}, h\right)\right| \leq C h^{p+1}
$$

for all $\left(x^{*}, y^{*}\right) \in I \times J$ and $h>0$ such that $\left(x^{*}+h, \Phi_{f}\left(x^{*}, y^{*}, h\right)\right) \in I \times J$.

Theorem.

The Euler method is of order 1 with respect to differential equations $y^{\prime}=f(x, y)$ such that f is differentiable on its domain and its derivatives are bounded on bounded rectangles.

Algorithm (backward Euler formula for IVP $y^{\prime}=f(x, y)$)
Given: ODE $y^{\prime}=f(x, y)$ on $\left[x_{0}, x_{0}+T\right]$, initial value y_{0}, and $n \in \mathbb{N}$.
0. Set $h=\frac{T}{n}$.

1. x_{0} and y_{0} are given.
2. For $i=0, \ldots, n-1$ set $x_{i+1}=x_{i}+h$ and solve $y_{i+1}=y_{i}+f\left(x_{i+1}, y_{i+1}\right) \cdot h$ for y_{i+1}.

Algorithm (Heun formula (improved Euler formula) for IVP $y^{\prime}=f(x, y)$)
Given: ODE $y^{\prime}=f(x, y)$ on $\left[x_{0}, x_{0}+T\right]$, initial value y_{0}, and $n \in \mathbb{N}$.
0. Set $h=\frac{T}{n}$.

1. x_{0} and y_{0} are given.
2. For $i=0, \ldots, n-1$ set $x_{i+1}=x_{i}+h$ and:
a) Estimate the slope $y^{\prime}\left(x_{i}\right): k_{1}=f\left(x_{i}, y_{i}\right)$.
b) Estimate $y_{i+1}: y_{i+1}^{*}=y_{i}+k_{1} h$, then estimate the slope $y^{\prime}\left(x_{i+1}\right): k_{2}=f\left(x_{i+1}, y_{i+1}^{*}\right)$.
c) Set $y_{i+1}=y_{i}+\frac{1}{2}\left(k_{1}+k_{2}\right) \cdot h$.

Fact.

The Heine formula method is of order 2.

Algorithm (RK2 (midpoint, modified Euler formula, improved polygon) for IVP $\left.y^{\prime}=f(x, y)\right)$
Given: ODE $y^{\prime}=f(x, y)$ on $\left[x_{0}, x_{0}+T\right]$, initial value y_{0}, and $n \in \mathbb{N}$.
0. Set $h=\frac{T}{n}$.

1. x_{0} and y_{0} are given.
2. For $i=0, \ldots, n-1$ set $x_{i+1}=x_{i}+h$ and:
a) Estimate the slope $y^{\prime}\left(x_{i}\right): k_{1}=f\left(x_{i}, y_{i}\right)$.
b) Estimate $y\left(x_{i}+\frac{1}{2} h\right): y_{i+1 / 2}^{*}=y_{i}+\frac{1}{2} k_{1} h$, then estimate the slope $y^{\prime}\left(x_{i}+\frac{1}{2} h\right): k_{2}=f\left(x_{i}+\frac{1}{2} h, y_{i+1 / 2}^{*}\right)$.
c) Set $y_{i+1}=y_{i}+k_{2} h$.

Fact.

The midpoint method is of order 2 .

Definition.

An explicit Runge-Kutta method for solving IVP $y^{\prime}=f(x, y)$ is given by fixing parameters

0					
c_{2}	a_{21}				
c_{3}	a_{31}	a_{32}			
\vdots	\vdots		\ddots		
c_{N}	$a_{N 1}$	$a_{N 2}$	\cdots	$a_{N, N-1}$	
	w_{1}	w_{2}	\cdots	w_{N-1}	w_{N}

Here N is the number of steps, c_{j} defines nodes, $a_{j l}$ forms the matrix of the method and w_{j} are weights. When determining y_{i+1} using y_{i} we first estimate slopes at various points,

$$
\begin{aligned}
k_{1} & =f\left(x_{i}, y_{i}\right) \\
k_{2} & =f\left(x_{i}+c_{2} h, y_{i}+a_{21} k_{1} h\right) \\
k_{3} & =f\left(x_{i}+c_{3} h, y_{i}+\left(a_{31} k_{1}+a_{32} k_{2}\right) h\right) \\
& \vdots \\
k_{N} & =f\left(x_{i}+c_{N} h, y_{i}+\left(a_{N 1} k_{1}+a_{N 2} k_{2}+\cdots+a_{N, N-1} k_{N-1}\right) h\right),
\end{aligned}
$$

these estimates are averaged to get the best slope $k=\sum_{j=1}^{N} w_{j} k_{j}$ and then we set $y_{i+1}=y_{i}+k \cdot h$.

Algorithm (RK4 for IVP $\left.y^{\prime}=f(x, y)\right)$
Given: ODE $y^{\prime}=f(x, y)$ on $\left[x_{0}, x_{0}+T\right]$, initial value y_{0}, and $n \in \mathbb{N}$.
0. Set $h=\frac{T}{n}$.

1. x_{0} and y_{0} are given.
2. For $i=0, \ldots, n-1$ set $x_{i+1}=x_{i}+h$ and:
a) Estimate the slope $y^{\prime}\left(x_{i}\right): k_{1}=f\left(x_{i}, y_{i}\right)$.
b) Estimate $y\left(x_{i}+\frac{1}{2} h\right): y_{i+1 / 2}^{*}=y_{i}+\frac{1}{2} k_{1} h$ and then estimate the slope $y^{\prime}\left(x_{i}+\frac{1}{2} h\right): k_{2}=f\left(x_{i}+\right.$ $\left.\frac{1}{2} h, y_{i+1 / 2}{ }^{*}\right)$.
c) Again (to improve?) estimate $y\left(x_{i}+\frac{1}{2} h\right): y_{i+1 / 2}^{* *}=y_{i}+\frac{1}{2} k_{2} h$ and then estimate the slope $y^{\prime}\left(x_{i}+\frac{1}{2} h\right)$: $k_{3}=f\left(x_{i}+\frac{1}{2} h, y_{i+1 / 2}^{* *}\right)$.
d) Estimate $y\left(x_{i}+h\right): y_{i+1}^{*}=y_{i}+k_{3} h$ and then estimate the slope $y^{\prime}\left(x_{i+1}\right): k_{4}=f\left(x_{i+1}, y_{i+1}^{*}\right)$.
e) Set $y_{i+1}=y_{i}+\frac{1}{6}\left[k_{1}+2 k_{2}+2 k_{3}+k_{4}\right] \cdot h$.

Fact.

The RK4 method is of order 4.

Algorithm (RKF45, adaptive Runge-Kutta-Fehlberg method for IVP $\left.y^{\prime}=f(x, y)\right)$
Given: ODE $y^{\prime}=f(x, y)$ on $\left[x_{0}, x_{0}+T\right]$, initial value y_{0}, initial step $h_{0}>0$ and desired precision $\varepsilon>0$.

1. x_{0} and y_{0} are given.
2. For $i=0, \ldots, n-1$:
a) Evaluate $k_{1}=f\left(x_{i}, y_{i}\right)$.
b) Evaluate $k_{2}=f\left(x_{i}+\frac{1}{4} h_{i}, y_{i}+\frac{1}{4} k_{1} h_{i}\right)$.
c) Evaluate $k_{3}=f\left(x_{i}+\frac{3}{8} h_{i}, y_{i}+\left(\frac{3}{32} k_{1}+\frac{9}{32} k_{2}\right) h_{i}\right)$.
d) Evaluate $k_{4}=f\left(x_{i}+\frac{12}{13} h_{i}, y_{i}+\left(\frac{1932}{2197} k_{1}-\frac{7200}{2197} k_{2}+\frac{7296}{2197} k_{3}\right) h_{i}\right)$.
e) Evaluate $k_{5}=f\left(x_{i}+h_{i}, y_{i}+\left(\frac{439}{216} k_{1}-8 k_{2}+\frac{3680}{513} k_{3}-\frac{845}{4104} k_{4}\right) h_{i}\right)$.
f) Evaluate $k_{6}=f\left(x_{i}+\frac{1}{2} h_{i}, y_{i}+\left(-\frac{8}{27} k_{1}+2 k_{2}-\frac{3544}{2565} k_{3}+\frac{1859}{4104} k_{4}-\frac{11}{40} k_{5}\right) h_{i}\right)$.
g) Estimate $y_{i+1}=y_{i}+\left(\frac{25}{216} k_{1}+\frac{1408}{2565} k_{3}+\frac{2197}{4104} k_{4}-\frac{1}{5} k_{5}\right) h_{i}$
and $z_{i+1}=y_{i}+\left(\frac{16}{135} k_{1}+\frac{6656}{12825} k_{3}+\frac{28561}{56430} k_{4}-\frac{9}{50} k_{5}+\frac{2}{55} k_{6}\right) h_{i}$.
If $\frac{1}{h_{i}}\left|z_{i+1}-y_{i+1}\right|>\varepsilon$, set $s=\left(\frac{h \varepsilon}{\left|z_{i+1}-y_{i+1}\right|}\right)^{1 / 4}$ and redo the calculations starting from a) on with the step $h_{i}=s h_{i}$.
Otherwise set $x_{i+1}=x_{i}+h_{i}, h_{i+1}=h_{i}$ and go to the next cycle, that is, increase i by one etc.
