DEN: ODE - numerical approach

Algorithm (Euler (forward) formula for IVP y' = f(x, y)) Given: ODE y' = f(x, y) on $[x_0, x_0 + T]$, initial value y_0 , and $n \in \mathbb{N}$. **0.** Set $h = \frac{T}{n}$. **1.** x_0 and y_0 are given. **2.** For $i = 0, \ldots, n-1$ set $x_{i+1} = x_i + h$ and $y_{i+1} = y_i + f(x_i, y_i) \cdot h$.

Definition.

Consider some numerical method for solving initial value problems $y' = f(x, y(x)), y(x_0) = y_0$ that for given T > 0 and $n \in \mathbb{N}$ produces approximations $\{(x_0, y_0), \ldots, (x_n, y_n)\}$ of the solution on $[x_0, x_0 + T]$. We say that this method is **convergent** if the following is true:

For any IVP with f Lipschitz in the second variable that has a solution y(x) on some $[x_0, x_0 + T]$ and every $n \in \mathbb{N}$, consider the corresponding approximations $\{(x_0, y_0), \ldots, (x_n, y_n)\}$ and define

$$E_n = \max_i |y(x_i) - y_i|.$$

We require that $E_n \to 0$.

Definition.

Consider a one-step method Φ_f for solving initial value problems that for an equation y' = f(x, y(x))and a point (x^*, y^*) generates an estimate $\Phi_f(x^*, y^*, h)$ for the value of the corresponding solution at $x^* + h$.

Given an ODE y' = f(x, y), we define the **local error** of the method as

$$d_f(x^*, y^*, h) = y_*(x^* + h) - \Phi_f(x^*, y^*, h)$$

for all $x^*, y^* \in \mathbb{R}$ and all step sizes h > 0 such that the IVP $y' = f(x, y), y(x^*) = y^*$ has a solution $y_*(x)$ on $[x^*, x^* + h]$.

Definition.

Consider a one-step method Φ_f for solving initial value problems that for an equation y' = f(x, y(x))and a point (x^*, y^*) generates an estimate $\Phi_f(x^*, y^*, h)$ for the value of the corresponding solution at $x^* + h$.

We say that the method is of **order** p, or that it has error of order p, if the following is true: For every differential equation y' = f(x, y) and rectangle $I \times J$ such that f is Lipschitz with respect to y in $I \times J$ and sufficiently smooth there is some C > 0 so that

$$|d_f(x^*, y^*, h)| \le Ch^{p+1}$$

for all $(x^*, y^*) \in I \times J$ and h > 0 such that $(x^* + h, \Phi_f(x^*, y^*, h)) \in I \times J$.

Theorem.

The Euler method is of order 1 with respect to differential equations y' = f(x, y) such that f is differentiable on its domain and its derivatives are bounded on bounded rectangles.

Algorithm (backward Euler formula for IVP y' = f(x, y))

- Given: ODE y' = f(x, y) on $[x_0, x_0 + T]$, initial value y_0 , and $n \in \mathbb{N}$. **0.** Set $h = \frac{T}{n}$.
- **1.** x_0 and y_0 are given.
- **2.** For $i = 0, \ldots, n-1$ set $x_{i+1} = x_i + h$ and solve $y_{i+1} = y_i + f(x_{i+1}, y_{i+1}) \cdot h$ for y_{i+1} .

Algorithm (Heun formula (improved Euler formula) for IVP y' = f(x, y)) Given: ODE y' = f(x, y) on $[x_0, x_0 + T]$, initial value y_0 , and $n \in \mathbb{N}$. **0.** Set $h = \frac{T}{n}$. **1.** x_0 and y_0 are given.

- **2.** For $i = 0, \ldots, n-1$ set $x_{i+1} = x_i + h$ and:
- a) Estimate the slope $y'(x_i)$: $k_1 = f(x_i, y_i)$.
- b) Estimate y_{i+1} : $y_{i+1}^* = y_i + k_1 h$, then estimate the slope $y'(x_{i+1})$: $k_2 = f(x_{i+1}, y_{i+1}^*)$. c) Set $y_{i+1} = y_i + \frac{1}{2}(k_1 + k_2) \cdot h$.

Fact.

The Heine formula method is of order 2.

Algorithm (**RK2** (midpoint, modified Euler formula, improved polygon) for IVP y' = f(x, y)) Given: ODE y' = f(x, y) on $[x_0, x_0 + T]$, initial value y_0 , and $n \in \mathbb{N}$. **0.** Set $h = \frac{T}{n}$.

- **1.** x_0 and y_0 are given.
- **2.** For $i = 0, \ldots, n-1$ set $x_{i+1} = x_i + h$ and:
- a) Estimate the slope $y'(x_i)$: $k_1 = f(x_i, y_i)$. b) Estimate $y(x_i + \frac{1}{2}h)$: $y_{i+1/2}^* = y_i + \frac{1}{2}k_1h$, then estimate the slope $y'(x_i + \frac{1}{2}h)$: $k_2 = f(x_i + \frac{1}{2}h, y_{i+1/2}^*)$. c) Set $y_{i+1} = y_i + k_2 h$.

Fact.

The midpoint method is of order 2.

Definition.

An explicit Runge-Kutta method for solving IVP y' = f(x, y) is given by fixing parameters

Here N is the number of steps, c_j defines nodes, a_{jl} forms the matrix of the method and w_j are weights. When determining y_{i+1} using y_i we first estimate slopes at various points,

$$k_{1} = f(x_{i}, y_{i}),$$

$$k_{2} = f(x_{i} + c_{2}h, y_{i} + a_{21}k_{1}h),$$

$$k_{3} = f(x_{i} + c_{3}h, y_{i} + (a_{31}k_{1} + a_{32}k_{2})h),$$

$$\vdots$$

$$k_{N} = f(x_{i} + c_{N}h, y_{i} + (a_{N1}k_{1} + a_{N2}k_{2} + \dots + a_{N,N-1}k_{N-1})h),$$

these estimates are averaged to get the best slope $k = \sum_{j=1}^{N} w_j k_j$ and then we set $y_{i+1} = y_i + k \cdot h$.

Algorithm (RK4 for IVP y' = f(x, y))

Given: ODE y' = f(x, y) on $[x_0, x_0 + T]$, initial value y_0 , and $n \in \mathbb{N}$. **0.** Set $h = \frac{T}{n}$. **1.** x_0 and y_0 are given. **2.** For i = 0, ..., n - 1 set $x_{i+1} = x_i + h$ and: a) Estimate the slope $y'(x_i)$: $k_1 = f(x_i, y_i)$. b) Estimate $y(x_i + \frac{1}{2}h)$: $y_{i+1/2}^* = y_i + \frac{1}{2}k_1h$ and then estimate the slope $y'(x_i + \frac{1}{2}h)$: $k_2 = f(x_i + \frac{1}{2}h, y_{i+1/2}^*)$. c) Again (to improve?) estimate $y(x_i + \frac{1}{2}h)$: $y_{i+1/2}^{**} = y_i + \frac{1}{2}k_2h$ and then estimate the slope $y'(x_i + \frac{1}{2}h)$: $k_3 = f(x_i + \frac{1}{2}h, y_{i+1/2}^{**})$. d) Estimate $y(x_i + h)$: $y_{i+1}^* = y_i + k_3h$ and then estimate the slope $y'(x_{i+1})$: $k_4 = f(x_{i+1}, y_{i+1}^*)$.

e) Set $y_{i+1} = y_i + \frac{1}{6}[k_1 + 2k_2 + 2k_3 + k_4] \cdot h.$

Fact.

The RK4 method is of order 4.

Algorithm (RKF45, adaptive Runge-Kutta-Fehlberg method for IVP y' = f(x, y)) Given: ODE y' = f(x, y) on $[x_0, x_0 + T]$, initial value y_0 , initial step $h_0 > 0$ and desired precision $\varepsilon > 0$. **1.** x_0 and y_0 are given.

2. For i = 0, ..., n - 1: a) Evaluate $k_1 = f(x_i, y_i)$. b) Evaluate $k_2 = f\left(x_i + \frac{1}{4}h_i, y_i + \frac{1}{4}k_1h_i\right)$. c) Evaluate $k_3 = f\left(x_i + \frac{3}{8}h_i, y_i + \left(\frac{3}{32}k_1 + \frac{9}{32}k_2\right)h_i\right)$. d) Evaluate $k_4 = f\left(x_i + \frac{12}{13}h_i, y_i + \left(\frac{1932}{2197}k_1 - \frac{7200}{2197}k_2 + \frac{7296}{2197}k_3\right)h_i\right)$. e) Evaluate $k_5 = f\left(x_i + h_i, y_i + \left(\frac{439}{216}k_1 - 8k_2 + \frac{3680}{513}k_3 - \frac{845}{4104}k_4\right)h_i\right)$. f) Evaluate $k_6 = f\left(x_i + \frac{1}{2}h_i, y_i + \left(-\frac{8}{27}k_1 + 2k_2 - \frac{3544}{2565}k_3 + \frac{1859}{4104}k_4 - \frac{11}{40}k_5\right)h_i\right)$. g) Estimate $y_{i+1} = y_i + \left(\frac{25}{216}k_1 + \frac{1408}{2565}k_3 + \frac{2197}{4104}k_4 - \frac{1}{5}k_5\right)h_i$ and $z_{i+1} = y_i + \left(\frac{16}{135}k_1 + \frac{6656}{12825}k_3 + \frac{28561}{56430}k_4 - \frac{9}{50}k_5 + \frac{2}{55}k_6\right)h_i$.

If $\frac{1}{h_i}|z_{i+1} - y_{i+1}| > \varepsilon$, set $s = \left(\frac{h\varepsilon}{|z_{i+1} - y_{i+1}|}\right)^{1/4}$ and redo the calculations starting from a) on with the step $h_i = sh_i$.

Otherwise set $x_{i+1} = x_i + h_i$, $h_{i+1} = h_i$ and go to the next cycle, that is, increase i by one etc.