DEN: Roots of functions numerically

Definition.

By a **root** of a function f we mean any number r such that f(r) = 0.

Fact.

Let f be a function on an interval [a, b]. If $f(a) \cdot f(b) < 0$ (i.e. f(a) and f(b) have opposite signs) and f is continuous on [a, b], then f must have a root in the interval [a, b].

Algorithm (bisection method for finding root of f)

Given: a function f continuous on interval [a, b] and a tolerance ε . Assumption: f(a) and f(b) have opposite signs.

0. Set $a_0 = a$, $b_0 = b$. Let k = 0.

1. Assumption: $f(a_k)$ and $f(b_k)$ have opposite signs. Let $m_k = \frac{1}{2}(a_k + b_k) = a_k + \frac{1}{2}(b_k - a_k)$.

2. If $f(m_k) = 0$ or $|b_k - a_k| < \varepsilon$ then algorithm stops, output is m_k . Otherwise:

If $f(a_k)$ and $f(m_k)$ have opposite signs, set $a_{k+1} = a_k$, $b_{k+1} = m_k$, increase k by one and go back to step **1**.

If $f(m_k)$ and $f(b_k)$ have opposite signs, set $a_{k+1} = m_k$, $b_{k+1} = b_k$, increase k by one and go back to step **1**.

Algorithm (Newton method for finding root of a function f)

Given: a differentiable function f and a tolerance $\varepsilon.$

0. Choose x_0 . Let k = 0.

1. Let $x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$. If $|x_{k+1} - x_k| < \varepsilon$ or $|f(x_{k+1})| < \varepsilon$ then the algorithm stops, output is x_{k+1} . Otherwise increase k by one and go back to step **1**.

Theorem.

Let f be a function on an interval [a, b] such that $f(a) \cdot f(b) < 0$. Assume that f is twice continuously differentiable on (a, b) and $f' \neq 0$, $f'' \neq 0$ on (a, b).

If $x_0 \in (a, b)$ is chosen so that $f(x_0) \cdot f''(x_0) > 0$, then the sequence $\{x_n\}$ generated by the Newton methodou converges to a root $r \in [a, b]$ of f.

Stopping conditions:

- $|x_k x_{k-1}| < \varepsilon$ absolute difference
- $\frac{|x_k x_{k-1}|}{|x_k|} < \varepsilon$ relative difference
- $|f(x_k)| < \varepsilon$ value (residual)

Fact.

Let f be a function and $r \in \mathbb{R}$ its root. Assume that there is a neighborhood U of r and $m_1 > 0$ such that f is differentiable on U and $m_1 \leq |f'|$ on U. Then for $\hat{r} \in U$ we have the estimate $|r - \hat{r}| \leq \frac{1}{m_1} |f(\hat{r})|$.

Definition.

Consider a sequence $\{x_k\}$ that converges to some x_{∞} . We say that it converges with order (or rate) of convergence q > 0 if there is C such that $|x_{\infty} - x_{k+1}| \leq C |x_{\infty} - x_k|^q$ for all k. Sometimes this is called the Q-order.

We say that it converges with R-order (or R-rate) of convergence q > 0 if there is a sequence $\{e_k\}$ of upper estimates for $|x_{\infty} - x_k|$, that is, $|x_{\infty} - x_k| \le e_k$ for all k, such that it Q-converges to zero.

Definition.

Consider a certain iterating method for finding roots of functions. We say that it is a **method of order** q, or that it has **error of order** q, where q > 0, if it satisfies the following condition:

Whenever this method produces a sequence $\{x_k\}$ converging to a certain root r of a function f, this root is simple and the function sufficiently smooth, then $\{x_k\}$ converges to r with rate q.

Theorem.

Assume that a function f continuous on [a, b] satisfies $f(a) \cdot f(b) < 0$. Then the sequence $\{m_k\}$ generated by the bisection method with starting values $a_0 = a$, $b_0 = b$ converges to a root of f. The bisection method is of linear order.

Theorem.

The Newton method is of order 2 for twice continuously differentiable functions. For roots of higher multiplicity it is of order 1.

Algorithm (secant method for finding root of a function f)

Given: a continuous function f and a tolerance ε .

0. Choose x_0, x_1 . Let k = 1.

1. Let $x_{k+1} = \frac{x_{k-1}f(x_k) - x_kf(x_{k-1})}{f(x_k) - f(x_{k-1})}$. If $|x_{k+1} - x_k| < \varepsilon$ or $|f(x_{k+1})| < \varepsilon$ then algorithm stops, output is x_{k+1} . Otherwise increase k by one and go back to step 1.

Theorem.

The secant method is of order $\alpha = \frac{1+\sqrt{5}}{2} \approx 1.6$ for twice continuously differentiable functions. For roots of higher multiplicity it is of order 1.

Definition.

Let φ be a function. By a **fixed point** of φ we mean any number x_f satisfying $\varphi(x_f) = x_f$.

Fact.

If a function φ is continuous on some closed bounded interval I and $\varphi[I] \subseteq I$, then φ has a fixed point $x_f \in I$.

Algorithm (fixed-point iteration)

Given: a continuous function φ and a tolerance ε .

0. Choose x_0 . let k = 0.

1. Let $x_{k+1} = \varphi(x_k)$.

If $|x_{k+1} - x_k| < \varepsilon$ then algorithm stops, output is x_{k+1} .

Otherwise increase k by one and go back to step **1**.

Theorem.

Let φ be a function, $x_0 \in \mathbb{R}$ and $x_{k+1} = \varphi(x_k)$ for $k \in \mathbb{N}$. If $x_k \to x_f$ and φ is continuous at x_f , then x_f is a fixed point.

Definition.

Let φ be a function on an interval I. We say that it is **contractive** there, or that it is a **contraction**, if there exists q < 1 such that for all $x, y \in I$ we have

$$|\varphi(x) - \varphi(y)| \le q \cdot |x - y|.$$

Theorem. (Banach's fixed-point theorem)

Let φ be a contractive function on I = [a, b] with coefficient q such that $\varphi[I] \subseteq I$. Then there exists exactly one fixed point x_f of the function φ in I.

Moreover, for all choices of $x_0 \in I$ the sequence given by $x_{k+1} = \varphi(x_k)$ converges to x_f and satisfies

$$|x_f - x_{k+1}| \le q|x_f - x_k|$$
 and $|x_f - x_{k+1}| \le \frac{q}{1-q}|x_{k+1} - x_k|.$

Theorem.

Assume that function φ defined on an interval *I* has a continuous derivative on the interior I^O of *I*. If there is q < 1 such that $|\varphi'(t)| \leq q$ on I^O , then φ is a contraction on *I* with coefficient *q*.

Algorithm (relaxation for fixed-point iteration)

Given: a continuous function φ and a tolerance ε .

1. We choose some relaxation parameter λ and apply fixed-point iteration to $\varphi_{\lambda}(x) = \lambda \varphi(x) + (1-\lambda)x$.