DMA Practice problems: Relations

Exercise 1: For the following relations on \mathbb{Z}, investigate the four basic properties.
(i) $a \mathcal{R} b$ iff $|a|=|b|$;
(v) $a \mathcal{R} b$ iff $a-b=2 k$ for some $k \in \mathbb{Z}$;
(ii) $a \mathcal{R} b$ iff $a \geq b$;
(vi) $a \mathcal{R} b$ iff a and b share some common divisor other than 1 ;
(iii) $a \mathcal{R} b$ iff $a \neq b$;
(vii)* $a \mathcal{R} b$ iff $a \geq b^{2}$ (see the next exercise);
(iv) $a \mathcal{R} b$ iff $a=b+1$;
(viii) ${ }^{*} a \mathcal{R} b$ iff $2 a \leq b$.

Exercise 2: For the following relations on \mathbb{R}, investigate the four basic properties.
(i) $x \mathcal{R} y$ iff $y-x \in \mathbb{Z}$;
(v) $x \mathcal{R} y$ iff $x=y^{2}$;
(ii) $x \mathcal{R} y$ iff $x-y \in \mathbb{Q}$;
(vi)* $x \mathcal{R} y$ iff $x \geq y^{2}$ (see the previous exercise);
(iii) $x \mathcal{R} y$ iff $x y \geq 0$;
(vii) $x \mathcal{R} y$ iff $|x| \leq|y|$.
(iv) $x \mathcal{R} y$ iff $x y \geq 1$;

Exercise 3: Investigate the basic four properties for the following relations:
(i) Relation \mathcal{R} on the set \mathbb{R}^{2} defined as follows: $(u, v) \mathcal{R}(x, y)$ iff $u^{2}-y=x^{2}-v$, formally, $\mathcal{R}=\left\{((u, v),(x, y)) \in \mathbb{R}^{2} \times \mathbb{R}^{2} ; u^{2}-y=x^{2}-v\right\}$.
(ii) Relation \mathcal{R} on the set \mathbb{R}^{2} defined as follows: $(u, v) \mathcal{R}(x, y)$ iff $u^{2}-y=v^{2}-x$, formally, $\mathcal{R}=\left\{((u, v),(x, y)) \in \mathbb{R}^{2} \times \mathbb{R}^{2} ; u^{2}-y=x^{2}-v\right\}$.
(iii)* Relation \mathcal{R} on the set \mathbb{R}^{2} defined as follows:

Consider the set $N=\left\{(x, y) \in \mathbb{R}^{2} ; x^{2}+y^{2}=13\right\}$ (incidentally, it is the circle around the origin with radius $\sqrt{13})$. Define $\mathcal{R}=\left\{((u, v),(x, y)) \in \mathbb{R}^{2} \times \mathbb{R}^{2} ;(u, v)-(x, y) \in N\right\}$.
(iv)* Relation \mathcal{R} on the set \mathbb{R}^{2} defined as follows:

Consider the set $N=\left\{(x, y) \in \mathbb{R}^{2} ; x+y=0\right\}$ (incidentally, it is the antidiagonal or secondary diagonal). Define $\mathcal{R}=\left\{((u, v),(x, y)) \in \mathbb{R}^{2} \times \mathbb{R}^{2} ;(u, v)-(x, y) \in N\right\}$.
(v) Relation \mathcal{R} on the set F of all mappings $\mathbb{Z} \mapsto \mathbb{Z}$ defined as $T \mathcal{R} S$ iff $T(0) S(0)=2$.
(vi) Relation \mathcal{R} on the set F of all mappings $\mathbb{Z} \mapsto \mathbb{Z}$ defined as $T \mathcal{R} S$ iff $T(1)=S(2)$.
(vii) Relation \mathcal{R} on the set F of all functions $\mathbb{R} \mapsto \mathbb{R}$ defined as $f \mathcal{R} g$ iff $f(x) \geq g(y)$ for all $x \in \mathbb{R}$.
(viii) Relation \mathcal{R} on the set $M_{2 \times 2}$ of all 2×2 real matrices defined as $A \mathcal{R} B$ iff $|A|=|B|$ (the same determinant).
(ix) Relation \mathcal{R} on the set $M_{2 \times 2}$ all 2×2 real matrices defined as $\left(\begin{array}{cc}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right) \mathcal{R}\left(\begin{array}{ll}b_{11} & b_{12} \\ b_{21} & b_{22}\end{array}\right)$ iff $a_{11}=b_{22}$.
(x) Relation \mathcal{R} on the set P of all real polynomials defined as $p \mathcal{R} q$ iff p and q have the same degree.
(xi) Relation \mathcal{R} on the set P all real polynomials defined as $p \mathcal{R} q$ iff p and q have the same roots including their multiplicities.
(xii) Relation \mathcal{R} on the set P all real polynomials defined as $p \mathcal{R} q$ iff p and q have the same complex roots including their multiplicities.

Solution 1: (i): R: For every $a \in \mathbb{Z}$ we have $|a|=|a|$, hence $a \mathcal{R} a$. Is reflexive.
\mathbf{S} : Arbitrary $a, b \in \mathbb{Z}$ satisfying $a \mathcal{R} b$, that gives $|a|=|b|$, hence $|b|=|a|$ and so $b \mathcal{R} a$. Is symmetric.
A: Arbitrary $a, b \in \mathbb{Z}$ satisfying $a \mathcal{R} b$ and $b \mathcal{R} a$, that gives $|a|=|b|$ and $|b|=|a|$, we will not get $a=b$ from this. Counterexample: $|-13|=|13|$, hence $13 \mathcal{R}(-13)$ and $(-13) \mathcal{R} 13$, but $-13=13$ not true, so \mathcal{R} is not antisymmetric.
\mathbf{T} : Arbitrary $a, b, c \in \mathbb{Z}$ satisfying $a \mathcal{R} b$ and $b \mathcal{R} c$, that gives $|a|=|b|$ and $|b|=|c|$, from that we have $|a|=|c|$ and so $a \mathcal{R} c . \mathcal{R}$ is transitive.
(ii): R: yes, for $a \in A$ we have $a \geq a$, hence $a \mathcal{R} a ; \mathbf{S}$: no, $2 \mathcal{R} 1$ as $2 \geq 1$, but $1 \geq 2$ not true, hence $1 \mathcal{R} 2$ not true;
A: yes, $a \mathcal{R} b \wedge b \mathcal{R} a \Longrightarrow a \geq b \wedge b \geq a \Longrightarrow a=b$; \mathbf{T} : yes, $a \mathcal{R} b \wedge b \mathcal{R} c \Longrightarrow a \geq b \wedge b \geq$ $c \Longrightarrow a \geq c \Longrightarrow a \mathcal{R} c$.
(iii): \mathbf{R} : no, for instance $1 \neq 1$ not true hence $1 R 1$ not true; \mathbf{S} : yes, $a \mathcal{R} b \Longrightarrow a \neq b \Longrightarrow$ $b \neq a \Longrightarrow b \mathcal{R} a$;
A: no, say, $1 \mathcal{R} 2 \wedge 2 \mathcal{R} 1$, but $1=2$ not true; \mathbf{T} : no, say, $1 \mathcal{R} 2$ and $2 \mathcal{R} 1$, but $1 \mathcal{R} 1$ not true.
(iv): R: no, $13=13+1$ not true and hence $13 \mathcal{R} 13$ not true; $\mathbf{S}:$ no, $2 \mathcal{R} 1$ but $1 \mathcal{R} 2$ not true; A: yes, $a \mathcal{R} b \wedge b \mathcal{R} a \Longrightarrow a=b+1 \wedge b=a+1 \Longrightarrow b=b+2 \Longrightarrow 0=2$ contradiction, so the assumption is never true, hence the implication is always valid; \mathbf{T} : no, say, $3 \mathcal{R} 2$ and $2 \mathcal{R} 1$, but $3 \mathcal{R} 1$ not true.
(v): R: yes, $a-a=2 \cdot 0 \Longrightarrow a \mathcal{R} a$ for every a; \mathbf{S} : yes, $a \mathcal{R} b \Longrightarrow a-b=2 k \Longrightarrow b-a=$ $2(-k) \Longrightarrow b \mathcal{R} a$;
A: no, say, $1 \mathcal{R} 3$ and $3 \mathcal{R} 1$, yet $1=3$ not true;
\mathbf{T} : yes, $a \mathcal{R} b \wedge b \mathcal{R} c \Longrightarrow a-b=2 k \wedge b-c=2 l \Longrightarrow a-c=2(k+l) \Longrightarrow a \mathcal{R} c$.
(vi): \mathbf{R} : Does every $a \in \mathbb{Z}$ have some common divisor with itself other than 1? Almost yes, not true for $a=1$. So \mathcal{R} is not reflexive.
\mathbf{S} : Let $a, b \in \mathbb{Z}$ satisfy $a \mathcal{R} b$. Then there is $c>1$ that divides both a and b, it then also divides b and a, so $b \mathcal{R} a$. \mathcal{R} is symmetric.
A: $a \mathcal{R} b \wedge b \mathcal{R} a$ gives a common divisor, no chance to force $a=b$. Counterexample: $2 \mathcal{R} 4$ and $4 \mathcal{R} 2$ (common divisor 2), hence is not antisymmetric.
$\mathbf{T}: a, b$ have common divisor $>1, b, c$ have common divisor >1, this does not yield anything common for a, c. Counterexample: $2 \mathcal{R} 6$ and $6 \mathcal{R} 3$, but not $2 \mathcal{R} 3$. It is not transitive.
(vii): Is not \mathbf{R}, see $a=2$; not \mathbf{S} see $4 \mathcal{R} 2$;

A: $a \mathcal{R} b \wedge b \mathcal{R} a \Longrightarrow a \geq b^{2} \wedge b \geq a^{2}$. If $a=0$, then that gives $0 \geq b^{2} \Longrightarrow b=0=a$. If $a \neq 0$, then $|a| \geq 1$, also $a \geq b^{2} \geq 0$ and hence $a \geq 1$, similarly $b \geq 1$. We calculate: $a \geq b^{2} \wedge b \geq a^{2} \Longrightarrow a \geq b^{2} \geq a^{4} \Longrightarrow a \geq a^{4} \Longrightarrow 1 \geq a^{3}$, together with $a \geq 1$ that gives $a=1$. Then $1 \geq b^{2} \geq 1 \Longrightarrow b=1$ and again $a=b$. Relation is antisymmetric.
\mathbf{T} : For $b \in \mathbb{Z}$ we have $b^{2} \geq b$ (see A), hence $a \mathcal{R} b \wedge b \mathcal{R} c \Longrightarrow a \geq b^{2} \wedge b \geq c^{2} \Longrightarrow a \geq b \geq$ $c^{2} \Longrightarrow a \geq c^{2} \Longrightarrow a \mathcal{R} c$. is transitive.
(viii): \mathbf{R} : no, inequality $2 a \leq a$ is valid only for negative a and zero, counterexample $a=1$; S: no, $a \mathcal{R} b \Longrightarrow 2 a \leq b$, this gives $2 b \geq 4 a$, but we need $2 b \leq a$. Counterexample $a=1$, $b=2$.
A: no, $[a \mathcal{R} b \wedge b \mathcal{R} a] \Longrightarrow[2 a \leq b \wedge 2 b \leq a] \Longrightarrow[4 a \leq 2 b \wedge 2 b \leq a]$, so $4 a \leq a$. This could happen for non-positive a, we will look for counterexample there. We find, say, $a=-3$ and $b=-2$. Remark: A would be true on \mathbb{N}.
T: no, $[a \mathcal{R} b \wedge b \mathcal{R} c] \Longrightarrow[2 a \leq b \wedge 2 b \leq c] \Longrightarrow 4 a \leq c$. For $a \geq 0$ we have $2 a \leq 4 a \leq c$, so $2 a \leq c$ and $a \mathcal{R} c$. On \mathbb{N} we would have transitivity. But we also have negative numbers, counterexample $a=-1, b=-2, c=-4$.

Solution 2: (i): R,S,T, see example in the book;
(ii): \mathbf{R} yes $x-x=0 \in \mathbb{Q}, \mathbf{S}$ yes $y-x \in \mathbb{Q} \Longrightarrow x-y=-(y-x) \in \mathbb{Q}$, \mathbf{T} yes $y-x \in \mathbb{Q} \wedge(z-y) \in \mathbb{Q}$
$\Longrightarrow(z-x)=(y-x)+(z-y) \in \mathbb{Q}$; not \mathbf{A} see $1 \mathcal{R} 2$ and $2 \mathcal{R} 1 ;$
(iii): \mathbf{R} yes $x x=x^{2} \geq 0, \mathbf{S}$ yes $x y \geq 0 \Longrightarrow y x \geq 0$; not \mathbf{A} see $1 \mathcal{R} 2$ and $2 \mathcal{R} 1$; not \mathbf{T} see (-1) $\mathcal{R} 0$ and $0 \mathcal{R} 1$;
(iv): Not \mathbf{R} see $x=0, \mathbf{S}$ yes $x y \geq 1 \Longrightarrow y x \geq 1 ; \operatorname{not} \mathbf{A}$ see $2 \mathcal{R} 1$ and $1 \mathcal{R} 2$; not \mathbf{T} see $\frac{1}{2} \mathcal{R} 4$ and $4 \mathcal{R} 1$;
(v): Not \mathbf{R} see $x=2 ; \operatorname{not} \mathbf{S}$ see $4 \mathcal{R} 2$;

A yes $x=y^{2} \wedge y=x^{2} \Longrightarrow x, y \geq 0 \wedge x=x^{4} \wedge y=y^{4} \Longrightarrow x=y=1 \vee x=y=0$; not \mathbf{T} see $16 \mathcal{R} 4$ and $4 \mathcal{R} 2$;
(vi): Not \mathbf{R} see $x=2 ; \operatorname{not} \mathbf{S}$ see $4 \mathcal{R} 2 ;$ not \mathbf{A} see $x=0.1, y=0.2$ as $0.1 \geq(0.2)^{2}$ and $0.2 \geq(0.1)^{2}$ but not $0.1=2$; not \mathbf{T} see $(0.5) \mathcal{R}(0.7)$ as $0.5 \geq(0.7)^{2}=0.49,(0.7) \mathcal{R}(0.8)$ as $0.7 \geq 0.64$, but not $0.5 \geq 0.64$ (this was probably a bit tricky).
(vii): \mathbf{R} yes $|x| \leq|x|$, \mathbf{T} yes $|x| \leq|y| \wedge|y| \leq|z| \Longrightarrow|x| \leq|z|$; not \mathbf{S} see $1 \mathcal{R} 2$, not \mathbf{A} see $1 \mathcal{R}(-1)$ and $(-1) \mathcal{R} 2$.

Solution 3: (i): R: yes $u^{2}-v=u^{2}-v \Longrightarrow(u, v) R(u, v) ; \mathbf{S}:(u, v) \mathcal{R}(x, y)$ $\Longrightarrow u^{2}-y=x^{2}-v \Longrightarrow x^{2}-v=u^{2}-y \Longrightarrow(x, y) \mathcal{R}(u, v)$ yes;
A: no, see e.g. $(1,4) \mathcal{R}(2,1)$ and $(2,1) \mathcal{R}(1,4)$;
T: yes; $(s, t) \mathcal{R}(u, v) \&(u, v) \mathcal{R}(x, y) \Longrightarrow s^{2}-v=u^{2}-t \wedge u^{2}-y=x^{2}-v$ add equations, $s^{2}-v+u^{2}-y=u^{2}-t+x^{2}-v \Longrightarrow s^{2}-y=x^{2}-t \Longrightarrow(s, t) \mathcal{R}(x, y)$.
(ii): \mathbf{R} : no, see e.g. $(2,3)$, not true that $2^{2}-3=3^{2}-2$; \mathbf{S} : no, see e.g. $(2,1) \mathcal{R}(1,4)$ but not $(1,4) \mathcal{R}(2,1) ; \mathbf{A}:$ no, see e.g. $(1,0) \mathcal{R}(0,1)$ and $(0,1) \mathcal{R}(1,0) ; \mathbf{T}$: no, see e.g. (1,4$) \mathcal{R}(2,1)$ and $(2,1) \mathcal{R}(1,4)$ but not $(1,4) \mathcal{R}(1,4)$.
(iii): rewrite: $(u, v) \mathcal{R}(x, y) \Longleftrightarrow(u-x)^{2}+(v-y)^{2}=13$; R: no $(u-u)^{2}+(v-v)^{2}=0 \neq 13$; S: yes $(u, v) \mathcal{R}(x, y) \Longrightarrow(u-x)^{2}+(v-y)^{2}=13 \Longrightarrow(x-u)^{2}+(y-v)^{2}=13 \Longrightarrow$ $(x, y) \mathcal{R}(u, v)$; A: no, say, $(4,3) \mathcal{R}(1,1)$ and $(1,1) \mathcal{R}(4,3) ; \mathbf{T}$: no, say, $(4,3) \mathcal{R}(1,1)$ and $(1,1) \mathcal{R}(4,3)$ but not $(4,3) \mathcal{R}(4,3)$.
(iv): rewrite: $(u, v) \mathcal{R}(x, y) \Longleftrightarrow(u-x)+(v-y)=0 ; \mathbf{R}$: yes $(u-u)+(v-v)=0$;

S: yes $(u, v) \mathcal{R}(x, y) \Longrightarrow(u-x)+(v-y)=0 \Longrightarrow(x-u)+(y-v)=0 \Longrightarrow(x, y) \mathcal{R}(u, v)$;
A: no, say, $(1,3) \mathcal{R}(2,2)$ and $(2,2) \mathcal{R}(1,3) ; \mathbf{T}$: yes $(s, t) \mathcal{R}(u, v) \wedge(u, v) \mathcal{R}(x, y) \Longrightarrow(s-u)+$ $(t-v)=0 \wedge(u-x)+(v-y)=0$ add equations, $(s-x)+(t-y)=0 \Longrightarrow(s, t) \mathcal{R}(x, y)$.
(v): R: no, this would require that all mappings satisfy $T(0) T(0)=2$, but for instance the mapping $T(n)=n+1$ has $T(0) T(0)=1 \cdot 1=1$;
S: yes $T \mathcal{R} S \Longrightarrow T(0) S(0)=2 \Longrightarrow S(0) T(0)=2 \Longrightarrow S \mathcal{R} T$; A: no, say, $T(n)=n+1$, $S(n)=3 n+2$, then $T(0) S(0)=1 \cdot 2=2=S(0) T(0)$, so $T \mathcal{R} S$ and $S \mathcal{R} T$, but not $T=S$; T: no, say, $T(n)=n+1, S(n)=3 n+2, U(n)=(n+1)^{2}$, then $T \mathcal{R} S$ and $S \mathcal{R} U$, but not $T \mathcal{R} U$ as $T(0) U(0)=1$.
(vi): R: no, this would require that all mappings satisfy $T(1)=T(2)$, but for instance the mapping $T(n)=n$ has $T(1)=1$ and $T(2)=2$;
S: no, say, $T(n)=n+1$ and $S(n)=n$, then $T(1)=1=S(2)$, hence $T \mathcal{R} S$, but $S(1)=T(2)$ not true; A: no, say, $T(n)=(2 n-3)^{2}, S(n)=1$ (a constant mapping), then $T(1)=1=$ $S(2)$ and $S(1)=1=T(2)$, hence $T \mathcal{R} S$ and $S \mathcal{R} T$, but not $T=S$; T: no, say, $T(n)=n+1$, $S(n)=n, U(n)=n-1$, then $T \mathcal{R} S$ and $S \mathcal{R} U$, but not $T \mathcal{R} U$ as $T(1)=2$ and $U(2)=1$.
(vii): \mathbf{R} : yes, arbitrary function f satisfies the inequality $f(x) \geq f(x)$ for all $x \in \mathbb{R}$; \mathbf{S} : no, say, $f(x)=x+13, g(x)=x$ satisfy $f \mathcal{R} g$ but not $g \mathcal{R} f$; A: yes, $f \mathcal{R} g$ and $g \mathcal{R} f$ mean $f(x) \geq g(x)$ and $g(x) \geq f(x)$ for all x, that is, $f(x)=g(x)$ for all x, that is, $f=g$; \mathbf{T} : yes, $f \mathcal{R} g$ and $g \mathcal{R} h$ give for all $x \in \mathbb{R}$ that $f(x) \geq g(x)$ and $g(x) \geq h(x)$, that is, $f(x) \geq h(x)$, so $f \mathcal{R} h$.
(viii): R: yes $|A|=|A|$; S: yes $A \mathcal{R} B \Longrightarrow|A|=|B| \Longrightarrow|B|=|A| \Longrightarrow B \mathcal{R} A$; A: no, say, a matrix of all zeros or a non-zero matrix with repeated rows have zero determinant; T: yes $A \mathcal{R} B \wedge B \mathcal{R} C \Longrightarrow|A|=|B| \wedge|B|=|C| \Longrightarrow|A|=|C| \Longrightarrow A \mathcal{R} C$.
(ix): \mathbf{R} : no, say, in the matrix $A=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$ the upper left and lower bottom corners do not match, hence $A \mathcal{R} A$ not true;

S: no, say, for $A=\left(\begin{array}{cc}13 & 2 \\ -2 & 7\end{array}\right)$ and $B=\left(\begin{array}{cc}1 & -1 \\ 3 & 13\end{array}\right)$ we have $A \mathcal{R} B$, but not $B \mathcal{R} A$;
A: no, say, $A=\left(\begin{array}{cc}13 & 1 \\ -1 & 23\end{array}\right)$ and $B=\left(\begin{array}{cc}23 & 2 \\ 3 & 13\end{array}\right)$ satisfy $A \mathcal{R} B$ and $B \mathcal{R} A$, but not $A=B$;
T: no, say, $A=\left(\begin{array}{cc}13 & 1 \\ -1 & 23\end{array}\right), B=\left(\begin{array}{cc}23 & 2 \\ 3 & 13\end{array}\right)$ and $C=\left(\begin{array}{cc}14 & -3 \\ 5 & 23\end{array}\right)$ satisfy $A \mathcal{R} B$ and $B \mathcal{R} C$, but not $A \mathcal{R} C$.
(x): R: yes $\operatorname{deg}(p)=\operatorname{deg}(p) ; \mathbf{S}:$ yes $p \mathcal{R} q \Longrightarrow \operatorname{deg}(p)=\operatorname{deg}(q) \Longrightarrow \operatorname{deg}(q)=\operatorname{deg}(p) \Longrightarrow$ $q \mathcal{R} p$; A: no, say, $p=x$ and $q=2 x+1$; \mathbf{T} : yes $p \mathcal{R} q \wedge q \mathcal{R} r \Longrightarrow \operatorname{deg}(p)=\operatorname{deg}(q) \wedge \operatorname{deg}(q)=$ $\operatorname{deg}(r) \Longrightarrow \operatorname{deg}(p)=\operatorname{deg}(r) \Longrightarrow p \mathcal{R} r$;
(xi): R: yes; \mathbf{S} : yes; $\mathbf{A}:$ no, say, $p=x-1$ and $q=2 x-2 ; \mathbf{T}$: yes;
(xii): R: yes; \mathbf{S} : yes; A: no, say, $p=x-1$ and $q=2 x-2$; \mathbf{T} : yes;

