DMA Practice problems: Relations

Exercise 1: For the following relations on \mathbb{Z} , investigate the four basic properties.

(i) $a\mathcal{R}b$ iff |a| = |b|;(v) $a\mathcal{R}b$ iff a - b = 2k for some $k \in \mathbb{Z}$;(ii) $a\mathcal{R}b$ iff $a \ge b$;(vi) $a\mathcal{R}b$ iff a and b share some common divisor other than 1;(iii) $a\mathcal{R}b$ iff $a \ne b$;(vii)* $a\mathcal{R}b$ iff $a \ge b^2$ (see the next exercise);(iv) $a\mathcal{R}b$ iff a = b + 1;(viii)* $a\mathcal{R}b$ iff $2a \le b$.

Exercise 2: For the following relations on \mathbb{R} , investigate the four basic properties.

(i) $x\mathcal{R}y$ iff $y - x \in \mathbb{Z}$; (ii) $x\mathcal{R}y$ iff $x - y \in \mathbb{Q}$; (iii) $x\mathcal{R}y$ iff $xy \ge 0$; (iv) $x\mathcal{R}y$ iff $xy \ge 1$; (v) $x\mathcal{R}y$ iff $xy \ge 1$;

Exercise 3: Investigate the basic four properties for the following relations: (i) Relation \mathcal{R} on the set \mathbb{R}^2 defined as follows: $(u, v)\mathcal{R}(x, y)$ iff $u^2 - y = x^2 - v$, formally, $\mathcal{R} = \{((u, v), (x, y)) \in \mathbb{R}^2 \times \mathbb{R}^2; u^2 - y = x^2 - v\}$. (ii) Relation \mathcal{R} on the set \mathbb{R}^2 defined as follows: $(u, v)\mathcal{R}(x, y)$ iff $u^2 - y = v^2 - x$, formally, $\mathcal{R} = \{((u, v), (x, y)) \in \mathbb{R}^2 \times \mathbb{R}^2; u^2 - y = x^2 - v\}$. (iii)* Relation \mathcal{R} on the set \mathbb{R}^2 defined as follows: Consider the set $N = \{(x, y) \in \mathbb{R}^2; x^2 + y^2 = 13\}$ (incidentally, it is the circle around the origin with radius $\sqrt{13}$). Define $\mathcal{R} = \{((u, v), (x, y)) \in \mathbb{R}^2 \times \mathbb{R}^2; (u, v) - (x, y) \in N\}$. (iv)* Relation \mathcal{R} on the set \mathbb{R}^2 defined as follows: Consider the set $N = \{(x, y) \in \mathbb{R}^2; x + y = 0\}$ (incidentally, it is the antidiagonal or secondary diagonal). Define $\mathcal{R} = \{((u, v), (x, y)) \in \mathbb{R}^2 \times \mathbb{R}^2; (u, v) - (x, y) \in N\}$. (v) Relation \mathcal{R} on the set F of all mappings $\mathbb{Z} \mapsto \mathbb{Z}$ defined as $T\mathcal{R}S$ iff T(0)S(0) = 2.

(vi) Relation \mathcal{R} on the set F of all mappings $\mathbb{Z} \mapsto \mathbb{Z}$ defined as $T\mathcal{R}S$ iff T(1) = S(2).

(vii) Relation \mathcal{R} on the set F of all functions $\mathbb{R} \to \mathbb{R}$ defined as $f\mathcal{R}g$ iff $f(x) \ge g(y)$ for all $x \in \mathbb{R}$.

(viii) Relation \mathcal{R} on the set $M_{2\times 2}$ of all 2×2 real matrices defined as $A\mathcal{R}B$ iff |A| = |B| (the same determinant).

(ix) Relation \mathcal{R} on the set $M_{2\times 2}$ all 2×2 real matrices defined as $\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \mathcal{R} \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix}$ iff $a_{11} = b_{22}$.

(x) Relation \mathcal{R} on the set P of all real polynomials defined as $p\mathcal{R}q$ iff p and q have the same degree.

(xi) Relation \mathcal{R} on the set P all real polynomials defined as $p\mathcal{R}q$ iff p and q have the same roots including their multiplicities.

(xii) Relation \mathcal{R} on the set P all real polynomials defined as $p\mathcal{R}q$ iff p and q have the same complex roots including their multiplicities.

Solution 1: (i): **R**: For every $a \in \mathbb{Z}$ we have |a| = |a|, hence $a\mathcal{R}a$. Is reflexive.

S: Arbitrary $a, b \in \mathbb{Z}$ satisfying $a\mathcal{R}b$, that gives |a| = |b|, hence |b| = |a| and so $b\mathcal{R}a$. Is symmetric.

A: Arbitrary $a, b \in \mathbb{Z}$ satisfying $a\mathcal{R}b$ and $b\mathcal{R}a$, that gives |a| = |b| and |b| = |a|, we will not get a = b from this. Counterexample: |-13| = |13|, hence $13\mathcal{R}(-13)$ and $(-13)\mathcal{R}13$, but -13 = 13 not true, so \mathcal{R} is not antisymmetric.

T: Arbitrary $a, b, c \in \mathbb{Z}$ satisfying $a\mathcal{R}b$ and $b\mathcal{R}c$, that gives |a| = |b| and |b| = |c|, from that we have |a| = |c| and so $a\mathcal{R}c$. \mathcal{R} is transitive.

(ii): **R**: yes, for $a \in A$ we have $a \ge a$, hence $a\mathcal{R}a$; **S**: no, $2\mathcal{R}1$ as $2 \ge 1$, but $1 \ge 2$ not true, hence $1\mathcal{R}2$ not true;

A: yes, $a\mathcal{R}b \wedge b\mathcal{R}a \implies a \ge b \wedge b \ge a \implies a = b$; **T**: yes, $a\mathcal{R}b \wedge b\mathcal{R}c \implies a \ge b \wedge b \ge c \implies a \ge c \implies a\mathcal{R}c$.

(iii): **R**: no, for instance $1 \neq 1$ not true hence 1R1 not true; **S**: yes, $aRb \implies a \neq b \implies b \neq a \implies bRa$;

A: no, say, $1\mathcal{R}^2 \wedge 2\mathcal{R}^1$, but 1 = 2 not true; T: no, say, $1\mathcal{R}^2$ and $2\mathcal{R}^1$, but $1\mathcal{R}^1$ not true.

(iv): **R**: no, 13 = 13 + 1 not true and hence $13\mathcal{R}13$ not true; **S**: no, $2\mathcal{R}1$ but $1\mathcal{R}2$ not true; **A**: yes, $a\mathcal{R}b \wedge b\mathcal{R}a \implies a = b + 1 \wedge b = a + 1 \implies b = b + 2 \implies 0 = 2$ contradiction, so the assumption is never true, hence the implication is always valid; **T**: no, say, $3\mathcal{R}2$ and $2\mathcal{R}1$, but $3\mathcal{R}1$ not true.

(v): **R**: yes, $a - a = 2 \cdot 0 \implies a\mathcal{R}a$ for every a; **S**: yes, $a\mathcal{R}b \implies a - b = 2k \implies b - a = 2(-k) \implies b\mathcal{R}a$;

A: no, say, $1\mathcal{R}3$ and $3\mathcal{R}1$, yet 1 = 3 not true;

T: yes, $a\mathcal{R}b \wedge b\mathcal{R}c \implies a-b = 2k \wedge b - c = 2l \implies a-c = 2(k+l) \implies a\mathcal{R}c$.

(vi): **R**: Does every $a \in \mathbb{Z}$ have some common divisor with itself other than 1? Almost yes, not true for a = 1. So \mathcal{R} is not reflexive.

S: Let $a, b \in \mathbb{Z}$ satisfy $a\mathcal{R}b$. Then there is c > 1 that divides both a and b, it then also divides b and a, so $b\mathcal{R}a$. \mathcal{R} is symmetric.

A: $a\mathcal{R}b \wedge b\mathcal{R}a$ gives a common divisor, no chance to force a = b. Counterexample: $2\mathcal{R}4$ and $4\mathcal{R}2$ (common divisor 2), hence is not antisymmetric.

T: a, b have common divisor > 1, b, c have common divisor > 1, this does not yield anything common for a, c. Counterexample: 2 $\mathcal{R}6$ and 6 $\mathcal{R}3$, but not 2 $\mathcal{R}3$. It is not transitive.

(vii): Is not **R**, see a = 2; not **S** see $4\mathcal{R}2$;

A: $a\mathcal{R}b \wedge b\mathcal{R}a \implies a \geq b^2 \wedge b \geq a^2$. If a = 0, then that gives $0 \geq b^2 \implies b = 0 = a$. If $a \neq 0$, then $|a| \geq 1$, also $a \geq b^2 \geq 0$ and hence $a \geq 1$, similarly $b \geq 1$. We calculate: $a \geq b^2 \wedge b \geq a^2 \implies a \geq b^2 \geq a^4 \implies a \geq a^4 \implies 1 \geq a^3$, together with $a \geq 1$ that gives a = 1. Then $1 \geq b^2 \geq 1 \implies b = 1$ and again a = b. Relation is antisymmetric.

T: For $b \in \mathbb{Z}$ we have $b^2 \ge b$ (see A), hence $a\mathcal{R}b \wedge b\mathcal{R}c \implies a \ge b^2 \wedge b \ge c^2 \implies a \ge b \ge c^2 \implies a \ge c^2 \implies a\mathcal{R}c$. is transitive.

(viii): **R**: no, inequality $2a \le a$ is valid only for negative a and zero, counterexample a = 1; **S**: no, $a\mathcal{R}b \implies 2a \le b$, this gives $2b \ge 4a$, but we need $2b \le a$. Counterexample a = 1, b = 2.

A: no, $[a\mathcal{R}b \wedge b\mathcal{R}a] \implies [2a \leq b \wedge 2b \leq a] \implies [4a \leq 2b \wedge 2b \leq a]$, so $4a \leq a$. This could happen for non-positive a, we will look for counterexample there. We find, say, a = -3 and b = -2. Remark: A would be true on \mathbb{N} .

T: no, $[a\mathcal{R}b \wedge b\mathcal{R}c] \implies [2a \leq b \wedge 2b \leq c] \implies 4a \leq c$. For $a \geq 0$ we have $2a \leq 4a \leq c$, so $2a \leq c$ and $a\mathcal{R}c$. On \mathbb{N} we would have transitivity. But we also have negative numbers, counterexample a = -1, b = -2, c = -4.

Solution 2: (i): R,S,T, see example in the book;

(ii): **R** yes $x - x = 0 \in \mathbb{Q}$, **S** yes $y - x \in \mathbb{Q} \implies x - y = -(y - x) \in \mathbb{Q}$, **T** yes $y - x \in \mathbb{Q} \land (z - y) \in \mathbb{Q}$ $\implies (z - x) = (y - x) + (z - y) \in \mathbb{Q}$; not **A** see 1 \mathcal{R} 2 and 2 \mathcal{R} 1; (iii): **R** yes $xx = x^2 \ge 0$, **S** yes $xy \ge 0 \implies yx \ge 0$; not **A** see 1 $\mathcal{R}2$ and 2 $\mathcal{R}1$; not **T** see $(-1)\mathcal{R}0$ and $0\mathcal{R}1$;

(iv): Not **R** see x = 0, **S** yes $xy \ge 1 \implies yx \ge 1$; not **A** see $2\mathcal{R}1$ and $1\mathcal{R}2$; not **T** see $\frac{1}{2}\mathcal{R}4$ and $4\mathcal{R}1$;

(v): Not **R** see x = 2; not **S** see $4\mathcal{R}2$;

A yes $x = y^2 \land y = x^2 \implies x, y \ge 0 \land x = x^4 \land y = y^4 \implies x = y = 1 \lor x = y = 0$; not **T** see 16*R*4 and 4*R*2;

(vi): Not **R** see x = 2; not **S** see $4\mathcal{R}2$; not **A** see x = 0.1, y = 0.2 as $0.1 \ge (0.2)^2$ and $0.2 \ge (0.1)^2$ but not 0.1 = 2; not **T** see $(0.5)\mathcal{R}(0.7)$ as $0.5 \ge (0.7)^2 = 0.49$, $(0.7)\mathcal{R}(0.8)$ as $0.7 \ge 0.64$, but not $0.5 \ge 0.64$ (this was probably a bit tricky).

(vii): **R** yes $|x| \leq |x|$, **T** yes $|x| \leq |y| \wedge |y| \leq |z| \implies |x| \leq |z|$; not **S** see 1 \mathcal{R} 2, not **A** see 1 \mathcal{R} (-1) and (-1) \mathcal{R} 2.

Solution 3: (i): R: yes $u^2 - v = u^2 - v \implies (u, v)R(u, v)$; S: $(u, v)\mathcal{R}(x, y)$ $\implies u^2 - y = x^2 - v \implies x^2 - v = u^2 - y \implies (x, y)\mathcal{R}(u, v)$ yes; **A**: no, see e.g. $(1, 4)\mathcal{R}(2, 1)$ and $(2, 1)\mathcal{R}(1, 4)$; $\mathbf{T}: \text{ yes; } (s,t)\mathcal{R}(u,v) \And (u,v)\mathcal{R}(x,y) \implies s^2 - v = u^2 - t \wedge u^2 - y = x^2 - v \text{ add equations,}$ $s^2 - v + u^2 - y = u^2 - t + x^2 - v \implies s^2 - y = x^2 - t \implies (s, t)\mathcal{R}(x, y).$ (ii): **R**: no, see e.g. (2,3), not true that $2^2 - 3 = 3^2 - 2$; **S**: no, see e.g. (2,1) $\mathcal{R}(1,4)$ but not $(1,4)\mathcal{R}(2,1)$; **A**: no, see e.g. $(1,0)\mathcal{R}(0,1)$ and $(0,1)\mathcal{R}(1,0)$; **T**: no, see e.g. $(1,4)\mathcal{R}(2,1)$ and $(2,1)\mathcal{R}(1,4)$ but not $(1,4)\mathcal{R}(1,4)$. (iii): rewrite: $(u, v)\mathcal{R}(x, y) \iff (u-x)^2 + (v-y)^2 = 13$; **R**: no $(u-u)^2 + (v-v)^2 = 0 \neq 13$; S: yes $(u,v)\mathcal{R}(x,y) \implies (u-x)^2 + (v-y)^2 = 13 \implies (x-u)^2 + (y-v)^2 = 13 \implies$ $(x,y)\mathcal{R}(u,v)$; A: no, say, $(4,3)\mathcal{R}(1,1)$ and $(1,1)\mathcal{R}(4,3)$; T: no, say, $(4,3)\mathcal{R}(1,1)$ and $(1,1)\mathcal{R}(4,3)$ but not $(4,3)\mathcal{R}(4,3)$. (iv): rewrite: $(u, v)\mathcal{R}(x, y) \iff (u - x) + (v - y) = 0$; **R**: yes (u - u) + (v - v) = 0; **S**: yes $(u, v)\mathcal{R}(x, y) \implies (u-x) + (v-y) = 0 \implies (x-u) + (y-v) = 0 \implies (x, y)\mathcal{R}(u, v);$ A: no, say, $(1,3)\mathcal{R}(2,2)$ and $(2,2)\mathcal{R}(1,3)$; T: yes $(s,t)\mathcal{R}(u,v)\wedge(u,v)\mathcal{R}(x,y) \implies (s-u)+$ $(t-v) = 0 \land (u-x) + (v-y) = 0$ add equations, $(s-x) + (t-y) = 0 \implies (s,t)\mathcal{R}(x,y)$. (v): R: no, this would require that all mappings satisfy T(0)T(0) = 2, but for instance the mapping T(n) = n + 1 has $T(0)T(0) = 1 \cdot 1 = 1$; **S**: yes $T\mathcal{R}S \implies T(0)S(0) = 2 \implies S(0)T(0) = 2 \implies S\mathcal{R}T$; **A**: no, say, T(n) = n + 1, S(n) = 3n + 2, then $T(0)S(0) = 1 \cdot 2 = 2 = S(0)T(0)$, so TRS and SRT, but not T = S; **T**: no, say, T(n) = n + 1, S(n) = 3n + 2, $U(n) = (n + 1)^2$, then $T\mathcal{R}S$ and $S\mathcal{R}U$, but not $T\mathcal{R}U$ as T(0)U(0) = 1.

(vi): **R**: no, this would require that all mappings satisfy T(1) = T(2), but for instance the mapping T(n) = n has T(1) = 1 and T(2) = 2;

S: no, say, T(n) = n+1 and S(n) = n, then T(1) = 1 = S(2), hence $T\mathcal{R}S$, but S(1) = T(2) not true; **A**: no, say, $T(n) = (2n-3)^2$, S(n) = 1 (a constant mapping), then T(1) = 1 = S(2) and S(1) = 1 = T(2), hence $T\mathcal{R}S$ and $S\mathcal{R}T$, but not T = S; **T**: no, say, T(n) = n+1, S(n) = n, U(n) = n-1, then $T\mathcal{R}S$ and $S\mathcal{R}U$, but not $T\mathcal{R}U$ as T(1) = 2 and U(2) = 1. (vii): **R**: yes, arbitrary function f satisfies the inequality $f(x) \ge f(x)$ for all $x \in \mathbb{R}$; **S**: no, say, f(x) = x + 13, g(x) = x satisfy $f\mathcal{R}g$ but not $g\mathcal{R}f$; **A**: yes, $f\mathcal{R}g$ and $g\mathcal{R}f$ mean $f(x) \ge g(x)$ and $g(x) \ge f(x)$ for all $x \in \mathbb{R}$ that $f(x) \ge g(x)$ and $g(x) \ge h(x)$, that is, $f(x) \ge h(x)$, so $f\mathcal{R}h$.

(viii): **R**: yes |A| = |A|; **S**: yes $A\mathcal{R}B \implies |A| = |B| \implies |B| = |A| \implies B\mathcal{R}A$; **A**: no, say, a matrix of all zeros or a non-zero matrix with repeated rows have zero determinant; **T**: yes $A\mathcal{R}B \land B\mathcal{R}C \implies |A| = |B| \land |B| = |C| \implies |A| = |C| \implies A\mathcal{R}C$.

(ix): **R**: no, say, in the matrix $A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ the upper left and lower bottom corners do not match, hence ARA not true;

S: no, say, for $A = \begin{pmatrix} 13 & 2 \\ -2 & 7 \end{pmatrix}$ and $B = \begin{pmatrix} 1 & -1 \\ 3 & 13 \end{pmatrix}$ we have $A\mathcal{R}B$, but not $B\mathcal{R}A$; **A**: no, say, $A = \begin{pmatrix} 13 & 1 \\ -1 & 23 \end{pmatrix}$ and $B = \begin{pmatrix} 23 & 2 \\ 3 & 13 \end{pmatrix}$ satisfy $A\mathcal{R}B$ and $B\mathcal{R}A$, but not A = B; **T**: no, say, $A = \begin{pmatrix} 13 & 1 \\ -1 & 23 \end{pmatrix}$, $B = \begin{pmatrix} 23 & 2 \\ 3 & 13 \end{pmatrix}$ and $C = \begin{pmatrix} 14 & -3 \\ 5 & 23 \end{pmatrix}$ satisfy $A\mathcal{R}B$ and $B\mathcal{R}C$, but not $A\mathcal{R}C$.

(x): **R**: yes deg(p) = deg(p); **S**: yes $p\mathcal{R}q \implies \text{deg}(p) = \text{deg}(q) \implies \text{deg}(q) = \text{deg}(p) \implies q\mathcal{R}p$; **A**: no, say, p = x and q = 2x + 1; **T**: yes $p\mathcal{R}q \land q\mathcal{R}r \implies \text{deg}(p) = \text{deg}(q) \land \text{deg}(q) = \text{deg}(r) \implies \text{deg}(p) = \text{deg}(r) \implies p\mathcal{R}r$;

(xi): **R**: yes; **S**: yes; **A**: no, say, p = x - 1 and q = 2x - 2; **T**: yes;

(xii): **R**: yes; **S**: yes; **A**: no, say, p = x - 1 and q = 2x - 2; **T**: yes;