
DMA Practice problems: Induction

Exercise 1: Prove by induction that the following formulas are true for all n ∈ N:
(i) 2 + 4 + 6 + · · ·+ (2n) = n(n+ 1);

(ii) 1 + 2 + 3 + · · ·+ n = 1
2n(n+ 1);

(iii) 12 + 22 + 32 + · · ·+ n2 = 1
6n(n+ 1)(2n+ 1);

(iv) 1
1·3 + 1

3·5 + 1
5·7 + · · ·+ 1

(2n−1)·(2n+1) = n
2n+1 ;

(v) 1 · 1! + 2 · 2! + · · ·+ n · n! = (n+ 1)!− 1;

(vi) 1 + 1
2! + 1

3! + · · ·+ 1
n! ≤ 2− 1

n! ;

(vii) 1 + 1
4 + 1

9 + · · ·+ 1
n2 ≤ 2− 1

n ;

(viii) n! < nn (this one for n ≥ 2).

Exercise 2: Consider functions defined inductively by the following formulas. For each of them
calculate the first few values and try to guess an explicit formula for f(n). Then prove that the
formula is correct.
(i) (0) f(0) = 0, (1) f(n+ 1) = 2f(n) for n ∈ N0;

(ii) (0) f(1) = 0, (1) f(n+ 1) = f(n) + 1 for n ∈ N;

(iii) (0) f(1) = 1, (1) f(n+ 1) = f(n) · n
n+1 for n ∈ N;

(iv) (0) f(1) = 1, f(2) = 2, (1) f(n+ 1) = 2f(n)− f(n− 1) for n ∈ N, n ≥ 2;

(v) (0) f(1) = 1, f(2) = 1, f(3) = 1, (1) f(n+ 1) = f(n) + f(n− 1)− f(n− 2) for n ∈ N, n ≥ 3;

(vi) (0) f(1) = 1, f(2) = 0, f(3) = 1, (1) f(n+ 1) = f(n) + f(n− 1)− f(n− 2) for n ∈ N, n ≥ 3;

(vii) (0) f(0) = 1, f(1) = 3, (1) f(n+ 1) =

{
3f(n), n ∈ N odd;

9f(n− 1), n ∈ N even;

(viii) (0) f(1) = 1, f(2) = 2, (1) f(n+ 1) = 2f(n− 1) for n ∈ N, n ≥ 2;

Exercise 3: Consider functions defined inductively by the following formulas. For each of them
prove the given (in)equality.
(i) (0) f(1) = 1, f(2) = 2, (1) f(n+ 1) = f(n) + n f(n− 1) for n ≥ 2; inequality f(n) ≤ n!;

(ii) (0) f(1) = 1, f(2) = 2, (1) f(n+ 1) = 1
nf(n) + f(n− 1) for n ≥ 2; inequality f(n) ≤ n2;

(iii) (0) f(1) = 1, f(2) = 2, (1) f(n+ 1) = n f(n) + n f(n− 1) for n ≥ 2; equality f(n) = n!;

(iv) (0) f(1) = 2, f(2) = 3, (1) f(n+ 1) = n f(n) + n2f(n− 1) for n ≥ 2; inequality f(n) ≥ n!.

Exercise 4: Define the set of all binary words (chains) that
(i) do not contain adjacent zeros;
(ii) end with a zero;
(iii) do not end with a zero;
(iv) contain the combination 101.

Exercise 5: Define the set of all words over the alphabet C = {1, 2, 3, 4} that:
(i) do not contain adjacent threes;
(ii) start with a two;
(iii) do not end with a one;
(iv) have the same number of odd and even numerals.
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Solution 1: (i): (0) V (1) says 2 = 1·2, true. (1) Let n ∈ N. Assumption: 2+4+6+· · ·+(2n) = n(n+1).
To prove: 2 + 4 + 6 + · · ·+ (2n+ 2) = (n+ 1)(n+ 2). Decomposition:

2 + 4 + 6 + · · ·+ (2n+ 2) = [2 + 4 + 6 + · · ·+ (2n)] + (2n+ 2)
IP

== [n(n+ 1)] + (2n+ 2) = n2 + 3n+ 2 =
(n+ 1)(n+ 2).
(ii): (0) V (1) says 1 = 1

21 · 2, true. (1) Let n ∈ N. Assumption: 1 + 2 + 3 + · · ·+ n = 1
2n(n+ 1).

To prove: 1 + 2 + 3 + · · ·+ (n+ 1) = 1
2 (n+ 1)(n+ 2). Decomposition:

1 + 2 + 3 + · · ·+ (n+ 1) = [1 + 2 + 3 + · · ·+ n] + (n+ 1)
IP

==
[
1
2n(n+ 1)

]
+ (n+ 1) = 1

2 (n2 + 3n+ 2) =
1
2 (n+ 1)(n+ 2).
(iii): (0) V (1) says 12 = 1

61 · 2 · 3, true. (1) Let n ∈ N. Assumption: 12 + 22 + 32 + · · · + n2 =
1
6n(n+ 1)(2n+ 1).
To prove: 12 + 22 + 32 + · · ·+ (n+ 1)2 = 1

6 (n+ 1)(n+ 2)(2n+ 3). Decomposition:

12 + 22 + 32 + · · ·+ (n+ 1)2 = [12 + 22 + 32 + · · ·+n2] + (n+ 1)2
IP

==
[
1
6n(n+ 1)(2n+ 1)

]
+ (n+ 1)2 =

= 1
6 (2n3 + 9n2 + 13n+ 6) = 1

6 (n+ 1)(n+ 2)(2n+ 3).
(iv): (0) V (1) says 1

3 = 1
3 , true. (1) Let n ∈ N. Assumption: 1

1·3 + 1
3·5 + · · ·+ 1

(2n−1)·(2n+1) = n
2n+1 .

To prove: 1
1·3 + 1

3·5 + · · ·+ 1
(2n+1)·(2n+3) = n+1

2n+3 . Decomposition: 1
1·3 + 1

3·5 + · · ·+ 1
(2n+1)·(2n+3) =

=
[

1
1·3 + 1

3·5 + · · ·+ 1
(2n−1)·(2n+1)

]
+ 1

(2n+1)·(2n+3)

IP
==

[
n

2n+1

]
+ 1

(2n+1)·(2n+3) = 2n2+3n+1
(2n+1)(2n+3) = n+1

2n+3 .

(v): (0) V (1) says 1 ·1 = 2−1, true. (1) Let n ∈ N. Assumption: 1 ·1!+2 ·2!+ · · ·+n ·n! = (n+1)!−1.
To prove: 1 · 1! + 2 · 2! + · · ·+ n · n! + (n+ 1) · (n+ 1)! = (n+ 2)!− 1. Decomposition:
1 · 1! + 2 · 2! + · · ·+ n · n! + (n+ 1) · (n+ 1)! = [1 · 1! + 2 · 2! + · · ·+ n · n!] + (n+ 1) · (n+ 1)! =
IP

== [(n+ 1)!−1] + (n+ 1) · (n+ 1)! = (n+ 1)! + (n+ 1) · (n+ 1)!−1 = (n+ 2)(n+ 1)!−1 = (n+ 2)!−1.
(vi): (0) V (1) says 1 ≤ 2− 1, true. (1) Let n ∈ N. Assumption: 1 + 1

2! + 1
3! + · · ·+ 1

n! ≤ 2− 1
n! .

To prove: 1 + 1
2! + 1

3! + · · ·+ 1
(n+1)! ≤ 2− 1

(n+1)! . Decomposition: 1 + 1
2! + 1

3! + · · ·+ 1
(n+1)! =

=
[
1 + 1

2! + 1
3! + · · ·+ 1

n!

]
+ 1

(n+1)!

IP
≤

[
2− 1

n!

]
+ 1

(n+1)! = 2− (n+1)−1
(n+1)! = 2− n

(n+1)! ≤ 2− 1
(n+1)! .

(vii): (0) V (1) says 1 ≤ 2− 1, true. (1) Let n ∈ N. Assumption: 1 + 1
4 + 1

9 + · · ·+ 1
n2 ≤ 2− 1

n .
To prove: 1 + 1

4 + 1
9 + · · ·+ 1

(n+1)2 ≤ 2− 1
n+1 . Decomposition: 1 + 1

4 + 1
9 + · · ·+ 1

(n+1)2

=
[
1+ 1

4 + 1
9 +· · ·+ 1

n2

]
+ 1

(n+1)2

IP
≤

[
2− 1

n

]
+ 1

(n+1)2 = 2− (n+1)2−n
n(n+1)2 = 2− n2+n+1

n(n+1)2 ≤ 2− n2+n
n(n+1)2 = 2− 1

n+1 .

(viii): (0) V (2) says 2 < 4, true. (1) Let n ≥ 2. Assumption: n! < nn. To prove: (n+1)! < (n+1)n+1.

Decomposition: (n+ 1)! = (n+ 1)n!
IP
< (n+ 1)nn < (n+ 1)(n+ 1)n = (n+ 1)n+1.

Solution 2: (i): f(n) = 0. Weak principle. (0) n = 0 checks. (1) Let n ∈ N0. Assume that f(n) = 0.

Then f(n+ 1) = 2f(n)
IP

== 0, works for n+ 1.
(ii): f(n) = n− 1. Weak principle. (0) n = 1 checks. (1) Let n ∈ N. Assume that f(n) = n− 1. Then

f(n+ 1) = f(n) + 1
IP

== n− 1 + 1 = (n+ 1)− 1, works for n+ 1.
(iii): f(n) = 1

n . Weak principle. (0) n = 1 checks. (1) Let n ∈ N. Assume that f(n) = 1
n . Then

f(n+ 1) = f(n) n
n+1

IP
== 1

n
n

n+1 = 1
n+1 , works for n+ 1.

(iv): f(n) = n. Strong (modified) principle. (0) n = 1 a n = 2 checks. (1) Let n ∈ N. Assume that

f(n) = n and f(n − 1) = n − 1. Then f(n + 1) = 2f(n) − f(n − 1)
IP

== 2n − (n − 1) = n + 1, works
for n+ 1.
(v): f(n) = 1. Strong (modified) principle. (0) n = 1, n = 2 a n = 3 checks. (1) Let n ∈ N. Assume

that f(n) = 1, f(n−1) = 1 and f(n−2) = 1. Then f(n+1) = f(n)+f(n−1)−f(n−2)
IP

== 1+1−1 = 1,
works for n+ 1.

(vi): f(n) =

{
1, n odd;

0, n even.
Strong (modified) principle: (0) For n = 1, 2, 3 checks.

(1) Let n ∈ N, n ≥ 3. Assume that f(k) =

{
1, k odd;

0, k even
for k = n− 2, n− 1, n.

a) If n is even, then n− 2 is even while n− 1 and n+ 1 are odd. Then f(n+ 1) = f(n) + f(n− 1)−
f(n− 2)

IP
== 0 + 1− 0 = 1, works for odd n+ 1.

b) If n is odd, then n− 2 is odd while n− 1 and n+ 1 are even. Then f(n+ 1) = f(n) + f(n− 1)−
f(n− 2)

IP
== 1 + 0− 1 = 0, works for even n+ 1.

Alternative: f(n) = 1
2 (1 − (−1)n), then one can prove directly, using the induction hypothesis one

gets
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f(n+ 1) = f(n) + f(n− 1)− f(n− 2)
IP

== 1
2 (1− (−1)n) + 1

2 (1− (−1)n−1)− 1
2 (1− (−1)n−2) =

= 1
2 (1− (−1)n + 1 + (−1)n − 1 + (−1)n) = 1

2 (1 + (−1)n) = 1
2 (1− (−1)n+1).

(vii): f(n) = 3n. Strong (modified) principle. (0) n = 1 and n = 2 checks. (1) Let n ∈ N. Assume
that f(n) = 3n and f(n− 1) = 3n−1. Consider n+ 1.

Je-li n+ 1 sud, pak f(n+ 1) = 9f(n− 1)
IP

== 9 · 3n−1 = 3n+1.

Je-li n+ 1 lich, pak f(n+ 1) = 3f(n)
IP

== 3 · 3n = 3n+1.
(viii): f(n) = 2bn/2c. Strong (modified) principle. (0) n = 1 and n = 2 checks. (1) Let n ∈ N. Assume

that f(k) =

{
2k/2, k even;

2(k−1)/2, k odd
for k = n− 1, n. Consider n+ 1.

If n+ 1 is even, then also n− 1 is even and f(n+ 1) = 2f(n− 1)
IP

== 2 · 2(n−1)/2 = 2(n+1)/2.

If n+1 is odd, then also n−1 is odd and f(n+1) = 2f(n−1)
IP

== 2 ·2(n−1−1)/2 = 2n/2 = 2((n+1)−1)/2.

Solution 3: (i): Strong (modified) induction (0) For n = 1, 2 it checks. (1) Let n ≥ 2, assuming

validity of V (k): f(n) ≤ n! and f(n−1) ≤ (n−1)!. Then f(n+1) = f(n)+n f(n−1)
IP
≤ n!+n·(n−1)! =

2n! ≤ (n+ 1)n! = (n+ 1)!.
(ii): Strong (modified) induction (0) For n = 1, 2 it checks. (1) Let n ≥ 2, assuming validity of

V (k): f(n) ≤ n2 and f(n − 1) ≤ (n − 1)2. Then f(n + 1) = 1
kf(n) + f(n − 1)

IP
≤ 1

nn
2 + (n − 1)2 =

n+ n2 − 2n+ 1 = n2 − n+ 1 ≤ n2 + 2n+ 1 = (n+ 1)2.
(iii): Strong (modified) induction (0) For n = 1, 2 it checks. (1) Let n ≥ 2, assuming validity of V (k):

f(n) = n! and f(n − 1) = (n − 1)!. Then f(n + 1) = n f(n) + n f(n − 1)
IP

== n · n! + n · (n − 1)! =
n · n! + n! = (n+ 1) · n! = (n+ 1)!.
(iv): Strong (modified) induction (0) For n = 1, 2 it checks. (1) Let n ≥ 2, assuming validity of V (k):

f(n) ≥ n! and f(n − 1) ≤ (n − 1)!. Then f(n + 1) = n f(n) + n2f(n − 1)
IP
≤ n · n! + n2 · (n − 1)! =

n · n! + n · n! = 2n · n! ≥ (n+ 1) · n! = (n+ 1)!.

Solution 4: (i): (0a) 0 ∈M . (0b) 1 ∈M . (0c) 10 ∈M .
(1a) w ∈M =⇒ w1 ∈M . (1b) w ∈M =⇒ w10 ∈M .
Remark: Without (0c) we can’t get 101.
(ii): (0) 0 ∈M .
(1a) w ∈M =⇒ 0w ∈M . (1b) w ∈M =⇒ 1w ∈M .
Remark: We have to add from the left to guarantee the correct ending on the right.
(iii): (0) 1 ∈M .
(1a) w ∈M =⇒ 0w ∈M . (1b) w ∈M =⇒ 1w ∈M .
Remark: We have to add from the left to guarantee the correct ending on the right.
(iv): (0) 101 ∈M .
(1a) w ∈M =⇒ 0w ∈M . (1b) w ∈M =⇒ 1w ∈M . (1c) w ∈M =⇒ w0 ∈M .
(1d) w ∈M =⇒ w1 ∈M .

Solution 5: (i): (0a) c ∈ C =⇒ c ∈M . (0b) c ∈ C − {3} =⇒ c3 ∈M .
(1a) [w ∈M ∧ c ∈ C − {3}] =⇒ wc ∈M . (1b) [w ∈M ∧ c ∈ C − {3}] =⇒ wc3 ∈M .
Remark: Without (0b) we can’t get 13.
(ii): (0) 2 ∈M . (1) [w ∈M ∧ c ∈ C] =⇒ wc ∈M .
(iii): (0) c ∈ C − {1} =⇒ c ∈M . (1) [w ∈M ∧ c ∈ C] =⇒ cw ∈M .
Remark: We have to add from the left to guarantee the correct ending on the right.
(iv): (0a) λ ∈M (0b) [c ∈ {1, 3} ∧ d ∈ {2, 4}] =⇒ cd ∈M .
(0c) [c ∈ {1, 3} ∧ d ∈ {2, 4}] =⇒ dc ∈M .
(1a) [r, s ∈M ∧ c ∈ {1, 3} ∧ d ∈ {2, 4}] =⇒ rcsd ∈M .
(1b) [r, s ∈M ∧ c ∈ {1, 3} ∧ d ∈ {2, 4}] =⇒ rdsc ∈M .
Remark: We add from the right, each time we insert a number of opposite parity in the middle. Is
that the right way? Proof of correctness of the produced words can be done recursively, we remove
the right character and also some character of opposite parity from rest of the chain. We do have to
allow for removing from the middle, see the chain 11222211, we do not need to make allowance for
taking away from the left end. If a chain has at least 4 characters, then there must be at least two
characters of opposite parity, so one of them must be in the middle for taking out.
We had to add (0a), otherwise we could not create chains like 1122.
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