## DMA Practice problems: Calculations modulo

Exercise 1: For the given $n$ and $a$, find the opposite number $(-a)$ and the inverse number $a^{-1}$ in the space $\mathbb{Z}_{n}$.
(i) $n=35, a=12$;
(iii) $n=42, a=25$;
(ii) $n=36, a=15$;
(iv) $n=146, a=75$.

Exercise 2: Evaluate the following expressions in the given $\mathbb{Z}_{n}$. First rewrite subtraction as addition with opposite elements.
(i) $(7+8)^{146}-1$ modulo $n=13$;
(iii) $(31 \cdot 4-1)^{192}$ modulo $n=20$;
(ii) $(11 \cdot 27-14)^{116}$ modulo $n=23$;
(iv) $(30+31)^{108}-2$ modulo $n=53$.

## Solution 1:

(i): $(-a)=n-a=35-12=23$,
we want $x \in \mathbb{Z}$ so that $12 x+35 k=1$ for some $k \in \mathbb{Z}$, we use the Euclidean algorithm for that.
We found $3 \cdot 12+(-1) \cdot 35=1$,
modulo 35 this yields $3 \cdot 12 \equiv 1$.

| 35 |  | 1 | 0 |
| :---: | :---: | :---: | :---: |
| 12 | 2 | 0 | 1 |
| 11 | 1 | 1 | -2 |
| $1 \bullet$ | 11 | $-1 \bullet$ | $3 \bullet$ |
| 0 |  |  |  |

So $12^{-1}=3$.
(ii): $(-a)=36-15=21$,
we want $x \in \mathbb{Z}$ so that $15 x+36 k=1$ for some $k \in \mathbb{Z}$, we use the Euclidean algorithm for that.
We found $\operatorname{gcd}(15,36)>1$,
hence $15^{-1}$ does not exist in $\mathbb{Z}_{36}$.
(iii): $(-a)=42-25=17$,
we want $x \in \mathbb{Z}$ so that $25 x+42 k=1$ for some $k \in \mathbb{Z}$, we use the Euclidean algorithm for that.
We found $(-5) \cdot 25+3 \cdot 42=1$,
modulo 42 this yields $(-5) \cdot 25 \equiv 1$.
We shift $-5+42=37$, so $25^{-1}=37$.

| 36 |  | 1 | 0 |
| :---: | :---: | ---: | ---: |
| 15 | 2 | 0 | 1 |
| 6 | 2 | 1 | -2 |
| $3 \bullet$ | 2 | $-2 \bullet$ | $5 \bullet$ |
| 0 |  |  |  |


| 42 |  | 1 | 0 |
| :---: | :---: | ---: | ---: |
| 25 | 1 | 0 | 1 |
| 17 | 1 | 1 | -1 |
| 8 | 2 | -1 | 2 |
| $1 \bullet$ | 8 | $3 \bullet$ | $-5 \bullet$ |
| 0 |  |  |  |

(iv): $(-a)=146-75=71$,
we want $x \in \mathbb{Z}$ so that $75 x+146 k=1$ for some $k \in \mathbb{Z}$, we use the Euclidean algorithm for that.
We found $(-19) \cdot 146+37 \cdot 75=1$, modulo 146 this yields $37 \cdot 75 \equiv 1$.
So $75^{-1}=37$.

| 146 |  | 1 | 0 |
| ---: | ---: | ---: | ---: |
| 75 | 1 | 0 | 1 |
| 71 | 1 | 1 | -1 |
| 4 | 17 | -1 | 2 |
| 3 | 1 | 18 | -35 |
| $1 \bullet$ | 3 | $-19 \bullet$ | $37 \bullet$ |
| 0 |  |  |  |

Solution 2: Since human computers find it easier to calculate $8 \cdot 9=72 \equiv 2$ rather than directly $8 \cdot 9=2$ in $\mathbb{Z}_{10}$, we will in this solution do calculations in $\mathbb{Z}$ with congruences.
(i): $\equiv(7+8)^{146}+12=15^{146}+12 \equiv 2^{146}+12=2^{12 \cdot 12+2}+12=\left(2^{12}\right)^{12} \cdot 2^{2}+12$
$\stackrel{\mathrm{mF}}{\underline{=}} 1^{12} \cdot 4+12=16 \equiv 3(\bmod 13)$.
The calculation is valid as $\operatorname{gcd}(2,13)=1$ and 13 is a prime.
If we did our calculations in $\mathbb{Z}_{13}$, we would have writen
$\equiv(7+8)^{146}+12=2^{146}+12=2^{12 \cdot 12+2}+12=\left(2^{12}\right)^{12} \cdot 2^{2}+12 \xlongequal{\mathrm{mF}} 1^{12} \cdot 4+12=3$.
(ii): $\equiv(11 \cdot 4+9)^{116}=53^{116} \equiv 7^{116}=7^{22 \cdot 5+14}=\left(7^{22}\right)^{5} \cdot 7^{14} \xlongequal{\underline{\mathrm{mF}}} 1^{5} \cdot 7^{14}=7^{14}=\left(7^{2}\right)^{7}$ $=49^{7} \equiv 3^{7}=3^{6} \cdot 3=\left(3^{3}\right)^{2} \cdot 3=27^{2} \cdot 3 \equiv 4^{2} \cdot 3=16 \cdot 3=48 \equiv 2(\bmod 23)$.
The calculation is valid as $\operatorname{gcd}(7,23)=1$ and 23 is a prime.
(iii): $=(31 \cdot 4+19)^{192} \equiv(11 \cdot 4+19)^{192}=(44+19)^{192} \equiv(4+19)^{192}=23^{192} \equiv 3^{192}$.

We cannot apply the little fermat ( 20 is not a prime). Two options.
Reduction of power:
$3^{192}=3^{3 \cdot 64}=\left(3^{3}\right)^{64}=27^{64} \equiv 7^{6} 4=\left(7^{2}\right)^{3} 2 \equiv 9^{32}=\left(9^{2}\right)^{16} \equiv 1^{16}=1(\bmod 20)$.
Euler: $\varphi(20)=\varphi\left(2^{2} \cdot 5\right)=20\left(1-\frac{1}{2}\right)\left(1-\frac{1}{5}\right)=8$, also $\operatorname{gcd}(3,20)=1$, hence $3^{192}=3^{8 \cdot 24}=\left(3^{8}\right)^{24} \equiv 1^{24}=1(\bmod 20)$.
(iv): $\equiv(30+31)^{108}+51=61^{146}+51 \equiv 8^{108}+51=2^{52 \cdot 2+4}+51=\left(8^{52}\right)^{2} \cdot 8^{4}+51$
$\stackrel{\mathrm{mF}}{\underline{\underline{2}}} 1^{2} \cdot\left(8^{2}\right)^{2}+51=64^{2}+51 \equiv 11^{2}+51=121+51 \equiv 13(\bmod 53)$.
The calculation is valid as $\operatorname{gcd}(8,53)=1$ and 53 is a prime.

