DMA Practice problems: Calculations modulo

Exercise 1: For the given *n* and *a*, find the opposite number (-a) and the inverse number a^{-1} in the space \mathbb{Z}_n .

(i) n = 35, a = 12; (ii) n = 36, a = 15; (iii) n = 146, a = 75.

Exercise 2: Evaluate the following expressions in the given \mathbb{Z}_n . First rewrite subtraction as addition with opposite elements.

(i) $(7+8)^{146} - 1$ modulo n = 13; (ii) $(11 \cdot 27 - 14)^{116}$ modulo n = 23;

- (iii) $(31 \cdot 4 1)^{192}$ modulo n = 20;
- (iv) $(30+31)^{108} 2$ modulo n = 53.

DMA Practice problems: Calculations modulo

Solution 1:

So $75^{-1} = 37$.

(i): (-a) = n - a = 35 - 12 = 23, 3512we want $x \in \mathbb{Z}$ so that 12x + 35k = 1 for some $k \in \mathbb{Z}$, we use the Euclidean algorithm for that. 11 We found $3 \cdot 12 + (-1) \cdot 35 = 1$, 0 modulo 35 this yields $3 \cdot 12 \equiv 1$. So $12^{-1} = 3$. 36 (ii): (-a) = 36 - 15 = 21, we want $x \in \mathbb{Z}$ so that 15x + 36k = 1 for some $k \in \mathbb{Z}$, we use the Euclidean algorithm for that. We found gcd(15, 36) > 1, hence 15^{-1} does not exist in \mathbb{Z}_{36} . (iii): (-a) = 42 - 25 = 17, we want $x \in \mathbb{Z}$ so that 25x + 42k = 1 for some $k \in \mathbb{Z}$, we use the Euclidean algorithm for that. We found $(-5) \cdot 25 + 3 \cdot 42 = 1$, modulo 42 this yields $(-5) \cdot 25 \equiv 1$. We shift -5 + 42 = 37, so $25^{-1} = 37$. (iv): (-a) = 146 - 75 = 71, we want $x \in \mathbb{Z}$ so that 75x + 146k = 1 for some $k \in \mathbb{Z}$, we use the Euclidean algorithm for that. We found $(-19) \cdot 146 + 37 \cdot 75 = 1$, modulo 146 this yields $37 \cdot 75 \equiv 1$.

00		-	0
15	2	0	1
6	2	1	-2
3∙	2	$-2\bullet$	$5\bullet$
0			
42		1	0
25	1	0	1
17	1	1	-1
8	2	-1	2
1•	8	3∙	$-5 \bullet$
0			
1			

146		1	0
75	1	0	1
71	1	1	-1
4	17	-1	2
3	1	18	-35
$1 \bullet$	3	$-19\bullet$	$37 \bullet$
0			

Solution 2: Since human computers find it easier to calculate $8 \cdot 9 = 72 \equiv 2$ rather than directly $8 \cdot 9 = 2$ in \mathbb{Z}_{10} , we will in this solution do calculations in \mathbb{Z} with congruences. (i): $\equiv (7+8)^{146} + 12 = 15^{146} + 12 \equiv 2^{146} + 12 = 2^{12 \cdot 12 + 2} + 12 = (2^{12})^{12} \cdot 2^2 + 12$ $\stackrel{\mathrm{mF}}{=\!\!=} 1^{12} \cdot 4 + 12 = 16 \equiv 3 \pmod{13}.$ The calculation is valid as gcd(2, 13) = 1 and 13 is a prime. If we did our calculations in \mathbb{Z}_{13} , we would have writen $\equiv (7+8)^{146} + 12 = 2^{146} + 12 = 2^{12 \cdot 12 + 2} + 12 = (2^{12})^{12} \cdot 2^2 + 12 \stackrel{\text{mF}}{=} 1^{12} \cdot 4 + 12 = 3.$ (ii): $\equiv (11 \cdot 4 + 9)^{116} = 53^{116} \equiv 7^{116} = 7^{22 \cdot 5 + 14} = (7^{22})^5 \cdot 7^{14} \stackrel{\text{mF}}{=} 1^5 \cdot 7^{14} = 7^{14} = (7^2)^7$ $= 49^7 \equiv 3^7 = 3^6 \cdot 3 = (3^3)^2 \cdot 3 = 27^2 \cdot 3 \equiv 4^2 \cdot 3 = 16 \cdot 3 = 48 \equiv 2 \pmod{23}.$ The calculation is valid as gcd(7, 23) = 1 and 23 is a prime. (iii): $= (31 \cdot 4 + 19)^{192} \equiv (11 \cdot 4 + 19)^{192} = (44 + 19)^{192} \equiv (4 + 19)^{192} = 23^{192} \equiv 3^{192}.$ We cannot apply the little fermat (20 is not a prime). Two options. Reduction of power: $3^{192} = 3^{3 \cdot 64} = (3^3)^{64} = 27^{64} \equiv 7^6 4 = (7^2)^3 2 \equiv 9^{32} = (9^2)^{16} \equiv 1^{16} = 1 \pmod{20}.$ Euler: $\varphi(20) = \varphi(2^2 \cdot 5) = 20(1 - \frac{1}{2})(1 - \frac{1}{5}) = 8$, also $\gcd(3, 20) = 1$, hence $3^{192} = 3^{8 \cdot 24} = (3^8)^{24} \equiv 1^{24} = 1 \pmod{20}$. (iv): $\equiv (30+31)^{108} + 51 = 61^{146} + 51 \equiv 8^{108} + 51 = 2^{52 \cdot 2 + 4} + 51 = (8^{52})^2 \cdot 8^4 + 51$ $\stackrel{\text{mF}}{=} 1^2 \cdot (8^2)^2 + 51 = 64^2 + 51 \equiv 11^2 + 51 = 121 + 51 \equiv 13 \pmod{53}.$ The calculation is valid as gcd(8, 53) = 1 and 53 is a prime.