DMA Practice problems: Equations (diophantine, modular)

Exercise 1: Find all solutions $(x, y) \in \mathbb{Z}^{2}$ for the following diophantine equations:
(i) $819 x+315 y=126$;
(ii) $10 x-15 y=131$;
(iii) $6 x+9 y=204$.

Exercise 2: Solve the following congruences:
(i) $84 x \equiv-56(\bmod 308)$;
(ii) $3 x \equiv 7(\bmod 10)$;
(iii) $12 x \equiv 0(\bmod 20)$.

Exercise 3: Solve the following equations in the given \mathbb{Z}_{n} :
(i) $84 x=126$ v \mathbb{Z}_{210};
(ii) $10 x=0 \mathrm{v} \mathbb{Z}_{35}$;
(iii) $8 x=10$ v \mathbb{Z}_{12}.

Exercise 4: Solve the following systems of congruences:
(i) $x \equiv 0(\bmod 3)$
(ii) $x \equiv 4(\bmod 2)$
$x \equiv 1(\bmod 4)$
$x \equiv-4(\bmod 3)$
(iii) $x \equiv 1(\bmod 7)$
(iv) $x \equiv 3(\bmod 5)$
$x \equiv 2(\bmod 5) ;$
$x \equiv 4(\bmod 5)$;
$x \equiv 0(\bmod 9) \quad x \equiv 4(\bmod 4)$
$x \equiv-1(\bmod 11) ; \quad x \equiv 5(\bmod 3)$.

Solution 1: $(\mathrm{i}): \operatorname{gcd}(819,315)=63=2 \cdot 819+(-5) \cdot 315,63$ divides 126 so there is a solution. Multiply Bezout's identity by 2: $819 \cdot 4+315 \cdot(-10)=126$. Solution $x=4$, $y=-10$.
Homogeneous eq.: $819 x+315 y=0$ cancels to $13 x+5 y=0$, so $x_{h}=-5 k, y_{h}=13 k$. Solution is $x=4-5 k, y=13 k-10$ for $k \in \mathbb{Z}$, or $(x, y)=(4-5 k,-10+13 k)$ for $k \in \mathbb{Z}$. (ii): We guess $\operatorname{gcd}(10,-15)=5$, this does not divide 131. No solution.
(iii): We guess $\operatorname{gcd}(6,9)=3$, so instead of the Euclid algorithm we try just cancelling in the equation: $2 x+3 y=68$. We easily guess that $\operatorname{gcd}(3,2)=1=1 \cdot 3+(-1) \cdot 2$, multiply to get 68: $2 \cdot(-68)+3 \cdot 68=68$. Thus particular solution $x=-68, y=68$.
Homogeneous case: $2 x+3 y=0$ yields $x_{h}=-3 k, y_{h}=2 k$, so the general solutions is $x=3 k-68, y=68-2 k$ for $k \in \mathbb{Z}$, or also $(x, y)=(-68+3 k, 68-2 k)$ for $k \in \mathbb{Z}$.

Solution 2: $(\mathrm{i}):-56=84 x+308 n$, Euclid: $\operatorname{gcd}(308,84)=28=(-1) \cdot 308+4 \cdot 84$. Since $\frac{-56}{28}=-2 \in \mathbb{Z}$, the equation is solvable. Multiplying the Bezout identity by that -2 we obtain $-56=84 \cdot(-8)+2 \cdot 308$, so $x=-8$ is a solution.
Hom. case: $84 x+308 n=0$ cancels to $3 x+11 n=0$, hence $x_{h}=11 k$. We get the solution $x=-8+11 k, k \in \mathbb{Z}$. I prefer $x=3+11 k, k \in \mathbb{Z}$.
(ii): $7=3 x+10 n$, obviously $\operatorname{gcd}(3,10)=1=(-3) \cdot 3+1 \cdot 10$ (we guess), multiply this by seven to get $7=3 \cdot(-21)+7 \cdot 10$, hence $x=-21$ is a solution.
Hom. case: $3 x+10 n=0$ gives $x_{h}=10 k$ (nothing to cancel), hence the given equation has solution $x=-21+10 k, k \in \mathbb{Z}$. I prefer $x=9+10 k, k \in \mathbb{Z}$.
(iii): Obviously $\operatorname{gcd}(12,20)=4$, we cancel: $3 x+5 n=0$ has the solution $x=5 k, k \in \mathbb{Z}$.

Solution 3: $(\mathrm{i}): 126=84 x+210 n$, Euklid's algorithm: $\operatorname{gcd}(210,84)=42=1 \cdot 210+$ $(-2) \cdot 84$, equation has a solution as $\frac{126}{42}=3 \in \mathbb{Z}$. Multiplying Bezout's identity by 3 we obtain $126=84 \cdot(-6)+210 \cdot 3$, hence $x=-6$ is a solution.
Hom. case: $84 x+210 n=0$ cancels to $3 x+5 n=0$, hence $x_{h}=5 k$ and $x=-6+5 k$ solves the congruence. There are $\operatorname{gcd}(210,84)=42$ solutions in $\mathbb{Z}_{210}: x=4+5 k$ for $k=0,1, \ldots, 41$, that is, $\{4,9,14,19, \ldots, 204,209\}$.
(ii): We solve $10 x+35 n=0$, we guess $\operatorname{gcd}(35,10)=5$, divide the equation: $2 x+7 n=0$, so the congruency has the solution $x=7 k$. There are $\operatorname{gcd}(35,10)=5$ solutions in \mathbb{Z}_{35}, namely $x=7 k$ for $k=0,1,2,3,4$, that is, $\{0,7,14,21,28\}$.
(iii): $10=8 x+12 n$, we can guess $\operatorname{gcd}(12,8)=4=1 \cdot 12+(-1) \cdot 8$, no solution since 4 does not divide 10 .

Solution 4: (i): $n=60, N_{1}=20$, inverse element in \mathbb{Z}_{3} is $x_{1}=-1 ; N_{2}=15$, inverse element in \mathbb{Z}_{4} is $x_{2}=-1 ; N_{3}=12$, inverse element in \mathbb{Z}_{5} is $x_{3}=-2 . x=0 \cdot 20 \cdot(-1)+1$. $15 \cdot(-1)+2 \cdot 12 \cdot(-2)=-63 \equiv 57(\bmod 60)$. General solution is $x=60 k-63$ (I prefer $57+60 k)$ for $k \in \mathbb{Z}$.
(ii): $n=30, N_{1}=15$, inverse element in \mathbb{Z}_{2} is $x_{1}=1 ; N_{2}=10$, inverse element in \mathbb{Z}_{3} is $x_{2}=1 ; N_{3}=6$, inverse element in \mathbb{Z}_{5} is $x_{3}=1 . x=4 \cdot 15 \cdot 1+(-4) \cdot 10 \cdot 1+4 \cdot 6 \cdot 1=44 \equiv 14$ $(\bmod 30)$. General solution is $x=44+30 k($ I prefer $14+30 k)$ for $k \in \mathbb{Z}$.
(iii): $n=693, N_{1}=99$, inverse element in \mathbb{Z}_{7} is $x_{1}=1 ; N_{2}=77$, inverse element in \mathbb{Z}_{9} is $x_{2}=2 ; N_{3}=63$, inverse element in \mathbb{Z}_{11} is $x_{3}=-4 . x=1 \cdot 99 \cdot 1+0 \cdot 77 \cdot 2+(-1) \cdot 63 \cdot(-4)=$ 351. General solution is $x=351+693 k$ for $k \in \mathbb{Z}$.
(iv): Rewrite as $x \equiv 3(\bmod 5), x \equiv 0(\bmod 4), x \equiv 2(\bmod 3) . n=60, N_{1}=12$, inverse element in \mathbb{Z}_{5} is $x_{1}=3$; we need not worry about $N_{2} ; N_{3}=20$, inverse element in \mathbb{Z}_{3} is $x_{3}=2 . x=3 \cdot 12 \cdot 3+0+2 \cdot 20 \cdot 2=188$. General solution is $x=188+60 k$ (I prefer $x=8+60 k)$ for $k \in \mathbb{Z}$.

