DMA Practice problems: Equations (diophantine, modular)

Exercise 1: Find all solutions $(x, y) \in \mathbb{Z}^2$ for the following diophantine equations: (ii) 10x - 15y = 131; (i) 819x + 315y = 126;(iii) 6x + 9y = 204. **Exercise 2:** Solve the following congruences: (ii) $3x \equiv 7 \pmod{10}$; (i) $84x \equiv -56 \pmod{308}$; (iii) $12x \equiv 0 \pmod{20}$. **Exercise 3:** Solve the following equations in the given \mathbb{Z}_n : (iii) $8x = 10 \text{ v } \mathbb{Z}_{12}$. (i) $84x = 126 \text{ v } \mathbb{Z}_{210};$ (ii) $10x = 0 \text{ v } \mathbb{Z}_{35};$ **Exercise 4:** Solve the following systems of congruences: (iii) $x \equiv 1 \pmod{7}$ (i) $x \equiv 0 \pmod{3}$ (ii) $x \equiv 4 \pmod{2}$ (iv) $x \equiv 3 \pmod{5}$ $x \equiv 1 \pmod{4}$ $x \equiv -4 \pmod{3}$ $x \equiv 0 \pmod{9}$ $x \equiv 4 \pmod{4}$

 $x \equiv -1 \pmod{11};$

 $x \equiv 5 \pmod{3}$.

 $x \equiv 4 \pmod{5};$

 $x \equiv 2 \pmod{5};$

DMA Practice problems: Equations (diophantine, modular)

Solution 1: (i): $gcd(819, 315) = 63 = 2 \cdot 819 + (-5) \cdot 315$, 63 divides 126 so there is a solution. Multiply Bezout's identity by 2: $819 \cdot 4 + 315 \cdot (-10) = 126$. Solution x = 4, y = -10.

Homogeneous eq.: 819x + 315y = 0 cancels to 13x + 5y = 0, so $x_h = -5k$, $y_h = 13k$. Solution is x = 4 - 5k, y = 13k - 10 for $k \in \mathbb{Z}$, or (x, y) = (4 - 5k, -10 + 13k) for $k \in \mathbb{Z}$. (ii): We guess gcd(10, -15) = 5, this does not divide 131. No solution.

(iii): We guess gcd(6,9) = 3, so instead of the Euclid algorithm we try just cancelling in the equation: 2x + 3y = 68. We easily guess that $gcd(3,2) = 1 = 1 \cdot 3 + (-1) \cdot 2$, multiply to get $68: 2 \cdot (-68) + 3 \cdot 68 = 68$. Thus particular solution x = -68, y = 68.

Homogeneous case: 2x + 3y = 0 yields $x_h = -3k$, $y_h = 2k$, so the general solutions is x = 3k - 68, y = 68 - 2k for $k \in \mathbb{Z}$, or also (x, y) = (-68 + 3k, 68 - 2k) for $k \in \mathbb{Z}$.

Solution 2: (i): -56 = 84x + 308n, Euclid: $gcd(308, 84) = 28 = (-1) \cdot 308 + 4 \cdot 84$. Since $\frac{-56}{28} = -2 \in \mathbb{Z}$, the equation is solvable. Multiplying the Bezout identity by that -2 we obtain $-56 = 84 \cdot (-8) + 2 \cdot 308$, so x = -8 is a solution.

Hom. case: 84x + 308n = 0 cancels to 3x + 11n = 0, hence $x_h = 11k$. We get the solution $x = -8 + 11k, k \in \mathbb{Z}$. I prefer $x = 3 + 11k, k \in \mathbb{Z}$.

(ii): 7 = 3x + 10n, obviously $gcd(3, 10) = 1 = (-3) \cdot 3 + 1 \cdot 10$ (we guess), multiply this by seven to get $7 = 3 \cdot (-21) + 7 \cdot 10$, hence x = -21 is a solution.

Hom. case: 3x + 10n = 0 gives $x_h = 10k$ (nothing to cancel), hence the given equation has solution $x = -21 + 10k, k \in \mathbb{Z}$. I prefer $x = 9 + 10k, k \in \mathbb{Z}$.

(iii): Obviously gcd(12, 20) = 4, we cancel: 3x + 5n = 0 has the solution $x = 5k, k \in \mathbb{Z}$.

Solution 3: (i): 126 = 84x + 210n, Euklid's algorithm: $gcd(210, 84) = 42 = 1 \cdot 210 + (-2) \cdot 84$, equation has a solution as $\frac{126}{42} = 3 \in \mathbb{Z}$. Multiplying Bezout's identity by 3 we obtain $126 = 84 \cdot (-6) + 210 \cdot 3$, hence x = -6 is a solution.

Hom. case: 84x + 210n = 0 cancels to 3x + 5n = 0, hence $x_h = 5k$ and x = -6 + 5k solves the congruence. There are gcd(210, 84) = 42 solutions in \mathbb{Z}_{210} : x = 4 + 5k for $k = 0, 1, \ldots, 41$, that is, $\{4, 9, 14, 19, \ldots, 204, 209\}$.

(ii): We solve 10x + 35n = 0, we guess gcd(35, 10) = 5, divide the equation: 2x + 7n = 0, so the congruency has the solution x = 7k. There are gcd(35, 10) = 5 solutions in \mathbb{Z}_{35} , namely x = 7k for k = 0, 1, 2, 3, 4, that is, $\{0, 7, 14, 21, 28\}$.

(iii): 10 = 8x + 12n, we can guess $gcd(12, 8) = 4 = 1 \cdot 12 + (-1) \cdot 8$, no solution since 4 does not divide 10.

Solution 4: (i): $n = 60, N_1 = 20$, inverse element in \mathbb{Z}_3 is $x_1 = -1$; $N_2 = 15$, inverse element in \mathbb{Z}_4 is $x_2 = -1$; $N_3 = 12$, inverse element in \mathbb{Z}_5 is $x_3 = -2$. $x = 0 \cdot 20 \cdot (-1) + 1 \cdot 15 \cdot (-1) + 2 \cdot 12 \cdot (-2) = -63 \equiv 57 \pmod{60}$. General solution is x = 60k - 63 (I prefer 57 + 60k) for $k \in \mathbb{Z}$.

(ii): n = 30, $N_1 = 15$, inverse element in \mathbb{Z}_2 is $x_1 = 1$; $N_2 = 10$, inverse element in \mathbb{Z}_3 is $x_2 = 1$; $N_3 = 6$, inverse element in \mathbb{Z}_5 is $x_3 = 1$. $x = 4 \cdot 15 \cdot 1 + (-4) \cdot 10 \cdot 1 + 4 \cdot 6 \cdot 1 = 44 \equiv 14$ (mod 30). General solution is x = 44 + 30k (I prefer 14 + 30k) for $k \in \mathbb{Z}$.

(iii): n = 693, $N_1 = 99$, inverse element in \mathbb{Z}_7 is $x_1 = 1$; $N_2 = 77$, inverse element in \mathbb{Z}_9 is $x_2 = 2$; $N_3 = 63$, inverse element in \mathbb{Z}_{11} is $x_3 = -4$. $x = 1 \cdot 99 \cdot 1 + 0 \cdot 77 \cdot 2 + (-1) \cdot 63 \cdot (-4) = 351$. General solution is x = 351 + 693k for $k \in \mathbb{Z}$.

(iv): Rewrite as $x \equiv 3 \pmod{5}$, $x \equiv 0 \pmod{4}$, $x \equiv 2 \pmod{3}$. n = 60, $N_1 = 12$, inverse element in \mathbb{Z}_5 is $x_1 = 3$; we need not worry about N_2 ; $N_3 = 20$, inverse element in \mathbb{Z}_3 is $x_3 = 2$. $x = 3 \cdot 12 \cdot 3 + 0 + 2 \cdot 20 \cdot 2 = 188$. General solution is x = 188 + 60k (I prefer x = 8 + 60k) for $k \in \mathbb{Z}$.