ODE: Solved problems—Method of variation

1. For the equation $y' + \frac{x^2}{x^3 - 1}y = 4\sqrt[3]{(x^3 - 1)^2}$ solve the following Cauchy problems:

a)
$$y(0) = -1$$
; b) $y(1) = 3$; c) $y(2) = \frac{8}{\sqrt[3]{7}}$.

2. Find a general solution of the equation $y'' - 2y' + y = \frac{e^x}{\sqrt{1 - x^2}}$.

Solutions

1. It is a non-homogeneous linear ODE, so we start with the associated homogeneous equation:

$$y' + \frac{x^2}{x^3 - 1}y = 0.$$

It does not have constant coefficients, so we cannot use characteristic numbers λ . Fortunately, separation is possible.

We have condition $x \neq 1$. We separate and integrate: $\int \frac{dy}{y} = -\int \frac{x^2}{x^3 - 1} dx$. The second integral is done via substitution $z = x^3 - 1$, we get $\ln |y| = -\frac{1}{3} \ln |x^3 - 1| + c = \ln \left| \frac{1}{\sqrt[3]{x^3 - 1}} \right| + c$, $|y| = e^c \left| \frac{1}{\sqrt[3]{x^3 - 1}} \right|$, trick $y = \pm e^c \frac{1}{\sqrt[3]{x^3 - 1}}$, hence a general solution of the homogeneous equation is $y_h(x) = \frac{C}{\sqrt[3]{x^3 - 1}}$, $x \neq 1$. Here $C \neq 0$, but C = 0 gives stationary solution $y(x) = 0, x \neq 1$.

Now we do variation of parameter: $y(x) = \frac{C(x)}{\sqrt[3]{x^3 - 1}}$. We can substitute into the given equation and cancel:

$$\begin{split} \left[\frac{C(x)}{\sqrt[3]{x^3-1}}\right]' &+ \frac{x^2}{x^3-1} \cdot \frac{C(x)}{\sqrt[3]{x^3-1}} = 4\sqrt[3]{(x^3-1)^2} \\ \implies C'(x)\frac{1}{\sqrt[3]{x^3-1}} + C(x)\frac{-x^2}{\sqrt[3]{(x^3-1)^4}} + \frac{x^2}{x^3-1} \cdot \frac{C(x)}{\sqrt[3]{x^3-1}} = 4\sqrt[3]{(x^3-1)^2} \\ \implies C'(x)\frac{1}{\sqrt[3]{x^3-1}} - C(x)\frac{x^2}{\sqrt[3]{(x^3-1)^4}} + \frac{x^2}{\sqrt[3]{(x^3-1)^4}} \cdot C(x) = 4\sqrt[3]{(x^3-1)^2} \\ \implies C'(x)\frac{1}{\sqrt[3]{x^3-1}} = 4\sqrt[3]{(x^3-1)^2}. \end{split}$$

Or we simply remember that the same expression as y(x) but with differentiated C(x) is equal to the right-hand side:

$$\frac{C'(x)}{\sqrt[3]{x^3 - 1}} = 4\sqrt[3]{(x^3 - 1)^2}$$

Either way, we have an equation to solve.

$$C'(x) = 4(x^3 - 1) \implies C(x) = x^4 - 4x.$$

Thus we get $y_p(x) = \frac{x^4 - 4x}{\sqrt[3]{x^3 - 1}}$. Using $y = y_h + y_p$ we get a general solution

$$y(x) = \frac{x^4 - 4x + C}{\sqrt[3]{x^3 - 1}}, \ x \neq 1.$$

Alternative: $C(x) = x^4 - 4x + C$, then after substituting we immediately get the general solution above.

Init. conditions: a) Substitute: $-1 = \frac{C}{-1}$, hence C = 1, and $x_0 = 0$ must be in an interval given by condition $x \neq 1$. Solution: $y_a(x) = \frac{x^4 - 4x + 1}{\sqrt[3]{x^3 - 1}}, x \in (-\infty, 1)$.

b) y_b does not exist, we can't have $x_0 = 1$.

c) Substitute: $\frac{8}{\sqrt[3]{7}} = \frac{8+C}{\sqrt[3]{7}}$, hence C = 0. Solution: $y_c(x) = \frac{x^4 - 4x}{\sqrt[3]{x^3 - 1}}, x \in (1, \infty)$.

2. It is a non-homogeneous linear ODE of order 2, existence of solution is determined by continuity of coefficients and its right-hand side, so here we have solutions on (-1,1). We start with the associated homogeneous equation. It has constant coefficients, so we go to characteristic things: From the equation $\lambda^2 - 2\lambda + 1 = (\lambda - 1)^2 = 0$ we get the characteristic number $\lambda = 1$ (2×). The fundamental system of solutions is thus $\{e^x, x e^x\}$ and a general solution of homogeneous equation is $y_h(x) = ae^x + bx e^x$, $x \in \mathbb{R}$.

Now we pass to non-homogeneous equation. The right-hand side is not special, so we have to use variation of parameters. We see condition |x| < 1. We have $y(x) = a(x)e^x + b(x)xe^x$, hence equations

$$a'(x)e^{x} + b'(x)x e^{x} = 0 \qquad a'(x) + b'(x)x = 0$$

$$a'(x)e^{x} + b'(x)(x+1)e^{x} = \frac{e^{x}}{\sqrt{1-x^{2}}} \implies a'(x) + b'(x)(x+1) = \frac{1}{\sqrt{1-x^{2}}}$$

Subtracting (#2)-(#1) we get $b'(x) = \frac{1}{\sqrt{1-x^2}}$, hence $b(x) = \arcsin(x)$. Substituting back into the first equation we have $a'(x) = -\frac{x}{\sqrt{1-x^2}}$, this time we integrate using substitution $z = 1 - x^2$, hence $a(x) = \sqrt{1-x^2}$.

We can also solve the system using determinants (Cramer rule):

$$D = \begin{vmatrix} 1 & x \\ 1 & x+1 \end{vmatrix} = 1, \quad D_{a'} = \begin{vmatrix} 0 & x \\ \frac{1}{\sqrt{1-x^2}} & x+1 \end{vmatrix} = -\frac{x}{\sqrt{1-x^2}}, \quad D_{b'} = \begin{vmatrix} 1 & 0 \\ 1 & \frac{1}{\sqrt{1-x^2}} \end{vmatrix} = \frac{1}{\sqrt{1-x^2}}.$$

Then $a'(x) = \frac{D_{a'}}{D}$ and $b'(x) = \frac{D_{b'}}{D}$ and we get exactly the same formulas as above. Anyway, we get particular solution $y_p(x) = \sqrt{1 - x^2} e^x + \arcsin(x) x e^x$ and general solution by

Anyway, we get particular solution $y_p(x) = \sqrt{1 - x^2} e^x + \arcsin(x) x e^x$ and general solution by adding particular and homogeneous ones:

$$y(x) = \sqrt{1 - x^2} e^x + \arcsin(x) x e^x + ae^x + bx e^x, \qquad x \in (-1, 1).$$

We could have obtained this by putting constants right away when integrating $a(x) = \sqrt{1 - x^2} + a$, $b(x) = \arcsin(x) + b$.