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Exercises - Functional Analysis

J.Hamhalter, Czech Technical University

Hahn-Banach Theorem

1. Let X = l∞ and define a function p((ξn)) = lim supn ξn on X. Show that
p is a sublinear functional. It is a seminorm? Is it a norm?

2. Show that a sublinear functional is continuous whenever it is continuous
at 0.

3. Let f be a sublinear functional on a vector space X. Show that the set

K = {x ∈ X | f(x) < 1}

is convex and absorbing.

4. Let K be a convex and absorbing set in a vector space X. Set

A = {x | pK(x) < 1} , B = {x | pK(x) ≤ 1} .

Show that A ⊂ K ⊂ B and that for the corresponding Minkowski func-
tionals we have

pA = pK = pB .

5. Using Hahn-Banach theorem show that any normed space can be isomet-
rically embedded into its second dual.

6. Let M be a subspace of a normed space X and N a subspace of its dual
X∗. We define

M0 = {x∗ ∈ X∗ | x∗(x) = 0 for all x ∈ M}

N0 = {x ∈ X | x∗(x) = 0 for all x∗ ∈ N}

Show that if M is closed, then

(M0)0 = M

7. Let M be a closed subspace of a normed space X. Show that for each
x ∈ X there is f ∈ X∗, ‖f‖ = 1, vanishing on M such that

f(x) = dist(x, M)

Show that the dual of the quotient space X/M is isometrically isomorphic
to M0.
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8. Supose X is a subspace of Hilbert space H. Let f be a bounded functional
on X. Show that f has only one norm preserving extension to H.

9. Find example of a bouded functional on a one dimensional subspace of
L1[0, 1] which has uncountably many extension to a continuous functional
on L1[0, 1] .

10. Show that if a normed space has finite-dimensional dual, then it has to be
finite-dimensional.

11. Using Hahn-Banach theorem show that for any finite-dimensional sub-
space M in a normed space X there is a closed subspace of N of X such
that

M ⊕N = X

12. Let B be a convex, absorbing, closed balanced subset of a normed space
X. Let x ∈ X but x 6∈ B. Show that there is f ∈ X∗ such that

|f(y)| ≤ 1

for all y ∈ B and f(x) > 1.

13. X = L2[0, 1], Eα = {f ∈ C[0, 1] | f(0) = α}. Show that each Eα is dense
in L2[0, 1]. Show that Eα’s are pairwise disjoint, but cannot be separated
by a closed hyperplane.

14. Suppose that (xn) is a sequence in a normed space X such that there is
x ∈ X such that

f(xn) → f(x)

for all f ∈ X∗. Prove that there is a sequence (yn) of convex combinations
of elements of the sequence (xn) such that

‖yn − x‖ → 0 as n →∞ .

Uniform Boundedness Principle

1. Using Baire’s category theorem show that any infinite-dimensional Banach
space has uncontable Hamel basis.

2. Suppose that (αi) is a sequence such that∑
i

αi βi

converges for all (βi) converging to zero. Show that∑
i

|αi| < ∞ .
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3. Let (xn) be a sequence in a Banach space X such that f(xn) is bounded
for each f ∈ X∗. Show that (xn) is bounded in X.

4. Let (Tn) be a sequence in B(X, Y ), where X and Y are Banach spaces.
Show that (Tn) converges in B(X, Y ) if and only if the following two
conditions are satisfied: (i) (Tnx) is a cauchy sequence for all x from some
total subset of X. (ii) (Tn) is bounded.

Open Mapping Theorem, Closed Graph Theorem

1. Let (X, ‖ · ‖1), (X, ‖ · ‖2) be Banach spaces. Suppose that

‖ · ‖1 ≤ K‖ · ‖2

where K > 0. Show that the norms ‖ · ‖1 and ‖ · ‖2 are equivalent. Show
that this statement does not hold if X is not complete with respet to given
norms.

2. Let T ∈ B(X, Y ), where X and Y are Banach spaces. Suppose T is
injective. Show that T−1 is bounded if, and only if, the range R(T ) of T
is closed.

3. Let M be a finite-dimensional subspace of a Banach space X. Show that
there is a bounded projection mapping X onto M .

4. Show that any closed operator has closed kernel.

5. Show that the sum of a closed and bounded operator is closed.

6. Supppose that T : X → Y is a closed operator between normed space X
and Y . Prove that T (K) is closed whenever K is a compact subset of X.

7. Supppose that T : X → Y is a closed operator between normed spaces X
and Y . Prove that T−1(B) is closed whenever B is closed.

Adjoint operator

1. Let T, S ∈ B(X, Y ). Show that

(T + S)∗ = T ∗ + S∗

(TS)∗ = S∗ T ∗

2. Let T ∈ B(X, Y ). Show that

Ker T ∗ = R(T )0

3. Determine the Hilbert space adjoint of an isometrical linear embedding of
one Hilbert space into another.
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4. Let H be a Hilbert space. Show that for any T ∈ B(H)

H = KerT ⊕R(T ∗)

Formulate and prove the dual statement.

Spectral Theory on Banach Spaces

In the sequel X is always a complex Banach space.

1. Let T ∈ B(X). Show that the set of eingenvectors of T corresponding to
different eigenvalues is linearly independent.

2. Let λ be in the point spectrum of an operator T ∈ B(X). Show that the
space of all eigenvectors corresponding to λ is T-invariant.

3. Let λ be an eigenvalue of T ∈ B(X) and p be a polynomial. Show that
p(λ) is an eigenvalue of p(T ).

4. Let T ∈ B(X) be invertible in B(X). Show that
σ(T−1) = {1/λ | λ ∈ σ(T )}

5. Let X = l∞ and f ∈ X. Let Tf be a linear map acting on X by

Tf (xn) = (fnxn)

Show that this operator is bounded, determine its spectrum and spectral
radius. When is the point spectrum of Tf nonempty?

6. Let T ∈ B(X) be an idempotent, i.e. T 2 = T . Show that if T is neither
zero nor identity, then σ(T ) = {0, 1}.

7. Suppose that T ∈ B(X) and σ(T ) = {0}. Using the spetrum radius
formula show that limn λn‖T‖n+1 = 0 for all complex λ.

8. Find example of an operator for which the spectral radius is strictly less
then its norm. Hint: Consider nilpotent operators.

9. Show that if S, T ∈ B(X) commute, then r(ST ) ≤ r(S)r(T ).

10. Let Φ ∈ B(X)∗ and T ∈ B(X). Show that the sequence of the moments
(Φ(Tn))n has at most exponential growth.



5

Classes of operators on a Hilbert space

1. Show that for a two-dimensional real Hilbert space H there are two dif-
ferent operators T1 and T2 on H such that (T1x, x) = (T2x, x) for all
x ∈ H.

2. Show that if T ∈ B(H) is a normal operator, then Ker T = KerT ∗.

3. Prove that if T ∈ B(H) is normal and F ⊂ H is a subspace of H consisting
of eigenvectors of T , then F⊥ is T -invariant.

4. Suppose that T ∈ B(H) is normal. (i) Show that KerT is T ∗-invariant
and KerT⊥ is T -invariant. (ii) Prove that KerT = KerT k for any integer
k. (iii) Using the previous result show that if a normal operator T is
nilpotent (i.e. if T k = 0 for some integer k), then T = 0.

5. Show that if T ∈ B(H), then T ∗ T and T T ∗ are positive. In particular, if
T is self-adjoint, then T 2 is positive.

6. It can be proved that for any positive operator T ∈ B(H) there is a
positive operator S ∈ B(H) such that S2 = T . Taking this for granted
determine when the product of two positive operators is positive.

7. Prove that an operator T ∈ B(H) preserves the inner product if, and only
if, T ∗T = I. Prove that if such an operator is not a surjection, then it
cannot be normal.

8. Let U be a unilateral shift on `2(Z), meaning that Uδn = δn+1. Show that
the spectrum of U is the unit circle.
Hint: Given a complex unit λ study the action of U on the vectors
xn = 1√

2n+1

∑n
k=−n λ−kδk.

9. Denote by B(H)+ the set of all positive operators on H. Prove that
this set forms a positive cone (i.e. that B(H)+ is closed under sums
and positive scalar multiples). Show that this cone defines a translation
invariant partial order on the set of self-adjoint operators by S ≤ T if
T − S ≥ 0.

10. Suppose that K is a positive element in B(H). Show that the equation
(x, y)1 = (Kx, y) defines an inner product on H (possibly indefinite). By
means of the Cauchy-Schwarz inequality show that

‖K‖ = min{a ∈ R | K ≤ aI} .

11. Let P,Q ∈ B(H) be projections. Prove that the following statements are
equivalent (i) Q− P ≥ 0 (ii) PQ = P (iii) P (H) ⊂ Q(H).
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12. Show that the set E(H) of all positive operators on H of norm less than
one is a convex set. Prove that any projection is an extreme point of this
set. (An extreme point is a point which cannot be written as a proper
convex combination of other points).

13. Show that the numerical range of a normal operator may be much larger
then its spectrum.
Hint: Consider projection.

14. Let (G, ·) be a group. Put H = `2(G). For s ∈ G let us ∈ B(H) be defined
by f(·) → f(s−1·). Show that us is unitary. How does us act on standard
orthonormal basis (δg)g∈G ? Prove that us ut = ust and us−1 = u∗s.

Compact operators on Hilbert spaces.

1. Prove that the range of any compact operator on a Hilbert space is sepa-
rable.

2. Suppose that T ∈ K(H). Let (en)∞n=1 be an orthonormal basis of H and
Pn a projection onto linear span of {e1, e2, · · · , en}.
Prove that ‖PnT − T‖ → 0 as n →∞.

3. Show that if T is a compact operator on a Hilbert space H, then its adjoint
is again compact.

4. Using the spetral theorem for a normal compact operators show that a
compact normal operator on a Hilbert space is positive if, and only if, all
its eigenvalues are nonnegative.

5. Show that for a positive compat operator T acting on a Hilbert space H
there is a positive compact operator S such that S2 = T .


