Homework: December 11th 2024

deadline 18th December 2024

(i) Let $A = \mathbb{R} \setminus \{0\}$ be equipped with binary operation

$$x \star y = \frac{1}{3}xy.$$

Show that A is a group.

(ii) Let us have the set Ω of all complex numbers ω such that $\omega^{17}=1\,.$

Show that (Ω, \cdot) is a cyclic group. Find all generators of Ω .

(iii) Let

where n

$$G = (\mathbb{Z}_n, \oplus_n),$$

= $17^3 \cdot 2^5$. What is the number of generators of G ?

(iv) Let G be a finite group and $a \in G$. Show that

 $(\alpha) < a > = < a^{-1} >.$

- $(\beta) a$ and a^{-1} have the same order.
- (v) (a) Show that [3] is a generating element of $G = (Z_{17}^{\times}, \cdot)$.

(b) Find all powers of [3] generating G.

- (vi) Let $M = (\mathbb{Z}_{306}, \cdot, [1]).$
 - (a) Using Euler theorem calculate

$$[5]^{676}$$

(b) Solve equation

$$5^{676}x \equiv 3(2x+1) \mod 306.$$

(vii) Let p, q be different prime numbers bigger than 4. Find the congruence of the number

```
4^{pq+3},
```

modulo n = pq.

Hint: Use the Euler theorem.