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Chapter 1

Propositional Logic

Mathematical logic studies correct thinking, correct deductions of statements from other
statements. Let us make it more precise. A fundamental property of a statement is that it
may be true or false. Whether a statement is true or false is called its truth value. Logic is a
systematic study of how statements can be related in ways that capture their respective truth
values and how from statements (assumptions) correctly deduce other statements. Knowing
which deductions are ”logically” correct, we can determine the truth value not only by looking
at the words but by looking at the relationship to other statements.

We do not define what a statement is (we also did not define a set, a point etc.). For the
reader’s convenience, we only describe, in an intuitive way, what we mean by a statement:
By a statement we will understand something which is said about the world, and something
which has a truth value.

From elementary statements more complicated ones are built, and the truth value of these
statements is then determined by the basic ones. To form more complicated statements we
use the following logical connectives:
• it is not the case that; we denote it by ¬, and call it the negation;
• and; we denote it by ∧, and call it the conjunction;
• or; we denote it by ∨, and call it the disjunction;
• if . . . then; we denote it by ⇒, and call it the implication;
• if and only if; we denote it by ⇔, and call it the equivalence.

1.1 Formal Syntax of Propositional Logic

1.1.1 Definition of a Formula. Given a non-empty set A of logical variables (we also
call them elementary statements, or propositional variables). A finite sequence of elements of
the set A, of logical connectives and parentheses is called a propositional formula (or shortly
a formula), if it is formed by the following rules:

1. Every logical variable (elementary statement) a ∈ A is a propositional formula.

2. If α, β are propositional formulas, then so are (¬α), (α ∧ β), (α ∨ β), (α ⇒ β), and
(α⇔ β).

3. Only sequences that were formed by using finitely many applications of rules 1 and 2,
are propositional formulas.

The set of all propositional formulas, that were formed from the logical variables from the set
A is denoted by P(A). �

1.1.2 Remark and Notation. The connective ¬ is called unary, since it forms a new
formula from one formula. The other connectives are called binary, since they need two
formulas to form a new one.
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In what follows, we will always denote logical (propositional) variables by small letters:
e.g. a, b, c, . . . , x, y, z, . . . . Propositional formulas will be denoted by small Greek letters:
e.g. α, β, γ, . . . , ϕ, ψ, . . .

1.1.3 Convention. We will use two rules about usage of parenthesis:

1. We omit the outward parenthesis. For example, we will write (α ⇒ β) ⇒ β instead of
((α⇒ β)⇒ β).

2. We assume that the unary connective ¬ “is stronger than” each of the binary ones.
Hence, if α and β are formulas then we write ¬α ⇒ β instead of (¬α) ⇒ β, ¬α ∨ β
instead of (¬α)∨ β, etc. After all, you know such situation in arithmetic. For example,
−2 + 3 is interpreted as (−2) + 3, and not as −(2 + 3).

1.1.4 Syntactic Tree of a Formula. A syntactic tree of a formula ϕ captures its
structure; it is a rooted tree where each vertex which is not a leave is labeled by a logical
connective and has either one son if the connective is ¬, or two sons if the connective is ∧,
∨, ⇒, or ⇔. The leaves are labeled by logical variables.

A syntactic tree is also called derivation tree.

The depth of a formula is defined as the height of the syntactic tree of the formula.

1.1.5 Subformulas of a Given Formula. A subformula of a formula α is any substring
of α that is a formula itself. �

We can also say that a subformula of α is any string which corresponds to a subtree of
the syntactic tree of α.

1.2 Semantics in Propositional Logic

Now we will be interested in the fact whether a correctly formed formula is either true or
false. For this we will use the notion of a truth valuation.

1.2.1 Truth Valuations of Formulas.

Definition. Given a nonempty set of logical variables A. A mapping u:P(A) → {0, 1} is
called a truth valuation, if it satisfies the following rules

(1) u(¬α) = 1 if and only if u(α) = 0;

(2) u(α ∧ β) = 1 if and only if u(α) = u(β) = 1;

(3) u(α ∨ β) = 0 if and only if u(α) = u(β) = 0;

(4) u(α⇒ β) = 0 if and only if u(α) = 1 and u(β) = 0;

(5) u(α⇔ β) = 1 if and only if u(α) = u(β).

�
Here u(α) = 1 means that the formula α is true; and u(α) = 0 means that the formula α

is false.

1.2.2 Truth Tables. The properties that any truth valuation must have, can also be
expressed in terms of the truth tables of the logical connectives. These are:

α ¬α
0 1
1 0

α β α ∧ β α ∨ β α⇒ β α⇔ β
0 0 0 0 1 1
0 1 0 1 1 0
1 0 0 1 0 0
1 1 1 1 1 1
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1.2.3 How Many Different Truth Valuation There Are? The answer depends on
the number of logical variables. We shall show that if A has n logical variables then there are
2n distinct truth valuations. For this the following proposition is the key.

1.2.4 Proposition. Every mapping u0 :A → {0, 1} can be uniquely extended to a truth
valuation. It means that there is a unique truth valuation u :P(A) → {0, 1} such that
u0(a) = u(a) for all a ∈ A.

Moreover, two truth valuations u, v :P(A)→ {0, 1} coincide if and only if u(x) = v(x) for
every logical variable x ∈ A. �

Justification. Consider any formula α and its syntactic tree. Evaluate all logical variables
by their values in u0 (i.e. x has the value u(x) = u0(x)). Each vertex in the syntactic tree
has the value given by the connective and the value/s of its son/s. Now, the value of the root
of the syntactic tree is the truth value of the whole formula.

Notice that the above justification may be turned to an exact proof if mathematical
induction is used on the depth of the formula α.

1.2.5 Corollary. Let A contain n logical variables. Then there exist 2n distinct truth
valuations. �

Justification. The above proposition 1.2.4 tells us that the number of distinct truth valuations
is the number of distinct mappings u0 :A→ {0, 1}. And there are 2n of them.

Remark. Similarly as we formed truth tables for logical connectives we can also form truth
tables for any formula. From the above corollary we know that such a truth table will have
2n rows provided the formula has n logical variables.

1.2.6 A Tautology, a Contradiction, a Satisfiable Formula. Now we can divide
formulas into different groups according to their truth values in all valuations.

Definition.

1. A formula is called a tautology provided it is true for all truth valuations.

2. A formula is called a contradiction provided it is false for all truth valuations.

3. A formula is satisfiable provided there is at least one truth valuation for which the
formula is true.

�
Remark. It is evident that a negation of any tautology is a contradiction, and conversely, a
negation of a contradiction is always a tautology.

For instance, a ∨ ¬a, a ⇒ a are tautologies, whereas a ∧ ¬a is a contradiction. Every
tautology is a satisfiable formula, but there are satisfiable formulas that are not tautologies.
Indeed, a⇒ ¬a is such an example.

1.2.7 Tautological Equivalence. Formulas of propositional logic are defined as strings
of symbols (see 1.1.1), so two formulas are the same if and only if they are the same as strings.
Hence the equality of formulas is a very strict notion; indeed, formulas a ∧ b and b ∧ a are
different whereas everybody feels that meaning of the conjunction of two formulas does not
depend on their order. So we need a new notion for ”equality” of formulas; and the notion is
the tautological equivalence. There is the formal definition:

Definition. We say that formulas ϕ and ψ are tautologically equivalent (also semantically
equivalent), if they have the same value in every truth valuation, i.e. if u(ϕ) = u(ψ) for every
truth valuation u.

The fact that ϕ and ψ are tautologically equivalent is denoted by ϕ |=| ψ. �
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1.2.8 Examples. It is very easy to verify that the following tautological equivalences are
valid (indeed, it suffices to form corresponding truth tables):

1. α ∧ α |=| α, α ∨ α |=| α;

2. α ∧ β |=| β ∧ α, α ∨ β |=| β ∨ α (commutativity of ∧ and ∨);

3. α ∧ (β ∧ γ) |=| (α ∧ β) ∧ γ, α ∨ (β ∨ γ) |=| (α ∨ β) ∨ γ (associativity of ∧ and ∨);

4. α ∧ (β ∨ α) |=| α, α ∨ (β ∧ α) |=| α (absorption of ∧ and ∨);

5. ¬¬α |=| α (double negation);

6. ¬(α ∧ β) |=| (¬α ∨ ¬β), ¬(α ∨ β) |=| (¬α ∧ ¬β) (de Morgan’s laws);

7. α ∧ (β ∨ γ) |=| (α ∧ β)∨ (α ∧ γ), α ∨ (β ∧ γ) |=| (α ∨ β)∧ (α ∨ γ) (distributivity laws).

If moreover T is any tautology and F is any contradiction, then

8. T ∧ α |=| α, T ∨ α |=| T, F ∧ α |=| F, F ∨ α |=| α;

9. α ∧ ¬α |=| F, α ∨ ¬α |=| T.

�

You may notice that some of the above facts are analogous to the properties of the set
operations union, intersection, and complement. It is not surprising since these set operations
correspond to logical connectives disjunction, conjunction, and negation.

1.2.9 Properties of Tautological Equivalence. There are other properties that the
tautological equivalence has and that are useful if we are looking for a simple formula which
is tautologically equivalent to a given one. For this the following two propositions play a
crucial role.

Proposition. Tautological equivalence satisfies the following properties: For every formulas
α, β and γ

1. α |=| α;

2. if α |=| β then β |=| α;

3. if α |=| β and β |=| γ then α |=| γ.

�

Theorem. Let α, β, γ, and δ be formulas satisfying α |=| β and γ |=| δ. Then

1. ¬α |=| ¬β;

2. (α ∧ γ) |=| (β ∧ δ), (α ∨ γ) |=| (β ∨ δ), (α⇒ γ) |=| (β ⇒ δ), (α⇔ γ) |=| (β ⇔ δ).

�

Justification of the above Proposition and Theorem is straightforward and is left as an
exercise.

1.2.10 Remark. A formula was defined, see 1.1.1, as a correctly formed string of logical
variables, logical connectives (¬, ∧, ∨, ⇒ and ⇔), and paranthesis. We could started with
only four connectives; indeed, any formula of the form α ⇔ β can be rewritten using the
following tautological equivalence

α⇔ β |=| (α⇒ β) ∧ (β ⇒ α)

and we get a tautologically equivalent formula that contains only ¬, ∨, ∧ and ⇒.

Similarly, we can introduce F as a new symbol, representing a formula that is false in any
truth valuation, so it represents a contradiction. Hence, for example x⇒ F is a well formed
formula, moreover x⇒ F |=| ¬x.
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1.3 Semantical Consequence

Our main aim of this section is to give a more precise meaning to the concept of ”correct
reasoning”, i.e. how to correctly deduce statements/formulas from a given set of formu-
las/assumptions. What we mean by it: Given a set of assumptions, represented by a set of
formulas S, we will be looking for formulas that can be deduced from S.

Before doing this we specify what we mean by a set of formulas is true in a truth valuation.

1.3.1 Definition. Given a truth valuation u and a set of formulas S. We say that S is
true in u, (or that S is satisfied in u), if every formula from S is true in u. In other words,
u(ϕ) = 1 for all ϕ ∈ S.

A set of formulas is said to be satisfiable if it is true in at least one truth valuation.
Otherwise, it is called unsatisfiable. �

We will write u(S) = 1 whenever S is a set of formulas, u a truth valuation such that S
is true in u.

Example. For instance, the set {a ⇒ b,¬b} is true for u where u(a) = 0 = u(b), so it is
satisfiable. On the other hand, the set {a, a⇒ b,¬b} is unsatisfiable.

1.3.2 Semantical Consequence.

Definition. We say that a formula ϕ is a semantical consequence of a set of formulas S,
(or also that ϕ is an entailment of the set S, or that ϕ semantically follows from the set S),
provided ϕ is true for every truth valuation u for which the set S is true.

The fact that formula ϕ is a semantical consequence of the set S is denoted by S |= ϕ. �

Convention. If S is a one element set, e.g. S = {α}, and S |= ϕ, then we write α |= ϕ
instead of {α} |= ϕ.

If S is the empty set ∅, and S |= ϕ, then we write |= ϕ instead of ∅ |= ϕ.

Remarks. 1. It is easy to notice that S |= ϕ if and only if for every valuation u it holds
that u(S) ≤ u(ϕ).

2. Let us observe that one can verify semantical consequences using truth tables; indeed,
we first form truth tables for all formulas in S and for the formula ϕ. Then we look at all the
rows where all formulas from S have 1. In all these rows the formula ϕ must have 1 as well.

1.3.3 Examples. Let us give couple of examples; they are entailments that are commonly
used in many ”real life deductions”.

For all formulas α, β we have

1. {α, α⇒ β} |= β;

2. {α⇒ β,¬β} |= ¬α;

3. {α,¬α} |= β.

The justification of the above examples is straightforward.

1.3.4 Properties of Semantical Consequence. Let us state several properties that
semantical consequences have.

Proposition. For every two formulas ϕ, ψ we have

• ϕ |=| ψ if and only if ϕ |= ψ and ψ |= ϕ.

• We have ϕ |= ψ if and only if the formula ϕ⇒ ψ is a tautology.
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�
Justification. 1. ϕ |=| ψ means that u(ϕ) = u(ψ) for every truth valuation u. So if u(ϕ) = 1
then u(ψ) = 1, and if u(ψ) = 1 then u(ϕ) = 1, which proves the first part of the proposition.

2. Assume that ϕ |= ψ and take arbitrary truth valuation u. Then either u(ϕ) = 1, or
u(ϕ) = 0. In the first case, u(ψ) = 1 since ϕ |= ψ, and hence u(ϕ ⇒ ψ) = 1. In the latter
case, i.e. if u(ϕ) = 0, then from the properties of implication u(ϕ ⇒ ψ) = 1 as well. Hence
ϕ⇒ ψ is a tautology.

Assume that ϕ ⇒ ψ is a tautology. Then it cannot happen that u(ϕ) = 1 and u(ψ) = 0
for any truth valuation u. Hence ϕ |= ψ.

1.3.5 More Advanced Properties. We state two further properties that are true for
semantical consequence. The first one is a base for so called resolution method. The second
one is the Deduction Theorem for propositional logic. We will not prove them, the proofs are
not difficult and are left to the readers.

Theorem. Let S be a set of formulas and ϕ a formula. Then

S |= ϕ if and only if S ∪ {¬ϕ} is unsatisfiable.

Deduction Theorem. Let S be a set of formulas, α and β two formulas. Then

S |= (α⇒ β) if and only if S ∪ {α} |= β.

1.4 Boolean Calculus

Propositional logic has lot of applications, for example in the theory of logical circuits. In
many applications it is useful to form new ”operations” capturing the behavior of logical
connectives conjunction, disjunction, and negation.

1.4.1 Logical Operations. Given a truth valuation u and two logical variables a and b.
Denote x = u(a) and y = u(b). Then the following holds:

u(a ∨ b) = max{u(a), u(b)} = max{x, y},
u(a ∧ b) = min{u(a), u(b)} = min{x, y},
u(¬a) = 1− u(a) = 1− x.

It motivates the following definition of boolean operations for x, y ∈ {0, 1}:

x · y = min{x, y} (product),
x+ y = max{x, y} (logical sum),
x = 1− x (complement).

1.4.2 Properties of Logical Operations. Let us reformulate the properties of logical
connectives of ¬, ∨ and ∧ given in 1.2.8 to the properties of boolean operations.

Proposition. For all x, y, z ∈ {0, 1} we have:

1. x · x = x, x+ x = x;

2. x · y = y · x, x+ y = y + x;

3. x · (y · z) = (x · y) · z, x+ (y + z) = (x+ y) + z;

4. x · (y + x) = x, x+ (y · x) = x;

5. x · (y + z) = (x · y) + (x · z), x+ (y · z) = (x+ y) · (x+ z);
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6. x = x;

7. x+ y = x · y, x · y = x+ y;

8. x+ x = 1, x · x = 0;

9. x · 0 = 0, x · 1 = x;

10. x+ 1 = 1, x+ 0 = x.

1.4.3 Boolean Functions. To every formula ϕ with n logical variables a1, . . . , an one can
assign a function f : {0, 1}n → {0, 1} of n variables x1, . . . , xn defined

f(x1, . . . , xn) = u(ϕ) for u(ai) = xi, i = 1, . . . , n.

If two formulas α and β are tautologically equivalent, then their corresponding functions are
the same.

Definition. A function f : {0, 1}n → {0, 1} is called a boolean function of n variables, where
n is a natural number. �

Proposition. To every boolean function f : {0, 1}n → {0, 1} there is a formula α which
corresponds to f . �

Notice that the above proposition means that any boolean function can be written as an
expression of boolean operations. For example, the boolean function f corresponding to the
formula a⇒ b can be written as f(x, y) = x+ y since a⇒ b |=| ¬a ∨ b.

Marie Demlova: Discrete Mathematics and Graphs September 11, 2024, 12:28



8

Chapter 2

Predicate Logic

Propositional logic is not able to describe all entailments which we consider to be ”logically
correct”. This is because logical variables are the simplest formulas in propositional logic and
they do not have any inner structure. And the simplest formulas do need inner structure in
some entailments. Let us give an example of such deduction.

Consider the following inference:
Peter can play violin.
Everybody who can play violin has a musical ear.
Peter has a musical ear.

If we try to describe the above sentences as logical variables, then the first sentence would
be one logical variable, say a. The second sentence resembles an implication of two formulas,
say b⇒ c. The third sentence is again a logical variable, say d. But {a, b⇒ c} 6|= d.

We will see that the above inference is correct in predicate logic. Let us start with an
informal description of formulas in predicate logic.

2.1 Syntactics of Predicate Logic

2.1.1 An Informal Description of Predicate Logic. For this purpose we will use
predicates – properties, and quantifiers.

What do we intuitively need for a description of the sentence “Peter can play violin.”?
The statement speaks about “Peter” as an object and a property which Peter has, i.e. the
property ”to be able to play violin”. Also the third sentence “Peter has a musical ear.” has a
similar structure. The property here is “to have a musical ear”. The middle sentence speaks
about “everybody”, where by “everybody” we mean “every object” (every human being). In
fact, it has a form of an implication: Every object that has the property “to be able to play
violin”, also has the property of “having a musical ear”.

Let us denote by V the property “to be able to play violin” and by E the property “to
have a musical ear”. Now, we can write the above inference as:

Peter has V .
Everybody who has V , has E.
Peter has E.

Even this is a rather long description. We will write V (p) instead of “Peter can V .”,
where p denotes Peter. Similarly, we shorten the description of the third sentence, to E(p).
To shorten also the second sentence, we introduce an abbreviation for “everybody”, in other
words, “for all objects”. We will denote it by ∀ and call it the universal quantifier. Any
quantifier must be followed by a variable. The expression ∀x is read as “for every x”. Of
course, we do not say only “for every” we must say “for every object” (and explain where are
the objects from). Variables will be denoted by x, y, . . . , and they represent objects. Now
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the second sentence has the following form: ∀x (V (x)⇒ E(x)). Hence the whole entailment
is written as follows:

V (p)
∀x (V (x)⇒ E(x))
E(p)

2.1.2 Example. We give another inference which is typical for predicate logic.

If a natural number is even, then its successor is odd.
The number 2 is even.
The successor of the number 2 is odd.

Properties (predicate symbols) contained in the inference are: “to be an even number”, we
will denote it by E, and “to be an odd number”, which will be denoted by O. Furthermore,
we have one object (a constant symbol) which is the number 2. Finally, we need to describe
“a successor of a natural number”. Here, by a successor we do not understand the property
“to be a successor”, we do not ask whether a number is the successor of another one or not.
Here we want to work with the successor of a natural number as with a natural number, i.e.
with an object. Of course, this object is indirectly described — by means of a number which
precedes it. Therefore, we will look at “a successor” as a function. We denote it by f , and
it assigns to every natural number its successor, i.e. f :n 7→ n + 1. The symbol f will be
referred as a functional symbol.

Now, we are able to formalize the second and the third sentences: E(2) and O(f(2)). The
first sentence contains a quantifier. It is not completely clear from the English formulation
which quantifier it should be. This ambiguity of the formulation, i.e. whether our statement
should refer to “all” objects or only to “some” object, is common for nearly all natural
languages. Hence we recommend to the reader to try to reformulate the sentence under
consideration so that the quantification will be clearer. In our case, the first sentence has the
same meaning as the statement “Whenever a natural number is even, its successor is an odd
number.”. Therefore we get: ∀x (E(x)⇒ O(f(x))). The whole inference is:

∀x (E(x)⇒ O(f(x)))
E(2)
O(f(2))

2.2 Formal Description of Formulas in Predicate Logic.

Let us now give a formal definition of formulas of predicate logic. For this we need first
to define a language of predicate logic which will capture ”objects”, ”properties”, ”special
objects”, ”mappings”, and ”quantifiers”.

2.2.1 The Language of Predicate Logic.

Definition. A language of predicate logic consists of

1. logical symbols, i.e.:

a) infinite countable set Var of individual variables
b) propositional logical connectives: ¬,∧,∨,⇒,⇔
c) universal quantifier ∀ and existential quantifier ∃

2. special symbols, i.e.:

a) a set Pred of predicate symbols (it cannot be empty)
b) a set Cons of constant symbols (it may be empty)
c) a set Func of functional symbols (it may be empty)

3. auxiliary symbols, such as brackets “[, ]”, parentheses “(, )”, and commas “,”.
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�
For every predicate or functional symbol a natural number is given n, for a predicate

symbol n ≥ 0, for a functional symbol n ≥ 1. This number indicates how many objects the
predicate symbol concerns, or how many variables the functional symbol has. We call the
number the arity of a predicate or functional symbol.

Remark. The fact that a predicate symbol P has arity 0 means that ”it does not concern
any individual variable”, so it is non structured and it can be considered as a logical variable.
In such a way, propositional logic is contained in predicate logic.

2.2.2 Terms. First, we introduce a notion of a term: Roughly speaking, a term is an
object which can be described using variables, constants and functional symbols also in a
more complicated way. In the above examples the terms were for instance “Peter”, “Peter’s
father”, “a successor of the number 2”. In the language of predicate logic, terms play the role
of “substantives”.

Definition. The set of terms is defined by the following rules:

1. Every variable and every constant symbol is a term.

2. If f is a functional symbol of arity n and t1, t2, . . . , tn are terms, then f(t1, t2, . . . , tn)
is also a term.

3. Anything that was not created by a finite use of the above rules 1 and 2 is not a term.

�

2.2.3 Atomic formulas. If we know what are terms (i.e. objects with which our state-
ments deal), we can start to form atomic formulas of predicate logic:

Definition. An atomic formula is a predicate symbol P applied to as many terms as its arity
is. In other words, if the arity of a predicate symbol P is n and t1, t2, . . . , tn is an n-tuple of
terms, then P (t1, t2, . . . , tn) is an atomic formula. �

2.2.4 Formulas of Predicate logic. Analogously as in propositional logic we form also
more complicated formulas than atomic ones.

Definition. The set of formulas is defined by the following rules:

1. Every atomic formula is a formula.

2. If ϕ and ψ are formulas, then ¬ϕ, (ϕ∧ψ), (ϕ∨ψ), (ϕ⇒ ψ), (ϕ⇔ ψ) are also formulas.

3. If ϕ is a formula and x a variable, then (∀x ϕ) and (∃x ϕ) are also formulas.

4. Anything that was not created by a finite use of the above rules 1, 2 and 3 is not a
formula.

�
We will use similar convention as in propositional logic and we will not write the outward

parenthesis. Also note that again the negation “is stronger than other connectives”, so we
¬α and not (¬α).

2.2.5 Syntactic Tree of a Formula. We form the syntactic tree for every formula of
predicate logic similarly as we did for formulas of propositional logic. The only differences
are:

• Inner vertex can be labeled by one of the two quantifiers (∀ and ∃) followed by a variable.
Such vertex has one son (i.e. a quantifier is considered as ”unary”).

• We form also a syntactic tree of any atomic formula: The root of this subtree is labeled
by the corresponding predicate symbol and it has as many sons as is its arity. The
subtrees of the sons correspond to the syntactic trees of the terms written from the left
to the right.
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2.2.6 Subformulas A subformula of a formula ϕ is any substring of ϕ which is itself a
correctly formed formula. �

Given a formula β = (∀x (P (x) ∨ Q(x, y))) ⇒ R(a, x). Then β has subformulas P (x),
Q(x, y), R(a, x), P (x)∨Q(x, y), ∀x (P (x)∨Q(x, y)), and finally itself (∀x (P (x)∨Q(x, y)))⇒
R(a, x).

In other words: A subformula of a formula ϕ is any string that corresponds to a subtree of
the syntactic tree of the formula ϕ, determined by some vertex labeled by a predicate symbol,
by a logical connective, or by a quantifier.

2.2.7 Bound and Free Variables. According to the definition of a formula in 2.2.4 the
following string (∀x P (x)) ⇒ (∃y R(x, y)) is a correctly formed formula of predicate logic.
This formula was constructed using ⇒ from two formulas, ∀x P (x) and ∃y R(x, y). One can
see that the variable x in ∀x P (x) has nothing in common with the variable x in ∃y R(x, y).
To understand better the difference between two different occurrences of x as in the above
example we introduce:

Definition. We say that an occurrence of a variable x is bounded in a formula ϕ, provided
there is a vertex labeled by a quantifier with this variable x on the path from the leaf labeled
by this x to the root (backwards) in the syntactic tree. Otherwise we speak of a free occurrence
of the variable x. �

2.2.8 Sentence. A formula that does not have free variables is called a closed formula or
a sentence. A formula that does not have bounded variables is called an open formula.

Note that there are formulas that are both closed and open; indeed, any formula that does
not have variables (only constant symbols) is at the same time closed and open. Obviously,
the formula above contains a variable, x, which has both free and bounded occurrence.

2.3 Semantics of Predicate Logic

Similarly as in propositional logic we need to study what does it mean that a predicate
logic formula is true or false. In propositional logic it suffices to declare which of the logical
variables are true (and which are false) and we easily get the truth value of the whole formula.
The truthfulness was then established by a truth valuation, i.e. a mapping from the set of
all logical variables into {0, 1}. In predicate logic the situation is considerably more difficult;
the crucial notion will be an interpretation which will help us to find out which sentence (a
closed formula) is true and which is false in the given interpretation.

This section follows the structure of corresponding section about propositional logic.

2.3.1 Informal Description of an Interpretation Let us start with an example. Given
a formula

∀x (S(x)⇒ S(f(f(x))))

where S is a unary predicate symbol and f is a unary functional symbol (obviously, x is a
variable).

The above formula can have several meanings. We state two of them.

1. Objects are people. S represents the property “to be alive”. The function f assigns
to every person his/her father. The formula corresponds to the sentence: “Everybody
who is alive has a grandfather from the father side who is also alive.”. And, of course,
this is a false statement.

2. Objects are natural numbers. S represents the property “to be an even number”, f
assigns to every natural number its successor. The formula corresponds to the sentence:
“For every even natural number the successor of its successor is also an even number.”
And, of course, it is a true statement.
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It is evident from the example above that in order to decide whether a given formula is
true or false we need to know the “meaning” of all special symbols. That is the meaning of
all predicate symbols, constant symbols, and functional symbols, and what our ”word” is, i.e.
from what set our objects will be taken. Moreover, we must have only a sentence (e.g. for
the following formula x > 5 we cannot decide whether it is true or false unless x is bounded
by one of the quantifiers).

2.3.2 Formal Definition of an Interpretation. An interpretation of predicate logic
with the set of predicate symbols Pred, the set of constant symbols Cons, and the set of
functional symbols Func is a pair 〈U, [[−]]〉, where

• U is a non-empty set called universe of domain;

• [[−]] is an assignment which

1. to every predicate symbol P ∈ Pred of arity n it assigns a subset [[P ]] of Un, ( we
will see later that it is in fact an n-ary relation on the set U),

2. to every constant symbol a ∈ Cons it assigns an element of U ; we denote it by [[a]],

3. to every functional symbol f ∈ Func of arity n it assigns a mapping from the set
Un into U ; we denote it by [[f ]].

2.3.3 Informal Definition of Truth Value of a Sentence in an Interpretation.
First, we have to interpret a term in a given interpretation. If we know what should be
substituted for a variable, we can then find the value of the term similarly as evaluation
of algebraic expressions (values of constants are given by the interpretation as well as the
meaning of the functional symbols).

An atomic formula P (t1, . . . , tn) is true if the n-touple (o1, . . . , on) has the property [[P ]],
where oi, i = 1, . . . , n are values of terms t1, . . . , tn.

If we know the truth value of formulas α and β, then the truth value of ¬α, α∧ β, α∨ β,
α⇒ β and α⇔ β are defined as in the propositional logic.

If x is a variable and α is a formula with free variable x, then

• ∀xα is true if and only if for every d ∈ U substituting d for x yields a true formula.

• ∃xα is true if and only if there exists at least one d ∈ U such that if we substitute d for
x we get a true formula.

2.3.4 A Model of a Sentence Given a sentence ϕ. Any interpretation in which ϕ is true
is called a model of ϕ. �

So, the second interpretations from 2.3.1 is a model of the sentence α = ∀x (S(x) ⇒
S(n(n(x))), whereas the first one is a model of ¬α.

2.3.5 A Tautology, a Contradiction, a Satisfiable Sentence. Similarly as in propo-
sitional logic we can define:

Definition. A sentence is called a tautology provided it is true in every interpretation; it
is called a contradiction provided it is false in every interpretation. A sentence is satisfiable
provided there is at least one interpretation in which the formula is true. �

We can reformulate the above definition as follows: A satisfiable sentence is a sentence that
has a model; a contradiction is a sentence that does not have a model; and a tautology is a
sentence for which every interpretation is a model.

Note that there is infinitely many different interpretations of an even simple sentence as
∀xP (x). Indeed, on any set we can define a subset corresponding to P . Hence, in predicate
logic there is nothing like “truth table” for a sentence.

Examples. Given a unary predicate P and a constant a. Then
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1. α = (∀xP (x)) ∨ ¬(∀xP (x)), β = (∀xP (x)) ⇒ (∃xP (x)), γ = ¬(∀xP (x)) ⇔
(∃x¬P (x)), and δ = ¬(∃xP (x))⇔ (∀x¬P (x)) are tautologies.

2. µ = (∃xP (x) ∧ (∀x¬P (x)) is a contradiction. Also the negation of any tautology is a
contradiction.

3. α = P (a), β = (∃xP (x))⇒ P (a) are satisfiable sentences which are not tautologies.

Note that x is a variable, otherwise the above examples were not syntactically correct formulas.

2.3.6 Tautological Equivalence.

Definition. We say that two sentences ϕ and ψ are tautologically equivalent (also semantically
equivalent), if they are either both true or both false in every interpretation. �

2.3.7 Examples. Let us give a couple of examples of tautologically equivalent sentences
that are typical for predicate logic.

1. ∀x∀y Q(x, y) |=| ∀y ∀xQ(x, y),

2. ∃x∃y Q(x, y) |=| ∃y ∃xQ(x, y).

3. ¬(∀xP (x)) |=| (∃x¬P (x));

4. ¬(∃xP (x)) |=| (∀x¬P (x));

5. (∀xP (x)) ∨ (∀y Q(y)) |=| ∀x∀y (P (x) ∨Q(y));

6. (∃xP (x)) ∧ (∃y Q(y)) |=| ∃x∃y (P (x) ∧Q(y)).

2.3.8 Semantical consequence. Similarly as in the propositional logic we will introduce
the notion of semantical consequence to capture correct entailments in predicate logic.

First let us say that a set of sentences S is true in an interpretation 〈U, [[−]]〉, if every
sentence from S is true in 〈U, [[−]]〉.
Definition. We say that a sentence ϕ is a semantical consequence of a set of sentences S,
(or also an entailment of the set S, or that ϕ semantically follows from the set S), provided
ϕ is true in every interpretation 〈U, [[−]]〉 in which the set S is true. We denote this fact by

S |= ϕ.

�

In other words, a sentence ϕ is not a semantical consequence of a set of sentences S,
provided that there is a model of the set S which is not a model of ϕ. That is, there exists
an interpretation 〈U, [[−]]〉, in which every sentence of S is true and the sentence ϕ is false.
Hence, the notion is similar to the semantical consequence in propositional logic, the only
difference is that in propositional logic we deal with truth valuations, and in predicate logic
we have interpretations.

2.3.9 Example. Let us decide whether N |= ϕ holds, where N = {∀x (P (x) ⇒
Q(x)), P (a)} and ϕ = ∃xQ(x).

Solution. Take any interpretation 〈U, [[−]]〉, in which both the sentences ∀x (P (x) ⇒ Q(x))
and P (a) are true. Since the formula P (a) is true, the element c = [[a]] has the property
[[P ]]. It means that c ∈ [[P ]]. Since also the formula ∀x (P (x)⇒ Q(x)) is true in 〈U, [[−]]〉 and
the element c has the property [[P ]], the element c has also the property [[Q]]. It means that
c ∈ [[Q]]. Therefore [[Q]] 6= ∅, thus the formula ∃xQ(x) is true in 〈U, [[−]]〉.

We have shown that ϕ is a semantical consequence of the set N .
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Chapter 3

Sets and Relations

3.1 Sets

In this section we first recall some well known facts about sets and operations with them. You
probably know them already. The main focus will be on the notion of cardinality of a set,
which for finite sets coincide with the number of elements. The cardinality will be defined in
such a way that it can be used also for infinite sets, and we show that there are infinite sets
with “smaller” number of elements, i.e. a smaller cardinality than other infinite sets.

Let us start with the notion of a set. A set is what mathematicians call a collection of
objects that can be distinguished from each other and these objects we call elements. For a
well known sets we use common notation — N for the set of all natural numbers, Z for the
set of all integers, Q for the set of all rational numbers, and R for the set of all real numbers.

3.1.1 Principle of Extensionality. Two sets S and T are equal (we write S = T ) if and
only if every element of the set S is an element of the set T and conversely, every element of
T is an element of S.

3.1.2 A set can be given by listing its elements, or by a property that characterizes its
elements. If p(x) is a property which an element has or does not have then the set C consisting
of all elements having the property p(x) (and no others) is denoted by

C = {x | p(x)}.

For example, the set of all squares of numbers 1, . . . , 4 is either S = {1, 4, 9, 16}, or as

S = {x | x = y2, y ∈ N, 0 < y < 5}.

The set of all even natural numbers is {m | m = 2k, k ∈ N}. The set of all odd numbers
is {m | m = 2k + 1, k ∈ N}.

3.1.3 Subsets.

Definition. Given two sets S and T . If every element of the set S is also an element of T ,
we say that S is a subset of T , and we write S ⊆ T .

If S ⊆ T and S and T are different sets, we also say that S is a proper subset of T . �

Note that equivalently we have: T is not a subset of S if and only if there is an element
x for which x ∈ T and x 6∈ S.

3.1.4 Proposition. For all sets S, T we have S = T if and only if S ⊆ T and T ⊆ S. �

Justification. S ⊆ T and T ⊆ S mean precisely that S and T have the same elements, so
they are equal.
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3.1.5 Empty Set. A very important role among sets is played by so called empty set.

Definition. The empty set is a set that contains no element; we denote it ∅. �

Fact. We have ∅ ⊆ A for every set A.

Justification. It cannot happen that ∅ is not a subset of a set A. Indeed, ∅ 6⊆ A means that
there is x ∈ ∅ and x 6∈ A. But there is no x ∈ ∅. So, ∅ 6⊆ A cannot be true.

3.1.6 Set Operations. We recall the well known set operations.

Given two sets A and B. Their union is the set

A ∪B = {x | x ∈ A or x ∈ B};

their intersection is the set

A ∩B = {x | x ∈ A and x ∈ B}.

The difference of two sets A and B (in this order) is the set

A \B = {x | x ∈ A and x 6∈ B}.

If there is a fixed “universal” set U and A ⊆ U then by the complement of the set A in U we
mean the set U \ A. If the universe U is generally understood, then we write only A for the
complement of A in U .

The Cartesian product of A and B (we denote it by A×B) is

A×B = {(a, b) | a ∈ A, b ∈ B}.

If A = B we speak about a Cartesian power of the set A and write A2 instead of A× A, A3

is the set of all triples of elements of A, More precisely,

A3 = {(a, b, c) | a, b, c ∈ A}.

Similarly, for natural number n ≥ 2 we have

An = {(a1, a2, . . . , an) | ai ∈ A}.

Examples. We have {1, 2, 4} ∪ {1, 4, 5, 6} = {1, 2, 4, 5, 6} and {1, 2, 4} ∩ {1, 4, 5, 6} = {1, 4}.
{1, 2, 4} \ {1, 4, 5, 6} = {2}. {1, 4, 5, 6} \ {1, 2, 4} = {5, 6}.

For example, {1, 4}×{1, 2, 6} = {(1, 1), (1, 2), (1, 6), (4, 1), (4, 2), (4, 6)}; the second Carte-
sian power of A = {1, 4} is A2 = {(1, 1), (1, 4), (4, 1), (4, 4)}.

3.1.7 Disjoint Sets.

Definition. If A ∩ B = ∅, we say that the sets A and B are disjoint. Evidently, the set of
even natural numbers is disjoint with the set of odd natural numbers, and their union is the
whole set N of all natural numbers. �

3.1.8 Power Sets.

Definition. Let A be a set. The power set P (A) of the set A is the set of all subsets of the
set A; or more formally,

P (A) = {B | B ⊆ A}.

�

For example, P (∅) = {∅} and P ({1, 2, 3}) = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}.
Let us point out that a power set is always non-empty, since it contains the empty set ∅.
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3.1.9 Characteristic Function of a Subset. We introduce a new notion – so called a
characteristic function of a given subset. You may come across it when representing a set in
computer programs. The notion can also be used for counting the number of subsets of a
given set (as we see later).

Definition. A characteristic function χA of a subset A ⊆ U is the mapping χA:U → {0, 1}
defined by

χA(x) =

{
1 for x ∈ A;
0 for x ∈ U \A.

Note that χA(x) can be viewed as the answer to the question: Does x belong to A? Here
χA(x) = 1 means yes, and χA(x) = 0 means no.

Let A and B be two different subsets of the set U . Then their characteristic functions are
different. Indeed, if A 6= B then there is an element x which is in one of the sets and does
not belong to the other set. For the sake of simplicity, let us assume that x ∈ A and x 6∈ B.
Then χA(x) = 1 6= 0 = χB(x) and therefore χA 6= χB .

Every mapping χ:U → {0, 1} is a characteristic function of a suitable subset of U . Indeed,
define a subset C of U by C = {x | χ(x) = 1}. Then χ = χC .

Thus subsets of a given set U and characteristic functions from U into {0, 1} are only
two equivalent descriptions of the same ideal reality. A simple consequence of this fact is the
following fact: Let U be any finite set with n elements. Then there are exactly 2n subsets of
U . (In other words, for a finite set U with n elements the power set P (U) has 2n elements.)

3.2 Cardinality of Sets

In this section we present a formal approach to the intuitive notion of the size of a set, and
when two sets have the same size. The reader is familiar with finite sets. A set is infinite if
it is not a finite one. We will show that among infinite sets we can speak of sets with “the
same size” and that there are infinite sets of “different sizes”. At first we must recall what a
bijection, i.e. a bijective mapping means.

3.2.1 Bijections. Let us recall that a mapping f from a set A into a set B is bijective if
is injective and surjective. A mapping f is injective (or one-to-one) provided for every two
different elements x, y ∈ A their images f(x), f(y) are also different. A mapping is surjective
(or onto) provided for every element y ∈ B there exists an element x ∈ A such that y = f(x).

3.2.2 Sets with Same Cardinality.

Definition. Two sets A and B are said to have the same cardinality if there exists a bijective
mapping from A onto B. This fact is denoted by |A| = |B|. �

Example. The set S of all even natural numbers has the same cardinality as the set T of all
odd natural numbers. Indeed, the mapping

f :S → T defined by 2n 7→ 2n+ 1

is a bijective mapping from S onto T .

3.2.3 Countable Sets. The “smallest” cardinality of an infinite set is the cardinality of
the set of all natural numbers N. Countable sets are in fact sets that have the same cardinality
as N.

Definition. We say that a set A is countable provided it has the same cardinality as the
set of all natural numbers N. If a set A is infinite and not countable then we say that it is
uncountable. �

The following proposition helps us to easily decide whether an infinite set is countable or
not.
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3.2.4 Proposition. A set A is countable if and only if it can be arranged in an injective
infinite sequence, (i.e. a sequence which is infinite and where no two elements are equal). �

Justification. Assume that we are able to arrange the set A in an injective infinite sequence,
say

A = {a0, a1, . . . , an, . . .}.
Define a mapping f :N → A by f(i) = ai for every i ∈ N. Then f is a desired injective
mapping from the set N onto the set A.

Assume we have a bijective mapping f from N onto A. Then the set A can be written as
follows: A = {f(0), f(1), . . . , f(n), . . .}. In other words we have arranged the set A into an
injective infinite sequence.

3.2.5 Example of a Countable Set. The set of all integers Z is countable.

Indeed, Z can be arranged into an injective infinite sequence. We do it as follows

0, 1,−1, 2,−2, 3,−3, 4,−4, . . . , n,−n, . . . .

More precisely, the number 0 will be in the 0-th place (i.e. 0 is the element a0), the number
1 in the first place (the element a1), the number −1 in the second place (the element a2), the
number 2 in the place 2 · 2 − 1 = 3 (the element a3), the number −2 in the place 2 · 2 = 4
(the element a4), etc. Generally, a positive integer n will be in the place 2n− 1 (the element
a2n−1) and the number −n in the place 2n (the element a2n).

Further, we give three propositions about countable sets. The first one in fact shows
that a subset of countable set cannot be uncountable; the next two show set operations that
maintain countability.

3.2.6 Proposition. Any infinite subset of a countable set is again countable. �

Justification. If we can arrange the set A into an injective infinite sequence {a0, a1, . . .}
then each of its infinite subsets B ⊆ A can be obtained as a subsequence of the sequence
{a0, a1, . . .} which is again injective and infinite.

3.2.7 Proposition. If two sets are countable so is their union. �

Justification. Let A = {a0, a1, a2, . . .} and B = {b0, b1, b2, . . .} be two countable sets. Their
union C = A ∪B may be written as follows

A ∪B = {a0, b0, a1, b1, a2, b2, . . .}.

More formally, A∪B = {c0, c1, . . .}, where c2n = an and c2n+1 = bn. This sequence does not
need to be injective. Indeed, the elements that are in A and simultaneously in B are in the
above sequence twice. But by omitting the second appearance of them we get an injective
sequence. Therefore the set A ∪B is countable.

3.2.8 Proposition. The Cartesian product of two countable sets is a countable set. �

Justification. We will show that the set C = A × B, for A and B countable sets, can be
arranged into an injective infinite sequence. Let A = {a0, a1, a2, . . .} and B = {b0, b1, b2, . . .}
be injective sequences. We will make use of the following scheme.

(a0, b0) (a0, b1) (a0, b2) . . .
↙ ↙

(a1, b0) (a1, b1) (a1, b2) . . .
↙ ↙

(a2, b0) (a2, b1) (a2, b2) . . .
↙ ↙

...
...

...
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The arrangement of C is seen from the scheme. Indeed,

C = {(a0, b0), (a0, b1), (a1, b0), (a0, b2), (a1, b1), (a2, b0), (a0, b3), . . .}.

Here is the precise description of the sequence: The pair (ai, bj) will be in the place

k = i + (i+j)(i+j+1)
2 of the sequence. Notice that in this case the constructed sequence is

injective.

3.2.9 We will use the above proposition to show that well known sets are countable.

Example. The set Q of all rational numbers is countable.

Justification. Indeed, every rational number can be represented as a fraction p
q where q is a

non-zero natural number and p is an integer. Fractions can be viewed as ordered pairs (p, q)
where p is the numerator and q the denominator of the fraction p

q . Since the set of all integers
is countable as well as the set of all non-zero natural numbers, according to 3.2.8 we get that
the set M of all ordered pairs (p, q) is countable. The set Q is now the subset of the set M
which contains only those pair (p, q) for which p and q are relatively prime. Since the set Q
is infinite, it is countable by the proposition 3.2.6.

3.2.10 Proposition. The union of a countable system of finite disjoint sets is again
countable.

In other words, if A0, A1, . . . An, . . . are finite disjoint sets then their union A0∪A1∪ . . . =⋃
i∈NAi is countable as well. �

Remark. The above proposition can be generalized to countable union of countable sets,
but the proof needs axiom of choice. This is beyond the scope of our course.

3.2.11 Uncountable Sets. Recall that an infinite set is said to be uncountable if it is not
countable.

In the next paragraph we will show that the set of all subsets of natural number is
uncountable. To prove this we will prove the following:

3.2.12 Cantor Diagonal Method. The set of all infinite sequences of 0’s and 1’s is
uncountable. �

Justification. By contradiction. Assume that the set of all infinite sequences of zeros and
ones is countable. It means that we are able to arrange it into an infinite sequence. We list
all the sequences in the following scheme — in the first row we have the sequence s0, in the
second row the sequence s1, in the third one s2, etc.

s0 = s0(0), s0(1), s0(2), s0(3), s0(4), s0(5), . . .

s1 = s1(0), s1(1), s1(2), s1(3), s1(4), s1(5), . . .

s2 = s2(0), s2(1), s2(2), s2(3), s2(4), s2(5), . . .

s3 = s3(0), s3(1), s3(2), s3(3), s3(4), s3(5), . . .

s4 = s4(0), s4(1), s4(2), s4(3), s4(4), s4(5), . . .

s5 = s5(0), s5(1), s5(2), s5(3), s5(4), s5(5), . . .
...

We will construct a new sequence of zeros and ones and we will show that this new sequence
is not included into the list above. It is the sequence s defined as follows: The sequence s
begins with 0 if in the first frame above there is 1, and begins with 1 if in the first frame
there is 0. In other words, s(0) = 1 provided s0(0) = 0 and s(0) = 0 provided s0(0) = 1.
Further we proceed analogously. If s1(1) = 0, then s(1) = 1, and if s1(1) = 1, then s(1) = 0
(notice that in the above scheme the value s1(1) is put into a frame). The value of s(2) is the
number 1− s2(2), etc.
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More formally: s = {s(0), s(1), s(2), . . . , s(n), . . .}, where s(n) = 1− sn(n) for all n ∈ N.
The sequence s is not equal to any of the sequences s0, s1, s2, . . . , sn, . . .. Indeed, it

differs from s0 in the zeroth place (s(0) = 1 − s0(0)), it differs from s1 in the first place
(s(1) = 1− s1(1)), . . . it differs from sn in the n-th place (s(n) = 1− sn(n)). This means that
we have not listed all sequences (there is at least one missing — s), a contradiction.

Therefore the set of all infinite sequences of zeros and ones is not countable.

3.2.13 Theorem. The set of all subsets of natural numbers N is uncountable. �

Justification. Since each characteristic function of a A ⊆ N is an infinite sequence of 0’s and
1’s, the theorem follows from the Cantor diagonal method 3.2.12.

3.3 Binary relations

In mathematics, as in everyday situations, we often speak about a relationship between
objects, which means an idea of two objects being related or associated one to another in some
way. The notion of a binary relation makes this precise. Let us start with some examples.

1. To be a grandfather. Objects of our consideration are people; a person a is associated
with a person b if a is a grandfather of b.

2. To be of the same length. Objects of our consideration are sticks; a stick a is associated
with another stick b if both sticks have the same length.

3. To be a subset. Objects of our consideration are subsets of a given set U ; a subset X
is related to a subset Y if X is a subset of Y .

4. To be greater or equal. Objects of our consideration are numbers; a number n is related
to a number m if n is greater than or equal to m.

5. To be a student of a study group. Objects of our consideration are first year students
and study groups; a student a is related to a study group number K if student a belongs
to study group K.

6. The sine function. Consider real numbers; a number x is related to a number y if
y = sinx.

3.3.1 Definition. A relation (more precisely a binary relation) from a set A into a set B
is any set of ordered pairs R ⊆ A×B. If A = B we speak about a relation on a set A. �

We can construct new relations from others. Since a relation is a set of ordered pairs, we
can use set operations for construction of new relations. But there are also specific operations
– inverse relation and composition of relations. First we start with set operations.

3.3.2 Set Operations with Relations.

Definition. We say that a relation R is a sub relation of a relation S if R ⊆ S ; i.e. if
aR b, then also aS b. �

Definition. Let R and S be two relations from a set A into a set B. The intersection of
relations R and S is the relation R ∩ S ; the union of R and S is the relation R ∪ S ; the
complement of R is the relation R = (A ×B) \ R . �

For example, let T be equality on the set of all real numbers R, and S be the relation
“smaller than” on R. Then T ∩ S = ∅ and T ∪ S is the relation to be smaller than
or equal to. The complement of the relation T is non-equality on R; i.e. the relation
T = {(a, b) | a, b ∈ R, a 6= b}.
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3.3.3 Inverse Relation.

Definition. Let R be a relation from a set A into a set B. Then the inverse relation of the
relation R is the relation R−1 from set B into set A, defined by:

xR−1y if and only if y Rx.

�

Notice that the inverse relation R−1 to R always exists. So if R is a function then the
relation R−1 exists; on the other hand, R−1 does not need to be a function.

3.3.4 Composition of Relations.

Definition. Let R be a relation from a set A into a set B and S be a relation from the set
B into a set C. Then the composition of the relations (sometimes also called the product),
R ◦ S , is the relation from the set A into the set C defined by:

a (R ◦ S) c if and only if there is an element b ∈ B such that aR b and b S c.

�

3.3.5 Properties of Composition of Relations. We will show some properties of
composition of relation. First, we prove that a composition of relations is associative, then
that it is not commutative. (Roughly speaking, we do not need to use parentheses, but we
cannot change the order.)

Proposition. The composition of relations is associative. More precisely, if R is a relation
from A to B, S is a relation from B to C, and T is a relation from C to D then

R ◦ (S ◦ T ) = (R ◦ S) ◦ T .

�

Justification: It is not difficult to show hat for all elements a ∈ A, d ∈ D it holds: aR◦(S◦T ) d
if and only if there exist b ∈ B, c ∈ C such that aR b, b S c and c T d. And this means that
a (R ◦ S) ◦ T d.

Proposition. The composition of relations is not commutative. It is not the case that
R ◦ S = S ◦R holds for all relations R and S . �

Justification. To show the above proposition it suffices to find two relations S and T for which
R ◦ S = S ◦R does not hold despite of the fact that both compositions exist.

Here is an example: Let A be the set of all people in the Czech Republic. Consider the
following two relations R , S defined on A:

aR b if and only if a is a brother or a sister of b and a 6= b

c S d if and only if c is a child of d.

To show that R ◦ S 6= S ◦R it suffices to find two people x, y such that xR ◦ S y holds
and xS◦Ry does not hold. Consider any pair of a nephew a and an uncle b. We have aS◦Rb
since a parent of a is a brother or a sister of the uncle b. On the other hand, aR◦S b does not
hold. Indeed, it would mean that one of the brothers or sisters of a were a parent of uncle b.

3.3.6 Relations on a Set. In applications an important role play relations S ⊆ A × B
where A = B. Recall that such relations are called relations on A.
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3.3.7 Different Types of Relations on A. Relations on a set A may have different
properties. We will be mainly interested in four of them: reflexivity, symmetry, antisymmetry
and transitivity. Here are the definitions:

Definition. We say that relation R on set A is

1. reflexive if for every a ∈ A we have aRa;

2. symmetric if for every a, b ∈ A it holds that: aR b implies bR a;

3. antisymmetric, if for every a, b ∈ A it holds that: aR b and bR a imply a = b;

4. transitive, if for every a, b, c ∈ A it holds that: if aR b and bR c then aR c.

�

Examples. Consider the relation of non-equality R on the set of all natural numbers N; (i.e.
nRm if and only if n and m are different natural numbers). This relation is not reflexive
because for no n ∈ N do we have n 6= n. It is symmetric: If n 6= m then also m 6= n. Relation
R is not antisymmetric because e.g. 2 6= 3, 3 6= 2, and 2 and 3 are different numbers. (That
is 2R 3 and 3R 2 and at the same time 2 6= 3.) This relation is not transitive because for
example we have 2 6= 3 and 3 6= 2, and at the same time 2 = 2 (i.e. 2R 3 and 3R 2 and it is
not true 2R 2).

Relation “to be smaller than or equal to” ≤ on set R is reflexive, since a ≤ a for every a.
It is also antisymmetric, since whenever for two numbers a, b we have a ≤ b and b ≤ a, then
a = b. It is also transitive, since if a ≤ b and b ≤ c, then also a ≤ c.

3.3.8 Equivalence Relations. One of the most important type of relations on A is so
called equivalence relation. Let us recall the tautological equivalence of propositional formulas.
It is one example of equivalence relation on the set of all propositional formulas. Have in mind
that an “equivalence relation” on A is some sort of “generalized equality” of elements of A.

Definition. A relation R on a set A is called an equivalence, if it is reflexive, symmetric and
transitive. �

Example. The following relation R on the set of all integers Z, defined by:

mRn if and only if m− n is divisible by 12, (m,n ∈ Z),

is an equivalence relation.

Justification. Relation R is reflexive. Indeed, for every m ∈ Z we have m−m = 0, and zero
is divisible by 12. Hence mRm.

Relation R is also symmetric. Indeed, if mRn, i.e., m − n = 12k for some k, then also
n−m is divisible by 12 (n−m = −12k). Therefore nRm.

Moreover, R is transitive: Take any numbers m,n, p ∈ Z such that mRn and nRp. This
means m − n = 12k and n − p = 12l for some k and l. Then m − p = (m − n) + (n − p) =
12k + 12l = 12(k + l). Hence we have mRp.

3.3.9 Equivalence Classes. Every equivalence relation R on A “divides” A into the sets
of equivalent elements. These sets are called equivalence classes. We will see the importance
of equivalence classes later when we introduce so called residue classes.

Definition. Let R be an equivalence relation on a set A. An equivalence class of R
corresponding to the element a ∈ A is the set R [a] = {b ∈ A | aR b}. �

Example: Given the equivalence relation from 3.3.8. There are 12 different equivalence
classes of R ; namely

R [i] = {j | j = i+ 12k, k ∈ Z}, for i = 0, . . . , 11.
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Definition. Let R be an equivalence relation on A. The set

{R[a] | a ∈ A}

is called the quotient set and denoted by A/R.

3.3.10 Properties of the Set of Equivalence Classes. The next proposition gives
properties that sets of equivalence classes have.

Proposition. Let R be an equivalence relation on a set A. The set {R [a] | a ∈ A} has the
following properties:

1. Every element a ∈ A belongs to R [a] and hence
⋃
{R [a] | a ∈ A} = A.

2. Equivalence classes R [a] are pairwise disjoint. That is, if R [a] ∩ R [b] 6= ∅, then
R [a] = R [b].

�

Justification. Since every element a ∈ A is related to itself (reflexivity), we get a ∈ R [a].
Thus A ⊆

⋃
{R [a] | a ∈ A}. Moreover, each equivalence class is a subset of A, and therefore⋃

{R [a] | a ∈ A} ⊆ A. We have shown the first property.

Let us verify the second property. Assume that there are two classes with non-empty
intersection. We will show that they coincide. Take an element z ∈ R [a]∩ R [b]. Then aR z
and bR z. Since R is symmetric, we have z R b. Furthermore, since aR z and z R b, it follows
from transitivity of R that aR b. We have shown: If two classes R [a], R [b] have non-empty
intersection, then the elements a and b are equivalent. Now, take any element c ∈ R [a]. Then
cR a. From transitivity of R and from aR b we get that cR b. Hence c ∈ R [b]. Analogously
one can show that every element c ∈ R [b] also belongs to R [a]. Therefore R [a] = R [b].

3.3.11 Partition. The properties stated in the above proposition characterize another
mathematics notion – a partition of a set. Here is the formal definition.

Definition. Let A be a non-empty set. A set S of non-empty subsets of A is called a partition
of set A provided the following conditions hold:

1. Every element a ∈ A belongs to some member of S, i.e.
⋃
S = A.

2. Elements of the set S are pairwise disjoint. In other words, if X ∩ Y 6= ∅ then X = Y
for all X,Y ∈ S.

�
In the above proposition we have shown that the quotient set modulo an equivalence

relation forms a partition of the underlying set. On the other hand, we can associate an
equivalence relation to any partition.

3.3.12 We already know that for every equivalence relation its set of equivalence classes
forms a partition of the underlying set. On the other hand, every partition creates an
equivalence relation. This is what the next proposition states.

Proposition. Let S be a partition of a set A. Then the relation R S defined by:

aR Sb if and only if a, b ∈ X for some X ∈ S

is an equivalence relation on set A. �

Justification. We need to show that relation R S is reflexive, symmetric, and transitive. Since
every element a ∈ A belongs to some set X ∈ S, we have aR Sa, and relation R S is reflexive.
The symmetry of R S is clear. Whenever we have aR Sb then also bR Sa, and relation R S
is symmetric.

We show the transitivity: Let aR Sb and bR Sc, i.e., let a, b ∈ X, b, c ∈ Y for some
X,Y ∈ S. This means that b ∈ X ∩ Y . Therefore the sets X and Y have a non-empty
intersection. Hence they coincide. Thus we get a, c ∈ X, and aR Sc follows.
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3.3.13 Remark. Notice that if we start with an equivalence relation R , then we form
a corresponding partition into classes of R , and finally we make the equivalence relation
that corresponds to the partition (according to the above proposition), we get precisely the
equivalence relation R , with which we have started. Similarly, if we start with a partition,
then form its corresponding equivalence relation, and finish with the partition into classes of
the equivalence relation, we get the original partition.

3.3.14 Partial Order, a Poset. Apart from equivalence relations there is another type
of relations that plays a special role in mathematics. And it is a so called partial order, or a
partial ordered set, shortly a poset.

Definition. A relation R on a set A is called an order (partial order), if it is reflexive,
antisymmetric and transitive. A set A together with a partial order is often called a poset. �

3.3.15 Examples of Posets.

1. The well-known ordering of real numbers is a partial order in the above sense. Hence,
(R,≤) is a poset. Indeed, for all real numbers a, b, c ∈ R we have: a ≤ a; if a ≤ b and
b ≤ a then necessarily a = b; if a ≤ b and b ≤ c then also a ≤ c.

2. Denote by A the set of all subsets of the set U . Then the relation ⊆, “to be a subset”, is a
partial order on A. Hence, (P (U),⊆) is a poset. Verification of reflexivity, antisymmetry
and transitivity is left to the reader.

3. Let A = N, where N is the set of all natural numbers. The the relation of divisibility
defined by m |n if and only if m is a divisor of n (i.e. if n = k ·m for some k ∈ N) is a
partial order. Hence (N, |) is a poset. Indeed, for all natural numbers m,n, k we have
m |m; if m |n and n |m then m = n; if m |n and n | k then also m | k.
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Chapter 4

Integers

4.1 Integers and Their Properties

Integers are well known numbers. They play a crucial role in mathematics, primarily in the
discrete mathematics and its applications. We will use them in the sequel to introduce ”new
numbers”, the residual classes of integers modulo a positive integer n.

First, let us recall some well known facts about division of integers. They are: integer
division with remainder, a common divisor, and the greatest common divisor. We present
the Euclid’s Algorithm for finding the greatest common divisor and its applications, namely
for solving Diophantic equations — equations in which only integer solutions are sought.

4.1.1 The Division Theorem. Let a, b, b > 0, be two integers. Then there exist unique
integers q, r such that

a = q b+ r, 0 ≤ r < b.

�
We will prove later only the uniqueness part of the theorem, the existence of q and r

follows from the well known way how to divide two integers.

4.1.2 Remark. 1. The number q is called the quotient , and r the remainder when we
divide a by b.

2. We formulated the division theorem 4.1.1 not only for natural numbers a and b, but
also for a negative integer a. In that case, we have to be a little more careful. Assume that
a is negative. Divide the absolute value |a| by b. Then |a| = q′b + r′ for 0 ≤ r′ < b, q′ ≤ 0,
and a = −q′b− r′. If r′ = 0 then a = −q′b, and we have q = −q′, r = 0. Assume 0 < r′ < b,
then a = −q′b− r′ = −(q′ + 1)b+ (b− r′). Moreover, 0 < b− r′ < b, and hence q = −(q′ + 1)
and r = b− r′.

We show the procedure on the following example: Let a = −7, b = 3. We have 7 = 2·3+1,
hence −7 = −2 · 3− 1 = −3 · 3 + (3− 1). Therefore, q = −3 and r = 2.

Let us prove the uniqueness of the quotient and the remainder.

4.1.3 Justification of Uniqueness. Assume that there exist two pairs q and r from 4.1.1,
say q1, r1 and q2, r2, where 0 ≤ r1, r2 < b. We have

a = q1 b+ r1, and a = q2 b+ r2.

Then
q1 b+ r1 = q2 b+ r2, i.e. (q1 − q2) b = r2 − r1.

Because |r2−r1| < b and it is a multiple of b, the number q1−q2 must be 0 (indeed, otherwise
|(q1−q2)b| ≥ b) . And this means that q1 = q2 and r1 = r2. We have shown that the quotient
and the remainder are unique. �
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4.1.4 Divisibility. Let us recall other well known notions.

Definition. Given two integers a, b. We say that b divides a if a = k b for some integer k.
We also say that a is a multiple of b. This fact is denoted by b | a.

A positive integer p, p > 1, is said to be a prime if it satisfies:

a | p, a ≥ 0, implies a = 1 or a = p.

A number n > 1 is composite if it is not a prime, or equivalently, if there exist r, s ∈ Z such
that n = r · s and r > 1 and s > 1. �

Notice, that 0 divides 0; indeed, e.g. 0 = 1·0. If b 6= 0 then b | a if and only if the remainder
when dividing a by b equals 0. Also, note that 1 has a special role, it is (by definition) neither
a composite number nor a prime.

4.1.5 A Common Divisor and the Greatest Common Divisor. Let us recall the
definition of a common divisor and the greatest common divisor.

Definition. Let a and b be two integers. A common divisor of a and b is any integer e for
which e | a and e | b.

The greatest common divisor of a, b is the integer c such that

1. c ≥ 0
2. c is a common divisor of a and b, i.e. c | a and c | b,
3. and if e is any common divisor of a and b then e | c.

The greatest common divisor of a and b is denoted by gcd(a, b). Integers a and b are called
relatively prime (or coprime) if gcd(a, b) = 1. �

4.1.6 Remarks.

1. For every natural number a we have a = gcd(a, 0).
2. If for natural numbers a, b we have a | b then gcd(a, b) = a.
3. For every integers a, b it holds that gcd(a, b) is always non-negative and gcd(a, b) =

gcd(−a, b) = gcd(a,−b) = gcd(−a,−b).

4.1.7 You know from school mathematics that the greatest common divisor of a and b
can be found using a factorization of a and b into products of primes. Unfortunately, finding
such factorization for big a (or b) is a very difficult task. (There is not known a tractable
algorithm for finding it.) The following fast algorithm, due to Euclid, is based on the division
theorem.

4.1.8 Euclid’s Algorithm.

Input: Positive natural numbers a and b
Output: c = gcd(a, b).

1. (Initialization.)
u := a, t := b;

2. (Divide u by t.)
repeat

do u = q · t+ r;
u := t, t := r.

until t = 0.
3. (The greatest common divisor)

return c := u.
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4.1.9 Correctness of the Euclid’s Algorithm. Notice that the above algorithm will
always terminate; indeed, the number t in the next execution of the step 2 is an integer that
is always strictly smaller than the previous one. So after a finite number of executions of step
2, we get t = 0 and the algorithm terminates.

The fact that the algorithm returns gcd(a, b) is proved in the following proposition.

Proposition. The pairs of numbers u, t and t, r from the Euclid’s algorithm 4.1.8 have the
same common divisors. Hence gcd(u, t) = gcd(t, r) = gcd(a, b). �

Justification. Since r = u − q · t for an integer q, any common divisor of u and t is also a
divisor of t, r. Indeed, if u = d · u′ and t = d · t′, then also r = d · u′ − q · d · t′ = d(u′ − qt′).

On the other hand, u = q · t + r so any common divisor of t, r is a divisor of u as well.
Indeed, if t = d · t′ and r = d · r′, then also u = q · d · t′ + d · r′ = d(qt′ + r′). �

4.1.10 Euclid’s Algorithm can be extended in such a way that it finds not only gcd(a, b)
but also integers x, y that solve the following equation

a x+ b y = gcd(a, b).

Such equations (considered as equations over integers) will play a crucial role when investi-
gating properties of residual classes modulo n.

4.1.11 Bezout’s Theorem. Let a and b be two natural numbers. Denote c = gcd(a, b).
Then there exist integers x, y such that

a x+ b y = c.

�
The proof of the Bezout’s theorem will be given by the extended Euclid’s algorithm,

because the extended Euclid’s algorithm not only proves the existence of integers x and y,
but it finds them together with the greatest common divisor of a and b.

4.1.12 Extended Euclid’s Algorithm.

Input: natural numbers a and b.

Output: c = gcd(a, b) together with x, y ∈ Z for which a x+ b y = c.

1. (Initialization.)
u := a, xu := 1, yu := 0, t := b, xt := 0, yt := 1;

2. (Division.)
repeat

do u = q · t+ r, xr := xu − q xt, yr := yu − q yt;
u := t, xu := xt, yu := yt
t := r, xt := xr, yt := yr.

until t = 0
3. (Greatest common divisor and x, y)

return c := u, x := xu, y := yu.

Justification of the above algorithm is similar to 4.1.8.

1. a = 1 · a+ 0 · b and b = 0 · a+ 1 · b. So, the step 1 correctly sets xu, yu and xt, yt.
2. Assume that u = a xu + b yu and t = a xt + b yt. Then

r = u− q t = a xu + b yu − q (a xt + b yt) = a (xu − q xt) + b (yu − q yt).

Hence, it is clear that the numbers xr and yr are correctly defined.

�
The Bezout’s theorem has couple of important corollaries; some of them you have used in

school mathematics without justification.
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4.1.13 Corollary.

1. Let a and b be two relatively prime numbers. If a divides a product b · c then a divides
c.

2. If a prime number p divides a product a · b then it divides at least one of the numbers
a, b.

�

Justification. We prove the first part of the corollary; the second one is an easy consequence
of the first one.

Assume that numbers a and b are relatively prime. By the Bezout’s theorem there exist
integers x, y such that

1 = a x+ b y.

Multiplying the equation by c we get

c = a c x+ b c y.

Number a divides a c and it also divides the product b c, hence a divides c. �

4.1.14 Prime Factorization. Let us recall another known fact – a factorization of a
natural number different from 1 into a product of primes.

Theorem. Every natural number n, n > 1, factors into a product of primes, i.e.

n = pi11 · p
i2
2 · . . . · p

ik
k ,

where p1, . . . , pk are distinct primes, and i1, . . . , ik positive natural numbers.

If moreover p1 < p2 < . . . < pk then the factorization is unique. �

Justification. The existence of a prime factorization is shown using mathematical induction
(more precisely, the principle of strong mathematical induction).

To justify the uniqueness one can use the above corollary. Assume that

pi11 · p
i2
2 · . . . · p

ik
k = qj11 · q

j2
2 · . . . · qjmm

and p1 < p2 < . . . < pk, q1 < q2 < . . . < qm then p1 divides qj11 · q
j2
2 · . . . · qjmm so p1 = q1.

(Indeed, a prime number p divides a prime number q then p = q. Hence, p1 must be equal to
the smallest prime among qj and it is q1.)

If we divide the equality by p1 and repeat the argument we get that i1 = j1. Analogously
(after dividing by pi11 ) we get p2 = q2, i2 = j2, etc. k = m and pk = qk, ik = jk. �

4.1.15 There is a Countably Many Primes. Using the prime factorization theorem
one can easily prove that there is an infinite number of primes – see the following theorem.
Since every prime is an integer, it means that there is countably many of them.

Theorem. There are infinitely (countably) many primes. �

Justification. Assume that there were only finitely many primes, say p1, p2, . . . , pN were the
only primes. Then the number n = p1 · p2 · . . . · pN + 1 is a product of primes; namely is
divisible by some prime p. But p cannot be among p1, . . . , pN , since n is not divisible by any
pi – a contradiction. �

4.1.16 Diophantic Equations. The Bezout’s theorem 4.1.11 helps us to solve other linear
equations where we are looking for integer solutions – so called Diophantic equations.

Definition. Given three integers a, b, c. Find all integers x, y ∈ Z which are solutions of the
following equation

ax+ by = c. (4.1)

�
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4.1.17 When a Diophantic Equation Has Got a Solution. The following proposition
characterizes all Diophantic equations that have got at least one solution.

Proposition. Equation 4.1 has got at least one solution if and only if c is divisible by the
greatest common divisor of a and b. �

Justification. Denote d = gcd(a, b). If c is a multiple of d, say c = k d, then it suffices to find
integers x′, y′ from the Bezout’s Theorem for which

d = a x′ + b y′ and c = k d = a k x′ + b k y′.

Now x := k x′ and y := k y′ is one solution of the equation 4.1.

Assume that there exist integers x, y such that

c = a x+ b y.

Then every common divisor of a, b divides c as well. Hence the greatest common divisor is
one of them and gcd(a, b) divides c. �

4.1.18 Homogeneous Diophantic Equations. A Diophantic equation is said to be
homogeneous if the right hand side is 0, i.e. c = 0 in 4.1. A homogeneous Diophantic
equation always has got countably many solutions, see the following proposition.

Proposition. If a 6= 0 6= b then the equation ax + by = 0 has always got infinitely many
solutions, more precisely, x = −k · b1, y = k · a1 for any k ∈ Z, where a1 = a

gcd(a,b) and

b1 = b
gcd(a,b) are all integer solutions of it. �

Justification. Divide the equation ax + by = 0 by gcd(a, b). We get a1x + b1y = 0 for
a1 = a

gcd(a,b) and b1 = b
gcd(a,b) . Moreover, a1 and b1 are relatively prime.

From a1x = −b1y we get that a1 divides y, see the corollary 4.1.13. Hence there is k ∈ Z
for which y = ka1. Substituting it to the equation we get

a1x = −b1(ka1) and x = −kb1.

�

4.1.19 Equations 4.1 are linear equations with two variables. Analogously as in linear
algebra it is easy to see that a general solution of ax + by = c is a sum of one solution of
ax+ by = c plus a general solution of the corresponding homogeneous equation ax+ by = 0.
Hence, we get the following proposition.

Proposition. If c is a multiple of gcd(a, b) then any solution of 4.1 is of the form

x = x0 + k · b1, y = y0 − k · a1,

where x0, y0 is a solution of the equation 4.1, a1 = a
gcd(a,b) , b1 = b

gcd(a,b) and k ∈ Z. �

4.1.20 A Procedure How to Solve Diophantic Equations. We can summarize the
above propositions to the following instructions how to solve equations 4.1.

1. Using the extended Euclid’s algorithm we find integers x0 and y0 satisfying 4.1 or find
out that the equation does not have a solution.

2. If there is at least one integer solution of 4.1 we find a general integer solution of the
equation a x+ b y = 0 as follows.

First, we divide the equation by gcd(a, b) and obtain an equation a1 x+ b1 y = 0 where
a1 and b1 are relatively prime. The general solution is now x = b1 k, y = −a1 k where
k ∈ Z.

3. The general solution of 4.1 is

x = x0 + b1 k, y = y0 − a1 k, k ∈ Z.

The correctness of the above method follows from the proposition above.
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4.2 Congruence relation modulo n

We have introduced the extended Euclid’s algorithm which helped us to solve Diophantic
equations; linear equations with two unknowns where we look only for integer solutions. The
material of the last lecture will be used for introduction new “numbers”, residue classes, and
operations with them.

4.2.1 The Relation Modulo n. First of all we introduce an equivalence relation modulo n
for a natural number n > 1. You have already come across it; indeed, consider the imaginary
unit i. We have

i2 = −1, i3 = −i, i4 = 1, and i5 = i.

Therefore, it is easy to calculate powers of the imaginary unit i; indeed for example
i651 = i4·162+3 = 1162 · i3 = −i. More generally, to calculate ik it suffices to know the
remainder r when k is divided by 4, and then we have ik = ir.

Definition. Given two integers a, b and a natural number n > 1. We say that a is congruent
to b modulo n and write a ≡ b (modn) if a− b is divisible by n. �

4.2.2 Equivalent Characterizations of Modulo n. We could introduce the relation
modulo n in other two ways.

Proposition. Let a and b be two integers. Then the following is equivalent:

1. a ≡ b (modn),
2. a = b+ k n for some integer k,
3. a and b have the same remainders when divided by n.

�

Justification. It is clear that conditions 1. and 2. are equivalent; indeed the fact that a − b
is divisible by n means that a − b = k n for some integer k ∈ Z; and this is the same as
a = b+ k n.

We show that a ≡ b (modn) if and only if a and b have the same remainder when divided
by n. Assume that a = q1 n+ r1, b = q2 n+ r2 and 0 ≤ r1, r2 < n.

If r1 = r2, then a− b = (q1 − q2)n and a ≡ b (modn) holds.

If r1 6= r2, then from the uniqueness of the division theorem, a − b is not divisible by n,
so a ≡ b (modn) does not hold. �

4.2.3 The Relation Modulo n is an Equivalence Relation on Z.

Proposition. Let a, b, and c be integers. Then

1. a ≡ a (modn) (modulo n is reflexive);
2. if a ≡ b (modn), then also b ≡ a (modn) (modulo n is symmetric);
3. if a ≡ b (modn) and b ≡ c (modn), then a ≡ c (modn) (modulo n is transitive).

�
The justification is easy, especially if we use 4.2.2.

4.2.4 Properties of the Equivalence Modulo n. The equivalence modulo n also
“maintain” operations addition and multiplication of integers. More precisely:

Proposition. Assume that for integers a, b, c, and d it holds that a ≡ b (modn) and
c ≡ d (modn). Then

(a+ c) ≡ (b+ d) (modn) a (a · c) ≡ (b · d) (modn).

�
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Justification. Assume that a ≡ b (modn) and c ≡ d (modn). Then a = b + kn and
c = d + rn for some k, r ∈ Z. Therefore, a + c = b + d + (k + r)n and a · c =
(b+ kn)(d+ rn) = bd+ (br+ dk+ krn)n. And this is equivalent to (a+ c) ≡ (b+ d) (modn)
and (a · c) ≡ (b · d) (modn). �

4.2.5 The 4.2.4 has two special cases. We state them as corollaries.

Corollary. Given two integers a, b such that a ≡ b (modn). Then

1. ra ≡ rb (modn) for every integer r;
2. ak ≡ bk (modn) for every natural number k.
3. Moreover, if ai ≡ bi (modn) for every i = 0, . . . , k, a r0, . . . , rk are arbitrary integers,

then
(r0 a0 + . . .+ rk ak) ≡ (r0 b0 + . . .+ rk bk) (modn).

�

Justification. 1. To prove the first part it suffices to use the above proposition 4.2.4 for the
pair r ≡ r (modn) a a ≡ b (modn).

2. From the above proposition we know that a2 ≡ b2 (modn) (we have used a ≡ b (modn)
and a ≡ b (modn)). Now, from a ≡ b (modn) and a2 ≡ b2 (modn) we get a3 ≡ b3 (modn),
a4 ≡ b4 (modn), etc.

To make the argument more accurate we can use mathematical induction over k. �

4.2.6 We can ask whether the first part of the corollary is still valid if we reverse the
implication. More precisely, if from ra ≡ rb modn it follows that a ≡ b modn. A simple
example shows that this is not the case. Indeed, we have 6 ≡ 10 mod 4, but 3 6≡ 5 mod 4.
The following proposition states what can be deduced form r a ≡ r b modn.

Proposition. Let r, a, b be integers and n a natural number n > 1 such that ra ≡ rb (modn).
Then

a ≡ b
(

mod
n

gcd(n, r)

)
. (4.2)

�

Justification. We know that ra− rb = kn for an integer k ∈ Z. Hence r(a− b) = kn. Denote
d = gcd(r, n). Then r = s · d, n = m · d, and the integers s and m are relatively prime.
Substituting into r(a− b) = kn and get

s d (a− b) = kmd, and s (a− b) = km.

Since the numbers s and m are relatively prime, and s divides the product km, the number
s must divide k. Therefore, s (a − b) = s j m and a − b = j m. We have shown that
a ≡ b (modm), in other words a ≡ b (mod n

gcd(n,r) ). �

4.2.7 Solving (a+ x) ≡ b modn. Given integers a, b and a natural number n > 1. Find
all integers x for which

(a+ x) ≡ b (modn). (4.3)

This problem has got always a solution which is any x ∈ Z for which x ≡ (b− a) (modn).

4.2.8 Solving (a · x) ≡ b modn. Given two integers a, b and a natural number n > 1.
Find all integers x for which

a x ≡ b (modn). (4.4)

Such x does not always exist. For example, there is no integer x for which 2x ≡ 3 (mod 4). We
will use Diophantic equations and their solutions to find a necessary and sufficient condition
on a, b, and n for which x ∈ Z satisfying the relation 4.4 exists.
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4.2.9 Proposition. Equation 4.4 has got a solution if and only if the number b is a multiple
of gcd(a, n).

In this case all integers x satisfying 4.4 are solutions of the following Diophantic equation

a x+ n y = b.

�
Justification. We know that a x ≡ b (modn) means a x − b = k n for an integer k ∈ Z, and
this is equivalent to a x− k n = b. If we substitute y := −k, we get the Diophantic equation
4.2 which has a solution if and only if b is divisible by gcd(a, n). �

4.2.10 Let us mention another property that the equivalences modulo have got.

Proposition. Let n > 1, m > 1 be two relatively prime natural number. And let for some
a, b ∈ Z it holds that a ≡ b (modn) and a ≡ b (modm)

Then also a ≡ b (modnm). �

Justification. We know that a− b = kn and a− b = jm for some k, j ∈ Z. Hence kn = jm.
Since n and m are relatively prime and n divides the product jm, we know that n divides j.
So a− b = jm = r nm for some r ∈ Z. We have shown that a ≡ b (modnm). �

4.2.11 Remark. A stronger proposition can be proved than 4.2.10, namely: Assume that
a ≡ b (modn) and a ≡ b (modm). Let n1 = n

gcd(n,m) and m1 = m
gcd(n,m) . Then

a ≡ b (modn1m1).

The justification is analogous to 4.2.10; indeed, the equation kn = jm must be first divided
by gcd(n,m).

4.2.12 Small Fermat Theorem. We will end this part concerning the equivalence mod-
ulo n by the small Fermat theorem which is a basis of the RSA public-key cryptosystem. (In
literature, the Small Fermat Theorem is sometimes called Fermat Little Theorem.)

Theorem. Let p be a prime and a an integer relatively prime to p. Then

ap−1 ≡ 1 (mod p).

�

Justification. One of the proofs of the small Fermat theorem uses basic properties of groups
and we will give it later. There is also a proof which uses only elementary mathematics. In
fact, we will first show that for every integer a it holds that ap ≡ a mod p by mathematical
induction on a

1. Basic step: Let a = 0 or a = 1. Then ap = a, hence ap ≡ a (mod p).

2. Induction step: Assume that ap ≡ a (mod p), and calculate (a+ 1)p − (a+ 1). By the
binomial theorem we have

(a+ 1)p − (a+ 1) = ap +

(
p

1

)
ap−1 +

(
p

2

)
ap−2 + . . .+

(
p

p− 1

)
a+ 1− (a+ 1) =

= ap − a+

(
p

1

)
ap−1 + . . .+

(
p

p− 1

)
a.

We know by the induction hypothesis that ap − a is divisible by p. Hence, if we show that(
p
i

)
is divisible by p for every i, 0 < i < p, we will know that so is (a + 1)p − (a + 1). And

this means that (a+ 1)p ≡ (a+ 1) mod p.

We know that (
p

i

)
=

p!

i! (p− i)!
.
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Hence

i! (p− i)!
(
p

i

)
= p!.

Moreover, p divides neither i! (i < p) nor (p− i)! (0 < i). Hence, p must divide
(
p
i

)
.

Now, assume that a and p are relatively prime. We have ap − a = k p for some k ∈ Z.
Thus a (ap−1 − 1) = k p. Since a and p are relatively prime, a divides k and ap−1 − 1 = j p
which proves that ap−1 ≡ 1 (mod p). �

4.3 Residue Classes Modulo n

We know that the relation modulo n is an equivalence relation on the set Z, see 4.2.3. An
equivalence class of the equivalence modulo n containing a number i ∈ Z is called the residue
class containing i and is denoted by [i]n. We know that

[i]n = {j | j = i+ kn for some k ∈ Z}. (4.5)

The name residue classes comes from the fact that an integer j belongs to [i]n if and only if
i and j have the same remainders when divided by n.

4.3.1 The Set Zn. There are n distinct residue classes modulo n; indeed, they are the
residue classes corresponding to the numbers (remainders) 0, 1, . . . , n−1. The set of all residue
classes is denoted by Zn, so

Zn = {[0]n, [1]n, . . . , [n− 1]n}.

4.3.2 Calculations in Zn. It is clear from the proposition 4.2.4 that the equivalence
modulo n is compatible with operations + and ·. Indeed, if i ≡ j (modn) and k ≡ l (modn)
then i + k ≡ j + l (modn) and i · k ≡ j · l (modn). These properties can be reformulate as
follows:

If we choose any a ∈ [i]n and any b ∈ [j]n then the number a + b belongs to [i + j]n,
and the number a · b belongs to [i · j]n. This allows us to define operations addition ⊕ and
multiplication � on the set Zn as follows:

[i]n ⊕ [j]n = [i+ j]n, [i]n � [j]n = [i · j]n. (4.6)

4.3.3 Properties of the Operation ⊕.

• ⊕ is associative, i.e. for any three integers i, j, k we have:

([i]n ⊕ [j]n)⊕ [k]n = [i]n ⊕ ([j]n ⊕ [k]n).

• ⊕ is commutative, i.e. for any two integers i, j we have:

[i]n ⊕ [j]n = [j]n ⊕ [i]n.

• The class [0]n plays the role of “zero”, more precisely, for any integer i we have:

[0]n ⊕ [i]n = [i]n.

• We can ”subtract”, more precisely for any integer [i]n there exists class −[i]n such that

[i]n ⊕ (−[i]n) = [0]n.

�

Justification. Verification of the above properties is straightforward and it is left to the reader.
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4.3.4 Properties of the Operation �.

• � is associative, i.e for any three integers i, j, k we have:

([i]n � [j]n)� [k]n = [i]n � ([j]n � [k]n).

• � is commutative, i.e. for any two integers i, j we have:

[i]n � [j]n = [j]n � [i]n.

• The class [1]n plays the role of “identity”, More precisely, for any integer i we have:

[1]n � [i]n = [i]n.

�

Justification. Verification of the above properties is straightforward and it is left to the reader.

4.3.5 Remark. In the above properties there is no one which means something as “can-
cellation” or “division” for �. More precisely, we have not stated any general condition under
which for a given integer i there exists an integer j such that [i]n� [j]n = [1]n. The reason is
that no every equation of the form [i]n� [x]n = [1]n has a solution. The following proposition
characterizes i and n for which such x exists.

4.3.6 Properties of the Operation �.

• � is associative, i.e for any three integers i, j, k we have:

([i]n � [j]n)� [k]n = [i]n � ([j]n � [k]n).

• � is commutative, i.e. for any two integers i, j we have:

[i]n � [j]n = [j]n � [i]n.

• The class [1]n plays the role of “identity”, More precisely, for any integer i we have:

[1]n � [i]n = [i]n.

�

Justification. [i]n � [x]n = [j]n can be rewritten as [i · x]n = [j]n and hence

i · x ≡ j modn.

And this leads to
i x− j = k n, so we have i x− k n = j.

And the last equation is in fact a Diophantic equation i x + n y = j which has a solution if
and only if j is a multiple of gcd(i, n).

From ?? we know that all integers x ∈ Z satisfying i x+ n y = j are of the form x0 + k n1

where x0 is one solution of the non-homogeneous equation, and i1 = i
d and n1 = n

d . It can
be shown that for xk = x0 + k n1 it holds that [xk]n are distinct elements of Zn for which ??
holds. �

4.3.7 A special case of ?? is the following:

Corollary. For a residue class [i]n there is a residue class [x]n such that

[i]n � [x]n = [1]n (4.7)

if and only if the numbers i and n are relatively prime. �

The class [x]n satisfying 4.7 is called the inverse of [i]n and we denote it [i]−1n .
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4.3.8 Distributivity Law for ⊕ and �. For any three integers i, j, k it holds that

[i]n � ([j]n ⊕ [k]n) = ([i]n � [j]n)⊕ ([i]n � [k]n).

4.3.9 Remark. If p is a prime number then the set Zp satisfies all the properties that
addition and multiplication of real numbers have got.

If n is a composite number (not a prime) then the situation is different. For example if
n = r · s, 0 < r < n and 0 < s < n, then [r]n � [s]n = [0]n even though the classes [r]n and
[s]n are non-zero. (It means that we cannot “divide” by such elements.)

4.3.10 Convention. Later on, when there is not fear of misunderstanding we will write
Zn = {0, 1, . . . , n− 1} instead of Zn = {[0]n, [1]n, . . . , [n− 1]n} and the operations ⊕, � will
be denoted by an “ordinary signs”, i.e. simply by + and ·.

Note that we can write that in Zn for every i, j ∈ Zn

i+ j = k, where k is the remainder when i+ j is divided by n;

i · j = l, where l is the remainder when i j is divided by n.
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Chapter 5

Binary Operations

In the last lecture, we introduced the residue classes Zn together with their addition and
multiplication. We have also shown some properties that these two operations have. Today,
we will study sets together with one operation in general and try to derive some properties
that can be used regardless how an operation is defined and what elements a set has. We will
define item-by-item groupids (the most general case), semigroups (groupoids that satisfy the
associativity law), monoids (semigroups with a neutral element), and groups (monoids where
every element is invertible).

5.1 Groupoids, Semigroups, Monoids

5.1.1 Groupoids. The most general notion of this section is the notion of a groupoid.

Definition. A binary operation on a set S is any mapping from the set of all pairs S × S
into the set S.

A pair (S, ◦) where S is a set and ◦ is a binary operation on S is called a groupoid . �

Note that the only condition for a binary operation on S is that for every pair of elements
of S their result must be defined and must be an element in S.

A binary operation is usually denoted by ·, or +, ◦, ? etc. (A binary operation ◦ assigns
to elements x, y the element x ◦ y.)

Examples of groupoids. The following are groupoids.

1) (R,+) where + is addition on the set of all real numbers.
2) (Z,+) where + is addition on the set of all integers.
3) (N,+) where + is addition on the set of all natural numbers.
4) (R, ·) where · is multiplication on the set of all real numbers.
5) (Z, ·) where · is multiplication on the set of all integers.
6) (Mn, ·) where Mn is the set of all square matrices of order n, and · is multiplication of

matrices.
7) (Zn,⊕) for any n > 1.
8) (Zn,�) for any n > 1.
9) (Z,−), where − is subtraction on the set of all integers.

Examples which are not groupoids.

• (N,−) is not a groupoid because subtraction is not a binary operation on N. Indeed,
3− 4 is not a natural number.

• (Q, :), where : is the division, because 1 : 0 is not defined.
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5.1.2 Semigroups. General groupoids are structures where it is rather difficult to “calcu-
late”. Indeed, if we want to “multiply” four elements we must know in which order to do it.
It means whether it is a ◦ ((b ◦ c) ◦ d), or a ◦ ((b ◦ c) ◦ d), or one of the other two possibilities.
First, we will be interested in groupoids where we do not need to use brackets, these will be
groupoids where the associative law holds.

Definition. Given a groupoid (S, ◦). If for every x, y, z ∈ S we have

x ◦ (y ◦ z) = (x ◦ y) ◦ z (5.1)

(S, ◦) is called a semigroup. �

The property 5.1 is called the associative law.

Examples of semigroups. The following groupoids are semigroups:

1) (R,+), (Z,+), (N,+).
2) (R, ·), (Z, ·), (N, ·).
3) (Zn,⊕), (Zn,�).
4) (Mn,+), (Mn, ·), where Mn is the set of square real matrices of order n and + and · is

addition and multiplication, respectively, of matrices.
5) (A, ◦) where A is the set of all mappings f :X → X for a set X, and ◦ is the composition

of mappings.

Examples of groupoids which are not semigroups.

• (Z,−), i.e. the set of all integers with subtraction. Indeed, 2 − (3 − 4) = 3 but
(2− 3)− 4 = −5.

• (R \ {0}, :), i.e. the set of nonzero real numbers together with the division :. Indeed,
4 : (2 : 4) = 8, but (4 : 2) : 4 = 1

2 .

5.1.3 Neutral (Identity) Element. A groupoid (S, ◦) may or may not have an element
that “does not change” anything if it is used. The precise definition is given bellow.

Definition. Given a groupoid (S, ◦). An element e ∈ S is called a neutral (also identity)
element if

e ◦ x = x = x ◦ e for every x ∈ S. (5.2)

�
If the operation is denoted by · then we usually use the term ”identity element” instead

of a neutral element.

Examples of neutral elements.

1) For (R,+) the number 0 is its neutral element, the same holds for (Z,+).
2) For (R, ·) the number 1 is its neutral (identity) element, the same holds for (Z, ·), and

(N, ·).
3) For (Mn, ·) where · is the multiplication of square matrices of order n the identity matrix

is its neutral (identity) element.
4) (Zn,⊕) has the class [0]n as its neutral element.
5) (Zn,�) has the class [1]n as its neutral (identity) element.

Example of a groupoid that does not have a neutral element. The groupoid
(N \ {0},+) does not have a neutral element. Indeed, there is not a positive number e
for which n+ e = n = e+ n for every positive n ∈ N

5.1.4 Uniqueness of the Neutral Element. The following proposition shows that if a
groupoid (S, ◦) has its neutral element then it is unique.

Proposition. Given a groupoid (S, ◦). If there exist elements e and f such that for every
x ∈ S we have e ◦ x = x and x ◦ f = x, then e = f is the neutral element of (S, ◦). �

Justification. Consider the product e ◦ f . From the property of e we have e ◦ f = f (indeed,
take x = f); from the property of f we have e ◦ f = e (indeed, take x = e). Hence e = f , and
in this case e is the neutral element. �
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5.1.5 Monoids. We will be mainly interested in semigroups which have the neutral
element; they will be called monoids.

Definition. If in a semigroup (S, ◦) there exists a neutral element then we call (S, ◦) a
monoid . �

In the paragraph above, we gave couple of examples of monoids and also an example of a
semigroup which is not a monoid.

Convention. In the following text, the fact that (S, ◦) is a monoid with the neutral element
e will be shortened to (S, ◦, e).

5.1.6 Powers in a Monoid. Similarly as powers are defined in (R, ◦, 1) we can introduce
powers in an arbitrary monoid.

Definition. Given a monoid (S, ◦, e) and its element a ∈ S. The powers of a are defined by:

a0 = e, ai+1 = ai ◦ a for every i ≥ 0.

�
Note that if the operation is + with neutral element 0 then we write 0 a = 0 instead of a0

and k a instead of ak.

5.1.7 Invertible Elements. In many examples given above, we can somehow “reverse”
the operation. For instance, in (R,+, 0) we can subtract; in (R, ·, 1) we can divide by any
nonzero number; in (Mn, ·, E) where Mn is the set of all square matrices of order n, and E
is the identity matrix, we can cancel all the regular matrices (this means multiplying by the
inverse matrix to a given regular one). In this paragraph, roughly speaking, we characterize
those elements of a monoid that not only permit “cancellation” but ”help solving equations”.
More precisely:

Definition. Given a monoid (S, ◦, e). We say that an element a ∈ S is invertible if there
exists an element y ∈ S such that

a ◦ y = e = y ◦ a. (5.3)

�
Let us show that if y from 5.3 exists then it is unique.

Proposition. Given a monoid (S, ◦, e). Assume that there are elements a, x, y ∈ S such that

x ◦ a = e and a ◦ y = e,

then x = y. �

Justification. Consider the product x ◦ a ◦ y. Since we are in a semigroup it holds that

y = e ◦ y = (x ◦ a) ◦ y = x ◦ (a ◦ y) = x ◦ e = x.

�

5.1.8 The Inverse Element. Since y from 5.3 is unique we can define:

Definition. Let (S, ◦, e) be a monoid, and a ∈ S an invertible element. Let y ∈ S satisfy

a ◦ y = e = y ◦ a.

Then y is called the inverse element to a and is denoted by a−1. �

Remark. If a binary operation is denoted by + we speak about the opposite element (instead
of the inverse element) and denote it by −a (instead of a−1). The reason is that we sometimes
have two different binary operations defined on the same set, (indeed, on the set R we have
both + and ·), hence it is convenient to distinguish between “inverses” with respect to + and
with respect to ·.
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5.1.9 We know that not every element of a general monoid is invertible. Indeed, consider
for example the set of all square matrices together with multiplication and the identity matrix.
Then only regular matrices are invertible, and moreover for any regular matrix A it holds
that (A−1)−1 = A. The next proposition shows that properties of invertible elements and
their inverses are the same in any monoid.

Proposition. Let (S, ◦, e) be a monoid. Then

1. e is invertible and e−1 = e.

2. If a is invertible then so is a−1, and we have (a−1)−1 = a.

3. If a and b are invertible elements then so is a ◦ b, and we have (a ◦ b)−1 = b−1 ◦ a−1.

�

Justification.
1. It suffices to notice that e ◦ e = e, this immediately means that e−1 = e.

2. Assume that a is invertible. Then we have a ◦ a−1 = e = a−1 ◦ a. If we look at the last
identities we see that a is the element such that if we multiply by it the element a−1 we get
e. Hence a = (a−1)−1.

3. Assume that a−1 and b−1 exist. Then

(a ◦ b) ◦ (b−1 ◦ a−1) = a ◦ (b ◦ b−1) ◦ a−1 = a ◦ e ◦ a−1 = a ◦ a−1 = e.

Similarly, we get that (b−1 ◦ a−1) ◦ (a ◦ b) = e. We have shown that (a ◦ b)−1 = b−1 ◦ a−1. �

Remark. Note that it is not always the case that (a ◦ b)−1 = a−1 ◦ b−1. This holds when
the operation ◦ is commutative, i.e. x ◦ y = y ◦ x for every x and y.

5.1.10 An Invertible Element Can Be Canceled.

Proposition. Let (S, ◦, e) be a monoid, and let a ∈ S is its invertible element. Then

a ◦ b = a ◦ c, or b ◦ a = c ◦ a implies b = c.

�
Justification. Assume that a−1 exists and

a ◦ b = a ◦ c. (5.4)

Multiply 5.4 by a−1 form the left. We get

a−1 ◦ (a ◦ b) = a−1 ◦ (a ◦ c), which gives (a−1 ◦ a) ◦ b = (a−1 ◦ a) ◦ c and b = c.

Similarly for b ◦ a = c ◦ a. The only difference is that here we multiply by a−1 from the right.
(Notice the similarity with matrix operations.) �

5.1.11 Groups. In couple of examples above, every element was invertible; indeed, it holds
for (Z,+, 0), (R \ {0}, ·, 1), and (Zn,+, 0). Such monoids are of great importance and they
are called groups.

Definition. A monoid (S, ◦, e) in which every element is invertible is called a group. �

Examples of groups. The following monoids are groups:

1) The monoid (R,+, 0). Indeed, for every x ∈ R there exists −x for which x + (−x) =
0 = (−x) + x.

2) The monoid (Z,+, 0). Indeed, for each integer x there exists an integer −x for which
x+ (−x) = 0 = (−x) + x.

3) The monoid (R+, ·, 1), where R+ is the set of all positive real numbers. Indeed, for every
positive real number x there exists a positive real number 1

x for which x · 1x = 1 = 1
x ·x.
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4) The monoid (Zn,⊕, [0]n). Indeed, for a class [i]n there exists a class [n− i]n for which
[i]n ⊕ [n− i]n = [0]n = [n− i]n ⊕ [i]n.

5) Let A be the set of all permutation of the set {1, 2, . . . , n}, and let ◦ be the composition
of permutations. Then (A, ◦) is a monoid with the neutral element the identity
permutation id. Moreover, for every permutation φ there exists its inverse permutation
φ−1 for which φ ◦ φ−1 = id = φ−1 ◦ φ.

Examples of monoids that are not groups.

1) The monoid (Z, ·, 1). Indeed, for example 2 is not invertible because there is no integer
k such that 2 · k = 1.

2) The monoid (Zn,�, [1]n). Indeed, the class [0]n is not invertible because for any [i]n we
have [0]n � [i]n = [0]n 6= [1]n.

3) Let B be the set of all mappings from the set {1, 2, . . . , n} into itself, where n > 1. Let
◦ be the composition of mappings. Then (B, ◦, id) is a monoid where id is the identity
mapping. Any mapping that is not one-to-one is not invertible.

5.1.12 Groups can be characterized as those semigroups (S, ◦) where every equation
a ◦ x = b and y ◦ a = b has a solution. In that case, the solution is unique. From this
it immediately follows that

1. If (S, ◦) is not a group, then there is an equation which does not have a solution.
2. Given a semigroup (S, ◦). If there exists an equation with two distinct solutions, then

(S, ◦) is not a group, and moreover there is an equation that does not have a solution.

The following two paragraphs prove it.

5.1.13 Proposition. Given a group (S, ◦) with its neutral element e. Then for every two
elements a, b ∈ S there exist unique x, y ∈ S such that

a ◦ x = b, y ◦ a = b.

�

Justification. Since (S, ◦, e) is a group and a ∈ S, there exists its inverse a−1. If we multiply
the equation a ◦ x = b by a−1 from the left we obtain

x = (a−1 ◦ a) ◦ x = a−1 ◦ (a ◦ x) = a−1 ◦ b.

Similarly we obtain y = b ◦ a−1 from the second equation; indeed, we multiply the second
equation by a−1 from the right and get the desired solution.

Let us show the uniqueness. Assume that a ◦ x1 = b and a ◦ x2 = b. Then a ◦ x1 = a ◦ x2.
Now, the proposition 5.1.10 completes the argument because it states that x1 = x2. Similarly
from y1 ◦ a = b and y2 ◦ a = b we get y1 = y2.

5.1.14 Theorem. A semigroup (S, ◦) is a group if and only if every equation of the form
a ◦ x = b and every equation of the form y ◦ a = b has at least one solution.

More precisely: A semigroup (S, ◦) is a group if and only if for every two elements a, b ∈ S
there exist x, y ∈ S such that a ◦ x = b and y ◦ a = b. �

Justification. First we show that if a semigroup (S, ◦) satisfies the above conditions then it
has got a neutral element.

Choose any a ∈ S. There exists ea ∈ S such that ea ◦ a = a; indeed, it is a solution of
y ◦ a = a. Now, take an arbitrary b ∈ S. We know that b = a ◦ x for some x ∈ S, hence

ea ◦ b = ea ◦ (a ◦ x) = (ea ◦ a) ◦ x = a ◦ x = b.
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Similarly, it can be shown that the element fa for which a ◦ fa = a satisfies b ◦ fa = b for any
b ∈ S.

Therefore, from 5.1.4 we get that ea = fa is the neutral element of (S, ·).

To show that every element a ∈ S is invertible, it suffices to use the proposition from
5.1.7. Indeed, from the fact that there exist x, y ∈ S with a ◦ x = e and y ◦ a = e we know
that x = y, and x = a−1. So, a is invertible. Since a was an arbitrary element of S, (S, ◦, e)
is a group. �

5.1.15 Commutative Semigroups, Monoids, Groups. In many examples above (but
not in all) it does not matter whether we calculate a ◦ b or b ◦ a, we get the same results.

Definition. A semigroup (S, ◦) (monoid, group) is called commutative if it satisfies the
commutative law, i.e. for every two elements x, y ∈ S

x ◦ y = y ◦ x.

�

5.1.16 Subsemigroups. Given a semigroup (S, ◦) and a set T ⊆ S. It may happen (but
does not need to) that T together with the same operation ◦ is again a semigroup. In that
case, we will call (T, ◦) a subsemigroup of (S, ◦).

Definition. Given a semigroup (S, ◦). A subset T ⊆ S together with an operation ◦ forms
a subsemigroup of the semigroup (S, ◦), if for every two elements x, y ∈ T we have x ◦ y ∈ T .
(In this case (T, ◦) is also a semigroup.) �

Remark. Next, we will say less exactly “T is a subsemigroup” instead of “T forms a
subsemigroup”. It will be mainly in the situation where the operation is clear from the
context.

Examples of subsemigroups. The following are examples of subsemigroups:

1) N together with addition forms a subsemigroup of (Z,+).
2) The set of all regular matrices together with multiplication of matrices forms a sub-

semigroup of (Mn, ·), where Mn is the set of all square matrices of order n.
3) The set of all positive real numbers together with multiplication forms a subsemigroup

of (R, ·).

Example of a subset that does not form a subsemigroup. The set of all regular
square matrices of order n together with addition of matrices does not form a subsemigroup
of (Mn,+). Indeed, it does not hold that sum of two regular matrices is a regular matrix,
e.g. coincide the identity matrix E. Then E and −E are regular matrices but E + (−E) is
the zero matrix which is not regular.

5.1.17 Submonoids.

Definition. Given a monoid (S, ◦, e). A subset T ⊆ S forms a submonoid if it forms a
subsemigroup and moreover e ∈ T . (In this case (T, ◦, e) is also a monoid.) �

Examples of submonoids.

1) The set of all natural numbers N together with addition is a submonoid of (Z,+, 0),
since 0 ∈ N.

2) The set of all regular square matrices of order n together with multiplication of matrices
forms a submonoid of (Mn, ·, E), since the identity matrix E is regular.

3) Denote by TX the set of all mappings from a set X into itself. Consider the operation
composition of mappings ◦. Then (TX , ◦, id) where id is the identity mapping (defined
by id(x) = x for all x ∈ X) is a monoid. The set of all bijections from TX forms a
submonoid of (TX , ◦), indeed, a composition of two bijections is a bijection, and the
identity mapping is a bijection.
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5.1.18 Remark. Notice that a subsemigroup (T, ◦) of (S, ◦, e) may contain a neutral
element which is different from the neutral element e (but in this case e 6∈ T ). If this is
the case (T, ◦) is a subsemigroup of (S, ◦) but not a submonoid of (S, ◦, e). Next, there is an
example of such a situation.

Example. Let X = {1, 2, 3}. Denote by S the set of all mappings from X to X. Then
(S, ◦, id) is a monoid (◦ is the composition of mappings, id is the identity mapping).

Consider the mapping f :X → X defined by f(1) = 2, f(2) = 3, f(3) = 4, and f(4) = 2.
Then f4 = f and T = {f, f2, f3} forms a subsemigroup of (S, ◦, id). T does not form a
submonoid, since id 6∈ T . On the other hand, f3 is the neutral element of (T, ◦) and (T, ◦, f3)
is in fact a group. Indeed, f ◦ f3 = f = f3 ◦ f , f2 ◦ f3 = f2 = f3 ◦ f2, and f3 ◦ f3 = f3.

5.1.19 The Group of Invertible Elements. Every monoid contains a special sub-
monoid, the one formed by all invertible elements. And this submonoid is in fact a group that
is called the group of invertible elements. Let us first prove the following proposition which
justifies the definition coming next.

Proposition. Given a monoid (S, ◦, e). Denote by S? the set of all its invertible elements.
Then (S?, ◦, e) is a submonoid of (S, ◦) which is a group. �

Justification. The above proposition immediately follows from 5.1.9. Indeed, e ∈ S?, and if
a, b ∈ S? then a ◦ b ∈ S?. So S? forms a submonoid.

Moreover, (S?, ◦, e) is a group because if a ∈ S? then a−1 ∈ S?. �

Definition. The group (S?, ◦, e) is called the group of invertible elements of the monoid S.
�

5.1.20 The following theorem is an important fact and is used in a lot of applications. In
fact it holds for any finite group but we will state and prove it only for commutative ones
now.

Theorem. Let (G, ◦, e) be a finite commutative group. Then for every a ∈ G we have
a|G| = e. �

Justification. Assume that the group has n elements and denote G = {a1, a2, . . . , an}. Take
any a ∈ G and form the set H = {a ◦ a1, a ◦ a2, . . . , a ◦ an}. The H has also n elements;
indeed, if a ◦ ai = a ◦ aj in a group then ai = aj (see 5.1.10).

Therefore, G = H and because G is a commutative group we have

a1 ◦ a2 ◦ . . . ◦ an = (a ◦ a1) ◦ (a ◦ a2) ◦ . . . ◦ (a ◦ an),

and also

a1 ◦ a2 ◦ . . . ◦ an = an ◦ (a1 ◦ a2 ◦ . . . ◦ an).

If we multiply the last equality by (a1 ◦ a2 ◦ . . . ◦ an)−1 we get an = e. �

5.2 Applications to (Zn, ·, 1)
Let us first introduce the Euler function.

5.2.1 Euler function. Given a natural number n > 1. Then the value of Euler function
φ(n) equals to the number of all natural numbers i, 0 ≤ i < n, that are relatively prime to n.

�

For example φ(6) = 2, since there are only two natural numbers between 0 and 5 that are
relatively prime to 6, namely 1 and 5.
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5.2.2 Properties of Euler Function.

1. Let p be a prime number, then φ(p) = p− 1.
2. If p is a prime number and k ≥ 1 then φ(n) = pk − pk−1.
3. If n and m are relatively prime natural numbers then φ(n ·m) = φ(n) · φ(m).

�

It is not difficult to show the first two properties above. The easiest way how to prove the
last one is to use the Chinese Remainder Theorem which is beyond the scope of this course.

5.2.3 The Group of Invertible Elements of (Zn, ·, 1). We will use the facts from 5.1.19
for the commutative monoid (Zn, ·, 1). We know (Zn, ·) is a monoid with its neutral element
1. The set of all invertible elements of it is

Z?n = {i | 0 ≤ i < n, i and n are relatively prime}.

Therefore, (Z?n, ·, 1) is a group with φ(n) elements where φ(n) is the Euler function of n.

5.2.4 Euler-Fermat Theorem. Applying 5.1.20 we get a theorem which generalizes of
the small Fermat theorem:

Theorem (Euler-Fermat). Given a natural number n > 1. Then for every integer a
relatively prime to n we have

aφ(n) ≡ 1 (modn).

�
Justification. Indeed, take any integer a relatively prime to n. Put b to be the remainder
when we divide a by n. Then b ∈ Z?n. Since (Z?n, ·, 1) is a finite group with φ(n) elements,
the Euler-Fermat Theorem is a consequence of 5.1.20. �

Remark. The small Fermat theorem is an immediate consequence of the Euler-Fermat
theorem. Indeed, if n is a prime number then φ(n) = n− 1.

5.3 Subgroups

Analogously as we defined subsemigroups and submonoids we can define subgroups. Sub-
groups are formed by subsets that not only form itself a group but group with the original
operations. More precisely:

Definition. Given a group (G, ◦, e). We say that H ⊆ G forms a subgroup of (G, ◦, e) if

1. for every x, y ∈ H it holds that x ◦ y ∈ H, (i.e. forms a subsemigroup);
2. e ∈ H, (i.e. forms a submonoid);
3. for every x ∈ H it holds that x−1 ∈ H.

�
Note, that in this case, (H, ◦, e) is also a group.

Remark. Every group (G, ◦, e) with more than one element has at least two subgroups;
indeed, one formed by {e} and second formed by G. These two subgroups are called trivial
subgroups.

5.3.1 How Many Elements a Subgroup Can Have? We will show some useful
properties of finite groups and their subgroups. The first theorem shows that a subset of
a group can form a subgroup only if its number of elements divides the number of elements
of the group. Hence, (Z7,+, 0) has only trivial subgroups; indeed, 7 is a prime number with
divisors 1 and 7. And any subgroup with 1 element consists of 0, a subgroup with 7 elements
is (Z7,+, 0).
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Theorem. Let (G, ◦, e) be a finite group and H ⊆ G its subgroup. Then the number of
elements of H divides the number of elements of G. �

Justification. Let us denote n = |G| and k = |H|. For every g ∈ G we form a subset of G:
g ◦H = {g ◦ x |x ∈ H}.

We show that for every g1, g2 ∈ G the sets g1 ◦H and g2 ◦H are either the same or they
are disjoint (they do not have a common element).

Assume that (g1◦H)∩(g2◦H) 6= ∅. Then there exist h1, h2 ∈ H such that g1◦h1 = g2◦h2.
Since we are in a group, we have

g1 = (g2 ◦ h2) ◦ h−11 = g2 ◦ (h2 ◦ h−11 ) and g2 = (g1 ◦ h1) ◦ h−12 = g1 ◦ (h1 ◦ h−12 ). (5.5)

This means that g1 ∈ g2◦H and q2 ∈ g1◦H, (indeed, H is a subgroup so h2◦h−11 , h1◦h−12 ∈ H).

Now, take an arbitrary element x ∈ g1 ◦H. Then x = g1 ◦h for some h ∈ H. Substituting
form 5.5 we get

x = (g2 ◦ (h2 ◦ h−11 )) ◦ h = g2 ◦ (h2 ◦ h−11 ◦ h) and so x ∈ g2 ◦H.

Indeed, H is a subgroup so h2 ◦ h1 ◦ h belongs to H.

Similarly, one gets that any z ∈ g2 ◦ H belongs to g1 ◦ H. So, we have shown that
g1 ◦H = g2 ◦H.

H is a subgroup, so e ∈ H, and therefore g ∈ g ◦ H for every g ∈ G. This means that
every element from G belongs to some g′ ◦ H. Hence, the system {g ◦ H | g ∈ G} forms a
partition of G.

To finish the argument, we show that all sets g ◦ H have the same number of elements
which is k = |H|. Denote H = {h1, . . . , hk}. Then

g ◦H = {g ◦ h1, . . . , g ◦ hk}.

If g ◦hi = g ◦hj then (g−1 ◦g)◦hi = (g−1 ◦g)◦h2, which means that hi = hj (see also 5.1.10).

We have shown that the set of n elements is divided into disjoint parts each of them having
k elements. Hence n is divisible by k. (Note that there are n/k distinct sets g ◦H.) �

5.3.2 Order of a Finite Group. The number of elements of a finite group (G, ◦, e) is
often called its order. The above theorem can be formulated as follows: The order of any
subgroup (H, ◦, e) of a finite group (G, ◦, e) divides the order of (G, ◦, e).

5.3.3 Subgroup Generated by an Element, Order of an Element. Let (G, ◦, e) be
a finite group, choose an element a ∈ G. Consider the set of all powers of a:

{a, a2, a3, . . . , ak, . . .}.

Since G is a finite set, there must exist i and j, i 6= j, such that ai = aj . Let us assume that
i is the exponent which is smaller than j. We are in a group, so there exists a−1. Therefore

ai = aj implies ai−1 = aj−1, etc. e = a0 = aj−i.

Hence, we have proved the first part of the following proposition:

Proposition. Let (G, ◦, e) be a finite group, a ∈ G. Then there exists the smallest positive
integer r for which ar = e. Moreover, {a, a2, . . . , ar} forms a subgroup of (G, ◦, e). �

Justification. The second part follows from the fact that

1. ai ◦ aj = ai+j = ak where k ≡ i+ j mod r.
2. ar = e ∈ {a, a2, . . . , ar}.
3. (ai)−1 = ar−i.
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Definition. The subgroup formed by {a, a2, . . . , ar} is called the subgroup generated by a
and will be denoted by 〈a〉.

The number of elements of 〈a〉 (i.e. the smallest positive r for which ar = e) is called the
order of a and it is denoted by r(a). �

Note that the order of a is in fact the order of the subgroup 〈a〉.

5.3.4 The fact that 〈a〉 forms a subgroup of (G, ◦, e) gives us

Corollary. Given a finite group (G, ◦, n) with n elements. Then the order of any element
a ∈ G divides n.

This proposition is a direct consequence of 5.3.1. Indeed, 〈a〉 is a subgroup of the group
(G, ·, e) having r(a) elements.

5.3.5 Theorem. Given a finite group (G, ◦, e) with n elements. Then for every a ∈ G we
have

an = e.

Justification. Indeed, since r(a) divides n, we get

an = ak r(a) = (ar(a))k = ek = e.

�

5.3.6 A Characterization of the Order r(a). The following proposition will help us for
example to find the order of of powers of a given element (see ??) of a finite group.

Proposition. A number r equals to the order r(a) of a in a finite group (G, ·, e) if and only
if the following two conditions are satisfied:

1) ar = e.
2) If as = e for some natural number s then r divides s.

�
Justification. a) Let us assume that r satisfies the two conditions above. Then clearly, r is
the smallest positive integer for which ar = e; hence r = r(a).

b) Denote the order r(a) by r. We show that r satisfies the two conditions above. The
first condition is obvious. Consider any s for which as = e. Divide s by r, we get s = qr + z
where the remainder z satisfies 0 ≤ z < r. Then

e = as = aqr+z = (ar)q · az = eq · az = az.

Since z is strictly smaller than r, and r is the smallest positive number for which ai = e, we
get z = 0. And hence r divides s. �

5.3.7 Cyclic Group, a Generating Element of a Group. There is a special type of
groups, in fact the “most simple” ones, where the calculation corresponds to the addition in
Zr. More precisely:

Definition. Given a group G = (G, ◦, e). If there exists an element a ∈ G for which 〈a〉 = G
we say that the group is cyclic and that a is a generating element of (G, ◦, e). �

Remark. Note that a cyclic group does not need to be finite. Even in an infinite group
(G, ◦, e) we can form a subgroup generated by a ∈ G, indeed,

〈a〉 = {. . . , a−2, a−1, a0, a1, a2, . . .} = {ai | i ∈ Z}.

If 〈a〉 = G then the group is cyclic.

Marie Demlova: Discrete Mathematics and Graphs September 11, 2024, 12:28



5.3. Subgroups [240911-1228 ] 45

5.3.8 Examples.

1. (Zn,+, 0) (for any natural number n > 1) is a cyclic group with its generating element 1.

2. For every prime number p the group (Z?p, ·, 1) is a cyclic group. It is not straightforward
to show it. Moreover, to find a generating element is a difficult task for some primes p.

3. The group (Z?8, ·, 1) is not cyclic. We have Z?8 = {1, 3, 5, 7} and 32 = 1, 52 = 1 and
7−1 = 1. So, there is no element with order 4.

4. (Z,+, 0) of all integers together with addition is a cyclic group; its generating element
is 1.

5.3.9 Observation. One can reformulate the definition of a finite cyclic group: A finite
group G = (G, ◦, e) of order n is cyclic if and only if there exists a ∈ G with its order r(a) = n.

5.3.10 Order of a Power of a. If we know the order of an element of a in a finite group
(G, ◦, e) then we can determine the order of ai for any i ∈ N, see the following proposition.

Proposition. Let G = (G, ◦, e) be a finite group. Let a ∈ G have order r(a). Then

r(ai) =
r(a)

gcd(r(a), i)
.

�
Justification. We will show that the number r(a)

gcd(r(a),i) satisfies the conditions of proposition

5.3.9 and hence it is r(ai).

Denote r = r(a), and d = gcd(i, r). Then we can write i = d i′ and r = d r′ where i′ and

r′ are relatively prime. With this notation r(a)
gcd(r(a),i) equals to r′.

We show the first condition from 5.3.6: we have

(ai)r
′

= ai r
′

= ai
′ d r′ = (ad r

′
)i

′
= (ar)i

′
= e.

The second condition from 5.3.6: Assume that (ai)s = a. Then ai s = e. Since r is the order
of a, necessarily r divides i s. Further

i s = k r, i.e. i′ d s = k r′ d and i′ s = k r′.

Numbers i′ and r′ are relatively prime, and r′ divides i′ s, hence r′ divides s. So r′ is the
order of ai as required. �

5.3.11 Observation. The proposition above helps to find orders of all elements b belonging
to 〈a〉. Indeed, we know that the subgroup 〈a〉 is a cyclic group having a as its generating
element. So we can use the proposition from 5.3.9 for every element b ∈ 〈a〉. Especially, if we
know a generating element of a cyclic group we can find orders of all elements of the group.

5.3.12 The proposition in 5.3.9 can be used to calculate the number of generating elements
in any finite cyclic group. Indeed, if a is a generating element of a finite cyclic group
G = (G, ◦, e) with n elements, then b = ai is also a generating element of G if and only
if gcd(i, n) = 1; and there are φ(n) such i’s. Hence we get the following corollary

Corollary. Given a finite cyclic group G = (G, ◦, e) with n elements. Then G has φ(n)
different generating elements. �
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5.3.13 Subgroups of a Finite Cyclic Group. Subgroups of a finite cyclic group are
easy to describe. The next proposition states that a finite cyclic group with n elements has a
subgroup of order d for any divisor d of n. Notice, that it is not true for a finite group which
is not cyclic.

Proposition. Given a finite cyclic group G = (G, ◦, e) with n elements. Then for every
natural number d which divides n there exists a subgroup of G with d elements. �

Justification. Denote by a one of generati+ng elements of the group G. Then the subgroup
〈ak〉 where k = n

d had d elements. Indeed, we have

〈ak〉 = {ak, a2k, . . . , adk = e}.

5.3.14 Remark. A finite cyclic group has only subgroups that itself are cyclic.

Justification. Let G = (G, ◦, e) be a finite cyclic group with a generating element a. Consider
two elements b, c ∈ G; then b = ai and c = aj for some i, j ∈ {1, 2, . . . , |G|}. Any subgroup
which contains these two elements must contain also all elements of the form aix+jy where x
and y are any integers. From the Bezout’s Theorem we know that the equation ix+ jy = k
has integer solutions if and only if the greatest common divisor of i and j divides k. Therefore
the smallest subgroup containing b = ai and c = aj is 〈ad〉 where d = gcd(i, j).
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Chapter 6

Structures with Two Binary
Operations

In the last two lectures we investigated groupoids, semigroups, and groups as examples of
a set with one binary operation. Now, we will be interested in structures that consist of a
nonempty set together with two binary operations, as fields, lattices and Boolean algebras.

6.1 Rings and Fields

Consider the set of all real numbers R. On R, two binary operations are defined: addition +
and multiplication ·. We know that (R,+, 0) is a commutative group, (R, ·, 1) a commutative
monoid. Moreover, for the operations the distributivity laws hold: For all a, b, c ∈ R it holds
that

a (b+ c) = a b+ a c and (b+ c) a = b a+ c a.

Another example: Consider the set of all square matrices Mn of order n. We can add
two matrices, we can multiply two matrices. In fact, (Mn,+, O) (O is the zero matrix) is
a commutative group, (Mn.·, E) (E is the identity matrix) is a monoid. And moreover the
operations + and · satisfy the distributivity laws.

Two examples above do not have the same properties; indeed, (Mn, ·, E) is not commu-
tative, in (R, ·, 1) every number x 6= 0 has its inverse, whereas only regular matrices are
invertible in (Mn,+, ·). The following notions capture such differences.

6.1.1 A (Commutative) Ring with Identity.

Definition. A nonempty set M together with two binary operations + and · is called a ring
with identity if (M,+, 0) is a commutative group, (M, ·, 1) is a monoid and two distributive
laws hold

a · (b+ c) = a · b+ a · c and (b+ c) · a = b · a+ c · a

for every a, b, c ∈M .

If moreover the multiplication · is commutative then the ring is called a commutative ring
with identity. �

Convention. We will denote a ring with identity by (M,+, ·), where M 6= ∅. Further, we
denote the neutral element of the commutative group (M,+) as 0, and the neutral element
of (M, ·) by 1. Moreover, −a is the opposite (inverse) element to a in (M,+, 0), and a−1 the
inverse of a in (M, ·, 1) if it exists.

Remark. Notice, that in any ring with identity we have 0 · a = 0 = a · 0 and (−a) · b =
a · (−b) = −ab.
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6.1.2 Examples of Rings.

1. (R,+, ·) where R is the set of all real numbers with addition + and multiplication ·
forms a commutative ring with identity.

2. (Mn,+, ·) where Mn is the set of all real square matrices of order n, + is the matrix
addition and · is the matrix multiplication forms a ring with identity which is not
commutative (note that multiplication of matrices is not commutative).

3. (Z,+, ·) where Z is the set of all integers together with addition and multiplication
forms a commutative ring with identity.

4. (Zn,+, ·) where + and · are operations in Zn forms a commutative ring with identity
where the class containing 1 is the identity element. This ring has got n elements.

6.1.3 Zero Divisors. There are rings with identity where we can obtain 0 even if we
multiply two nonzero elements. We give two such examples.

1. Consider the product of the two following nonzero matrices:(
2 2
3 3

)
·
(

1 1
−1 −1

)
=

(
0 0
0 0

)
.

2. In (Z6, ·, 1) we have 2 · 3 = 0 and 2 6= 0 6= 3.

On the other hand, no product of two nonzero real numbers (or integers) equals 0. This
motivates the following notion.

Definition. An element of a ring (M,+, ·) is called a zero divisor if a 6= 0 and there exists
b 6= 0 such that a · b = 0. �

If a is a zero divisor in a ring (M,+, ·) with identity then a is not invertible in (M, ·, 1).
Indeed, if a−1 exists then from a · b = 0 we immediately get

b = (a−1 · a) · b = a−1 · (a · b) = a−1 · 0 = 0.

So if a is invertible then from a · b = 0 it follows that b = 0.

Let us mention that a ring with identity without zero divisors is called an integral domain.

6.1.4 A Field. A commutative ring with identity where every nonzero element is invertible
(hence, with the similar properties as real numbers) is called a field. More precisely:

Definition. A commutative ring with identity is called a field if every nonzero element of M
is invertible in (M, ·, 1), and if 0 6= 1. �

Let us note that the condition 0 6= 1 only means that every field must have at least two
elements, namely 0 and 1. So we exlude the “trivial” commutative ring having just one
element 0. (In this ring ({0},+) is the same as ({0}, ·).)

It is not difficult to see that (Z2,+, ·) is a field with exactly two elements 0 and 1.

Examples.

a) (R,+, ·) is a field.
b) (Zp,+, ·) where p is a prime number is a field.
c) (Q,+, ·) where Q is the set of all rational numbers is a field.
d) (C,+, ·) where C is the set of all complex numbers is a field.
e) (Mn,+, ·), n > 1, is not a field because only regular matrices are invertible.
f) (Zn,+, ·) where n is composite number is not a field, indeed, every divisor i 6= 1 of n

is not invertible.
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6.1.5 Remark. In the course of linear algebra one works with vector spaces, matrices, etc.
Scalars there are taken from the field of real numbers or the field of complex numbers. This
is not necessary; linear algebra can be built over any field (commutative ring with identity
does not suffice). There are only small differences; for example, if we study vector spaces over
a finite field with k elements, then any vector space of dimension n has only kn elements.
Similarly, there are only finitely many solutions of a system of linear equtions over a field
with k elements.

We know that (Zp,+, ·), p a prime, is an example of a finite field. These are not the only
one examples. It can be shown that for any prime p and integer k ≥ 1 there is a field with
pk elements (which is in some sense unique). Moreover, there are no finite fields with other
number of elements. The construction of fields with pk elements for k > 1 is beyond the scope
of this course.

6.1.6 The Group of Invertible Elements of a Finite Field. Let (F,+, ·) be a finite
field. Then we know that F \ {0} forms a group, the group of invertible elements of (F, ·, 1).
It can be proved that the group (F ?, ·, 1) is always cyclic. In other words, it has a generating
element a (here called a primitive element) such that every non-zero element of F is a power
of a. So once we know the correspondence between non-zero elements and ai, multiplication
and cancellation becomes rather easy. The proof of the following proposition is beyond the
scope of the course.

Theorem. Let (F,+, ·) be a finite field. Then the group of invertible elements of the monoid
(F, ·, 1) is a cyclic group. �

6.2 Boolean Algebras

There is an other type of structures with two binary operations than rings and fields —
lattices and their special case Boolean algebras. First, let us recall some facts known from
the set theory.

Properties of Subsets. Consider a nonempty set U and the set of all its subsets P(U). Let
∩ denote the intersection of sets, and ∪ the union of sets. Then for every sets A,B,C ⊆ U
we have

1. A ∩ (B ∩ C) = (A ∩B) ∩ C, A ∪ (B ∪ C) = (A ∪B) ∪ C (associative law).

2. A ∩B = B ∩A, A ∪B = B ∪A (commutative law).

3. A ∩A = A, A ∪A = A.

4. A ∩ (B ∪A) = A, A ∪ (B ∩A) = A.

6.2.1 A Lattice. The example above motivates the notion of a lattice. It will be a
nonempty set together with two operations that will satisfy the above four properties. More
precisely:

Definition. A lattice consists of a nonempty set M together with two binary operations on
M ; one is meet ∧ and the other is join ∨ which satisfy the following four conditions

1. A ∧ (B ∧ C) = (A ∧B) ∧ C, A ∨ (B ∨ C) = (A ∨B) ∨ C (associative law).

2. A ∧B = B ∧A, A ∨B = B ∨A (commutative law).

3. A ∧A = A, A ∨A = A.

4. A ∧ (B ∨A) = A, A ∨ (B ∧A) = A.

Marie Demlova: Discrete Mathematics and Graphs September 11, 2024, 12:28



50 [240911-1228 ] Chapter 6. Structures with Two Binary Operations

�
Hence, (P(U),∩,∪) is an example of a lattice.

Lemma. In every lattice we have

a ∧ b = a if and only if a ∨ b = b.

�
Justification. Assume that a ∧ b = a. Then b = b ∨ (a ∧ b) (property 4); hence, b = b ∨ a
because a ∧ b = a.

Similarly, assume that a ∨ b = b. Then a = a ∧ (b ∨ a) = a ∧ (a ∨ b) = a ∧ b because
a ∨ b = b. �

6.2.2 Partial Order on a Lattice. On P(U) we have not only two operations (union and
intersection) but we have a partial order ⊆ at the same time (for the definition of a partial
order see 3.3.14). The following proposition states that in any lattice we can define a partial
order, so any lattice is a poset. (Note that the opposite implication does not hold, there are
posets which are not lattices.)

Proposition. Given a lattice (M,∧,∨). Define a relation v on M by:

a v b if and only if a ∧ b = a (iff a ∨ b = b).

Then the relation v on a lattice (M,∧,∨) is reflexive, antisymmetric, and transitive; i.e. it
is a partial order on M (and (M,v) is a poset). �

Justification. Let (M,∧,∨) be a lattice. Because for every element a ∈M we have a∧ a = a,
it holds that a v a. In other words, the relation v is reflexive.

Assume that for some a, b ∈ M it holds that a v b and b v a. Then the first fact means
that a∧ b = a and the second one b∧a = b. Since a∧ b = b∧a, we get a = b, and the relation
is antisymmetric.

Assume that for some a, b, c ∈ M it holds that a v b and b v c. Then a ∧ b = a and
b ∧ c = b. Hence

a ∧ c = (a ∧ b) ∧ c = a ∧ (b ∧ c) = a ∧ b = a.

Therefore a v c and the relation is transitive. �

For the lattice (P(U),∩,∪) the partial order v is the relation “to be a subset”, i.e. A v B
if and only if A ⊆ B.

6.2.3 Remark. The operations ∧ and ∨ are sometimes called an infimum and a supremum.
This is because in the poset (M,v) the element a ∧ b is the greatest lower bound and a ∨ b
is the smallest upper bound of the set {a, b}.

6.2.4 The Smallest Element 0, and the Greatest Element 1.

Definition. Given a lattice (M,∧,∨). An element 0 for which

0 ∧ a = 0, 0 ∨ a = a for every a ∈M .

is called the smallest element of (M,∧,∨).
An element 1 for which

1 ∧ a = a, 1 ∨ a = 1 for every a ∈M .

is called the greatest element of (M,∧,∨). �

Note that for 0 and any a ∈ M we have 0 v a for every a ∈ M ; analogously, a v 1 for
every a ∈ M . Therefore, 0 is really the smallest element and 1 the greatest element of the
poset (M,v).
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6.2.5 Distributive Lattices. In (P(U),∩,∪) there are other laws that hold, two distribu-
tive laws are among them. On the other hand there are lattices where distributivity laws do
not hold.

Definition. A lattice (M,∧,∨) is called a distributive lattice if it satisfies the distributive
laws: For every elements a, b, c ∈M it holds that

a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c), a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c).

�
It can be shown that if one of the distributivity laws holds so does the other one.

Indeed, let us show e.g. that a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) for every a, b, c ∈ M implies
a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c).

Let us calculate:

(a ∨ b) ∧ (a ∨ c) = ((a ∨ b) ∧ a) ∨ ((a ∨ b) ∧ c).

we used the first distributivity law for (a ∨ b), a, and c. Further,

((a ∨ b) ∧ a) ∨ ((a ∨ b) ∧ c) = a ∨ ((a ∨ b) ∧ c) = a ∨ (c ∧ (a ∨ b)).

We used the absorption law 4, and commutativity. Now, the first distributivity law yields

a ∨ (c ∧ (a ∨ b)) = a ∨ ((c ∧ a) ∨ (c ∧ b)) = (a ∨ (c ∧ a)) ∨ (c ∧ b) = a ∨ (b ∧ c).

as required.

Moreover, it is not difficult to see that in any lattice we have

(a ∧ b) ∨ (a ∧ c) v a ∧ (b ∨ c), a ∨ (b ∧ c) v (a ∨ b) ∧ (a ∨ c).

6.2.6 Complements in Distributive Lattices. Another notion known from sets is a
complement of a set A, i.e. the set of all those elements which do not belong to A.

Definition. Given a distributive lattice (M,∧,∨) with the smallest element 0 and the
greatest element 1. We say that an element b is a complement of a, if

a ∧ b = 0, and a ∨ b = 1. (6.1)

The complement of a is denoted by a. �

The notation from the above definition is justified by the following proposition.

Proposition. Let (M,∧,∨) be a distributive lattice. Then if for a, b, c ∈M we have

a ∨ b = a ∨ c and a ∧ b = a ∧ c

then b = c.
Specially, if a has a complement, then the complement is unique. �

Justification. Assume that a ∨ b = a ∨ c and a ∧ b = a ∧ c. Let us compute

b = (b ∨ a) ∧ b = (a ∨ b) ∧ b = (a ∨ c) ∧ b = (a ∧ b) ∨ (c ∧ b) = (a ∧ c) ∨ (c ∧ b) =

= (c ∧ a) ∨ (c ∧ b) = c ∨ (a ∧ b) = c ∨ (a ∧ c) = c,

as stated. �

Remark. Let us mention that a complement can be defined also in lattices that are not
distributive; only one element can have more that one complement in lattices that are not
distributive.
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6.2.7 Boolean Algebras. Definition. A Boolean algebra is a distributive lattice with the
smallest element 0 and the greatest element 1 in which every element has its complement. �

Proposition. Let (B,∧,∨) be a Boolean algebra with the smallest element 0, the greatest
element 1, and the complement . Then for every elements a, b, c ∈ B it holds that

1. 0 = 1, 1 = 0.
2. a ∧ b = a ∨ b, a ∨ b = a ∧ b.
3. a = a.

�

Justification. 1. follows from the fact that 0 ∧ 1 = 0 and 0 ∨ 1 = 1.

2. It is an easy calculation. We show the first identity. We have

(a ∧ b) ∧ (a ∨ b) = ((a ∧ b) ∧ a) ∨ ((a ∧ b) ∧ b) = (0 ∧ b) ∨ (a ∧ 0) = 0.

We used distributivity, associativity, commutativity and the fact that a ∧ a = 0.

Similarly,

(a ∧ b) ∨ (a ∨ b) = (a ∨ (a ∨ b) ∧ (b ∨ (a ∨ b)) = (1 ∨ b) ∧ (1 ∨ a) = 1.

We used distributivity, associativity, commutativity and the fact that a ∨ a = 1.

3. Indeed, a is the element for which a ∨ a = 0 and a ∧ a = 1. �

Remark. We know that P(U) with the operations ∩ and ∪, where 0 = ∅, 1 = U and
A = {x ∈ U |x 6∈ A} forms a Boolean algebra. There are other Boolean algebras. We will
end this chapter with description of all finite Boolean algebras. The one used mostly is the
smallest one (and sometimes called “the Boolean algebra”).

6.2.8 Boolean algebra B2. The smallest Boolean algebra has 2 elements, 0 and 1 and
operations are defined by:

Let B2 = {0, 1}. Define

1. ∧ is the logical product, i.e. i ∧ j = min{i, j},
2. ∨ is the logical addition, i.e. i ∨ j = max{i, j},
3. 0 = 0, 1 = 1, and
4. 0 = 1, 1 = 0.

It is straightforward to verify all the properties that a Boolean algebra has.

6.2.9 Finite Boolean Algebras. For any n = 2k there is a Boolean algebra with n
elements. It is the following one:

Denote by Bn the set of all k-tuples of 0 and 1, i.e.

Bn = {(a1, a2, . . . , ak) | ai ∈ {0, 1}}.

Define

1. (a1, a2, . . . , ak) ∧ (b1, b2, . . . , bk) = (a1 ∧ b1, a2 ∧ b2, . . . , ak ∧ bk),
2. (a1, a2, . . . , ak) ∨ (b1, b2, . . . , bk) = (a1 ∨ b1, a2 ∨ b2, . . . , ak ∨ bk),
3. 0 = (0, 0, . . . , 0), 1 = (1, 1, . . . , 1),
4. (a1, a2, . . . , ak) = (a1, a2, . . . , ak).

Then B together with the above operations forms a Boolean algebra with n = 2k elements.

Notice that Bn can be viewed as the set of characteristic functions of subsets of U =
{1, 2, . . . , k}. On the other hand, you can look at Bn as a cartesian product of k copies
of B2 where operations are coordinatewise.

It can be proved that the Boolean algebras above are unique up to renaming elements (i.e.
up to an isomorphism) and that there are no other finite Boolean algebras.
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Chapter 7

Graphs

7.1 Directed and Undirected Graphs

Theory of graphs is a modern branch of mathematics. The first problem which is believed
to lie in the foundation of it is the problem of seven bridges in Königsberg in Prussia (now
Kaliningrad in Russia) over the river Pregel. There are two islands in the city. One island is
connected by two bridges with each riverside, and by one bridge to the other island, moreover
there is one bridge from the second island to each riverside. The problem was to find a walk
through the city that would cross each bridge exactly once, and “swimming is forbidden”,
which means that once an island / a riverside is reached the walk must continue from the
island / riverside.

In 1736 Leonard Euler proved that such a walk does not exist. He described the above
situation by four points (vertices) representing two islands and two riversides, connected by
seven lines (edges) representing bridges. We will learn more about his argument in the section
Euler graphs 7.7.

Let us start with the notion of a directed graph even though the above problem led to an
undirected one.

7.1.1 Directed Graphs. Roughly speaking, a directed graph consists of points called
vertices, lines that go from one vertex to other vertex called edges. Because there may be
more than one edge from A to B, in a general graph we distinguish between a name of an
edge and the order pair A and B. More precisely:

Definition. A directed graph is a triple G = (V,E, ε) where V is a nonempty finite set of
vertices (also called nodes), E is a finite set of names of directed edges (also called arrows), and
ε is an incidence relation which assigns to any edge e ∈ E an ordered pair (u, v) of vertices
u, v ∈ V . �

Further notions for directed graphs. Let ε(e) = (u, v). Then u is called the initial vertex
of e, denoted by IV (e), and v the terminal vertex of e, denoted by TV (e). We also say that
vertices u, v are end vertices of e, or that e is incident to u, v.

If u = v we call the edge e a directed loop.

If for two edges e1 and e2 we have ε(e1) = ε(e2), the edges e1 and e2 are called parallel. �

7.1.2 Undirected Graphs. Roughly speaking, undirected graphs are graphs in which
any edge “can be used in both directions” or “where the direction is not important”. More
precisely:

Definition. An undirected graph is a triple G = (V,E, ε) where V is a nonempty finite set
of vertices (also called nodes), E is a finite set of names of edges, and ε an incidence relation
which assigns to any edge e ∈ E a set {u, v} where u, v ∈ V . �
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Further notions for undirected graphs. Let ε(e) = {u, v}. Then u and v are called end
vertices of e.

If u = v then we call the edge e an undirected loop.

If for two edges e1 and e2 we have ε(e1) = ε(e2), the edges e1 and e2 are called parallel
edges.

If ε(e) = {u, v} we say that vertices u, v are incident to the edge e and that the edge e is
incident to vertices u, v.

7.1.3 Simple Graphs.

Definition. A graph (directed or undirected) is called simple if it does not contain parallel
edges. �

Remark. In a simple graph the incidence relation is not necessary. Indeed, assume that G
is a simple directed graph. Then any edge can be named by the ordered pair (IV (e), TV (e))
of its initial vertex IV (e) and terminal vertex TV (e). Therefore, in a simple directed graph
the set of edges E will be a subset of V × V . Similarly, if G is undirected graph, then for
each {u, v}, u, v ∈ V there is at most one edge with ε(e) = {u, v}. Hence {u, v} can serve as
the name of e. Here, E ⊆ {{u, v} |u, v ∈ V }.

In the following text, a simple graph (directed or undirected) will be denoted by G =
(V,E).

We will denote the set of vertices of a graph G by V (G) and the set of edges by E(G). If
there is no fear of misunderstanding, we will write only V for the set of vertices, and E for
the set of edges.

7.1.4 Vertex Degrees. Roughly speaking, degree of a vertex is the number of edges that
end or start in a given vertex. In directed graphs it will be useful to distinguish between the
number of edges that start in v (out degree) and the number of edges that terminate in v (in
degree).

Definition. Given a directed graph G = (V,E, ε). The in-degree of a vertex v, denoted by
d−(v), equals to the number of edges for which v is the terminal vertex; i.e.

d−(v) = |{e ∈ E;TV (e) = v}|.

The out-degree of a vertex v, denoted by d+(v), equals to the number of edges for which v is
its initial vertex; i.e.

d+(v) = |{e ∈ E; IV (e) = v}|.

The degree of a vertex v, denoted by d(v), is

d(v) = d−(v) + d+(v),

(i.e. it is the number of edges that are incident to v). �

Notice that any loop is calculated twice; indeed, once for the in-degree, once for the
out-degree of v.

Definition. Given an undirected graph G = (V,E, ε). The degree of a vertex v, denoted by
d(v), equals to the number of edges for which v is their end vertex where a loop is calculated
twice. �

Notice that if we ”forget” direction in a directed graph G and obtain an undirected graph
G′, then for every vertex v we have dG(v) = dG′(v), i.e. the degrees are the same. Indeed,
this is due to the fact that each loop is calculated twice even in an undirected graph.
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7.1.5 One of the easy but extremely useful facts about degrees in a graph is the following
proposition. (In the English literature, it is also called Handshaking lemma.)

Proposition. For every graph G (directed or undirected) we have∑
v∈V

d(v) = 2 |E|,

where |E| is the number of edges in G. �

Justification. Let e be an edge of a graph G. Then e adds 2 to the sum of all degrees; indeed,
if e is a loop then it is calculated twice by definition, if e is not a loop then it has two end
vertices. Therefore, the sum of all degrees is twice the number of edges. �

Since by the proposition above, the sum of all degrees is an even number, we get the next
corollary.

Corollary. Every graph has an even number of vertices with odd degree. �

7.1.6 Walks in a Graph. In many problems using graphs, “walking” through vertices
and edges is the main goal. We start with the most general notion, the one that only requires
that a next edge starts in the vertex where the previous edge terminates. In directed graphs
we distinguish between directed and undirected walks. The difference is, roughly speaking,
that in directed walks we must go from the initial vertex of an edge to its terminal vertex (so
in the direction of the edge). In an undirected walk, we can go even against the direction of
the edge, i.e. from the terminal vertex to the initial vertex of an edge.

Definition. Given a directed graph G. A directed walk in G is a sequence of vertices and
edges

v1, e1, v2, e2, . . . , vk−1, ek−1, vk

such that for every i = 1, 2, . . . , k − 1 it holds that vi = IV (ei) and vi+1 = TV (ei).

An undirected walk in a directed or undirected graph G is a sequence of vertices and edges

v1, e1, v2, e2, . . . , vk−1, ek−1, vk

such that for every i = 1, 2, . . . , k − 1 vertices vi and vi+1 are end vertices of ei.

Given a directed (or undirected) walk. We say that v1 is the initial vertex of the walk,
and vk is the terminal vertex of the walk. Also we say that the walk goes from v1 to vk. �

Remark: We define an undirected walk also in an undirected graph because the definition
is the same. Note that the notion of a directed walk in undirected graphs is meaningless.

7.1.7 A Trivial Walk. A walk is defined as a sequence of vertices and edges with some
additional properties. The sequence may contain only one vertex and no edge. In that case
it is called trivial.

Definition. A trivial walk is a walk that contains only one vertex and no edge. �

We consider it as a directed and also an undirected walk.

7.1.8 Closed Walks. Roughly speaking, a walk (directed or undirected) is closed if the
initial vertex of it equals the terminal one and the walk contains at least one edge.

Definition. A directed (an undirected) walk is called closed if k > 1 and v1 = vk. Otherwise
it is called an open walk. �

Hence, a trivial walk is not closed; indeed, k = 1.
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7.1.9 Trails and Paths, Cycles and Circuits. In 7.1.6 we defined the notion of a walk.
There are special types of walks that play an important role in applications. These are trials
and their special cases paths.

Definition. A directed (an undirected) walk v1, e1, . . . , ek−1, vk is called a directed trail (an
undirected trail) if it contains every edges at most once. In other words, for i 6= j it holds
that ei 6= ej .

A directed (or an undirected) trail v1, e1, . . . , ek−1, vk is called a directed path (an undi-
rected path) if it contains every vertex at most once with the exception that v1 may be the
same as vk.

A cycle is a closed directed path, i.e. a directed path with v1 = vk, k > 1.

A circuit is a closed undirected path, i.e. i.e. an undirected path with v1 = vk, k > 1. �

7.1.10 Remarks. A cycle (a circuit) can also be defined as an open directed (undirected)
path together with one edge from the terminal vertex to the initial vertex (between initial
and terminal vertices) of the path.

Every path is a trail, and every trail is a walk; the opposite does not hold. Also every
cycle is a circuit, but not every circuit in a directed graph is a cycle.

Notice, that a trivial walk is a trail and a path, but it is neither a circuit nor a cycle.

7.1.11 Reachability.

Definition. Given a directed or undirected graph G = (V,E, ε). We say that a vertex v is
reachable from a vertex w if there exists an undirected path from w to v. �

Remarks. 1. In the definition above we could require the existence of a walk from w to v
and we would get the same notion. Indeed, any path is a walk; on the other hand, any walk
from w to v contains a path form w to v:

Assume that P = v1, e1, v2, . . . , vk−1, ek−1, vk is a walk which is not a path. Let vi = vj
for i < j. Then

P1 = v1, e1, . . . , vi, ej , . . . vk

is a walk from v1 to vk which is shorter. (Roughly speaking, we cut off one closed walk of P .)
If P1 is a path, we are done. If not, we again find r 6= s such that vr = vs and we omit the
walk from vr to vs. Since any walk cannot have less than 0 edges, the procedure must end,
and we are left with a path from v1 to vk.

2. The relation of reachability is reflexive; indeed, v is reachable from itself by the trivial
path v.

3. The relation of reachability is symmetric; it means that if v is reachable from w then
so is w from v. The reason is that any path from w to v can be viewed as a path from v to
w. Indeed, if w, e1, . . . , ek−1, v is an undirected path, then so is v, ek−1, . . . , e1, w.

4. Note that the relation of reachability is transitive; it means if v is reachable form w
and u is reachable from v, then u is reachable from w. If we join a path from w to v and a
path from v to u, we get a walk from w to u. And the walk contains a path with the same
initial and terminal vertices.

7.1.12 Connected Graphs.

Definition. A graph G (directed or undirected) is called connected if for every two vertices
u, v of G there exists an undirected path form u to v (i.e. every vertex is reachable from any
vertex).

If a graph is not connected then it is called disconnected. �
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7.2 Trees

Trees form a class of undirected (or directed) graphs that one will come across in many
applications, not only in computer science but also in many engineering applications. Even
in this course we have spoken about syntactic trees for propositional or predicate formulas.

7.2.1 Definition. A graph G (directed or undirected) is called a tree if it is connected and
it does not contain a circuit. �

7.2.2 Trees satisfy an interesting property – every tree with n vertices has n − 1 edges.
To show this we need the following lemma.

Lemma. Let G be a tree with at least two vertices. Then G contains at least one vertex
with degree 1. �

Justification: We proceed by contradiction: Assume that G does not have a vertex v with
d(v) = 1, so d(u) ≥ 2 for any vertex u. Let us from a walk as follows:

Start in any vertex and denote it by v1. Since d(v1) ≥ 2, there is an edge, say e1, incident
with v1. Denote by v2 its second end vertex. Necessarily v2 6= v1. Indeed, otherwise e1 is a
loop and every loop is a circuit. Since d(v2) ≥ 2 there is an edge e2, e2 6= e1, incident with v2.
Denote by v3 the other end vertex of e2. Since G does not contain a circuit, v3 is a new vertex
of degree at least 2, so we continue. In that way we obtain a path v1, e1, v2, . . . , en−1, vn where
n is the number of vertices. But d(vn) ≥ 2, hence there exists an edge different form en−1,
say en, incident to vn. The other end vertex of en must be one of v1, v2, . . . , vn (indeed, we
do not have any other vertex), therefore en closes a circuit – a contradiction with the fact
that G is without circuits. �

7.2.3 Theorem. Every tree with n vertices has precisely n− 1 edges. �

Justification: We proceed by mathematical induction:

Basic step. If n = 1 there is only one tree – a vertex with no edge. If n = 2 there is again
only one tree – two vertices joint by one edge. Hence for n = 1 or n = 2 the assertion is true.

Inductive step. Assume that every tree with n vertices has n − 1 edges. Consider any
tree G with n+ 1 vertices. From the lemma above, we know that G contains a vertex v with
dG(v) = 1. Let us remove v and the one edge incident to v from the graph G. We obtain
a graph G′ which is connected and has no circuit, so G′ is a tree with n vertices. By the
induction assumption, G′ has n − 1 edges, hence G has n − 1 + 1 = n edges. The proof is
complete. �

7.2.4 Proposition. Every tree with at least two vertices contains at least two vertices of
degree 1. �

Justification. There are two different (and easy) proofs.

1. We know that
∑
v∈V d(v) = 2 |E| (see 7.1.5), and hence

∑
v∈V d(v) = 2 (n − 1),

where n ≥ 2 is the number of vertices. If there was only one vertex v with d(v) = 1, then∑
v∈V d(v) ≥ 1 + 2(n− 1); a contradiction.

2. There is also a direct proof which does not use 7.2.3. Consider a maximal path
in the tree G, i.e. a path that is not contained in any longer path. Denote the path by
P = u1, e1, . . . , ek−1, uk. Then d(u1) = 1 = d(uk). Indeed, if d(u1) ≥ 2 then either the path
P is not maximal, or there is a circuit containing u1. Similarly for uk. �

7.2.5 Several Characterizations of Trees. The following theorem gives two other
characterizations of trees.

Theorem. Given a graph G. Then the following are equivalent:

1. G is a tree.
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2. G contains no circuit and if we add any new edge (the set of vertices remains the same),
then we close just one circuit.

3. G is connected and removing any edge disconnects G.

�
Justification. 1. implies 2. Assume that G is a tree. Then from the definition, G does not
contain a circuit. Assume that we add a new edge e between u and v. Since G is connected,
there exists a path P from u to v. Now, the path P together with e (e does not belong to P )
forms a circuit. Hence e has closed a circuit.

Assume that e has closed two circuits, say C1 and C2. Then there are two distinct paths
P1 and P2 from u to v. If we join P1 and P2 we get a new circuit in this case belonging to G
– a contradiction with the fact that G does not have a circuit.

2. implies 3. Assume that G contains no circuit and adding any new edge closes just one
circuit. Then G is connected; indeed, assume that there was no path between u and v; in this
case, adding a new edge with end vertices u and v does not close a circuit.

Let us remove an edge e with end vertices x and y. If G stays connected then there is
a path P in G from x to y which does not contain e. Hence, P together with e forms a
circuit – a contradiction with the fact that G does not contain a circuit. So removing any
edge disconnects the graph G.

3. implies 1. Assume that G is connected and removing any of its edges disconnects it.
We have to show that G is a tree, i.e. it is connected and does not contain a circuit. Assume
for contrary that G contained a circuit. Take any edge e from the circuit (it must exist since
any circuit contains at least one edge). Then removing e from G does not disconnect it – a
contradiction. �

7.2.6 Remarks. Given any connected graph G. If we add one edge (without adding a
new vertex) to the set of edges of G, then the new graph remains connected.

If a graph G contains no circuit and we remove one edge, then the new graph will also
contain no circuit.

A tree is a graph tha t has the smallest number of edges to be connected and the biggest
number of edges to be without circuits.

7.2.7 Subgraphs. Roughly speaking, a subgraph of a given graph is obtained by: forget-
ting some (maybe none) vertices, forgetting some (maybe none, maybe all) edges, but if an
edge is in the subgraph then also both its end vertices are in the subgraph. More precisely:

Definition. Given a graph G = (V,E, ε). A subgraph of G is a triple G′ = (V ′, E′, ε′) where

• V ′ ⊆ V ,
• E′ ⊆ E, and
• ε′ is the restriction of ε on the set E′.

�

We distinguish two special types of subgraphs:

Definition. Given a graph G = (V,E, ε).

• A factor is a subgraph where V ′ = V , i.e. it contains all vertices of G.
• Let A ⊆ V . The subgraph induced by A is the subgraph with V ′ = A and e ∈ E” if and

only if e ∈ E(G) and the end vertices of e belong to A.

�

Notice, that the subgraph induced by A is the ”maximum” subgraph with the set of
vertices A.
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7.2.8 Components of Connectivity. Since not every graph is connected, it is useful to
“divide” the set of vertices into parts that are connected. Roughly speaking, a component of
connectivity is a maximal part of the graph “which is connected”. More precisely:

Definition. Given a graph G (directed or undirected). A component of connectivity
(sometimes also called a component of weak connectivity) is a maximal subset A of V (G)
such that the subgraph induced by A is connected. �

By a maximal subset we mean that the subgraph induced by A is connected but for every
v ∈ V (G), v 6∈ A, the subgraph induced by A ∪ {v} is not connected.

Remarks.
1. We can define the components of connectivity also in a different way. Given a graph

G with the set of vertices V . Define a relation R on V to be the reachability relation, i.e. by

uR v if and only if v is reachable from u.

We know from 7.1.11 that R is an equivalence relation on V . Components of connectivity are
now the classes of the equivalence R.

2. A graph is connected if and only if it has only one component of connectivity.

7.3 Spanning trees

We know that trees are connected graphs with the minimal number of edges. Hence trees
become very useful in applications where our goal is to connect some places using the least
number of connections. Let us form an undirected graph as follows: Vertices are places, edges
are connections between them. Now, we are looking for a subgraph which is a factor (we need
to connect all places), and which is a tree – but at the same time a factor of the given graph
– such subgraphs will be called a spanning tree.

7.3.1 Definition. Given a connected graph G. A factor of G which is a tree is called a
spanning tree of G. �

The following proposition characterizes graphs that have a spanning tree.

Proposition. A graph G has a spanning tree if and only it it is connected.

Justification. If a graph has a spanning tree it must be connected because a spanning tree is
a connected graph.

Assume that G is connected. If G does not have a circuit then it is itself a tree, so it is
its (only) spanning tree. Assume that G has a circuit, say C. Let us remove one edge of C
from G. We obtain a subgraph of G, say G1 which is connected (we removed an edge from a
circuit). Therefore if G1 does not have a circuit, then it is a tree and also a spanning tree of
G. If G1 contains a circuit we proceed in a similar way: we remove one edge of an existing
circuit. After removing a finite number of edges (in fact |E| − (|V | − 1)) we get a connected
graph with |V | − 1 edges, and it has to be a tree. So it is a spanning tree of G.

7.3.2 A Minimal Spanning Tree. In some applications, we know the price of an edge
(e.g. the price which has to be paid for construction of a given connection). In this case we
are not interested in an arbitrary spanning tree but in a spanning tree that has the least sum
of prices of chosen edges. And this is, roughly speaking, a minimal spanning tree.

Definition. Given a connected graph G together with a mapping c which assigns to every
e ∈ E(G) a number c(e).

A minimal spanning tree of G = (V,E) is a spanning tree K = (V,L) such that
∑
e∈L c(e)

is the smallest one (among all spanning trees of G). �
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Let us mention that the number c(e) is often called the weight of e or the price of e. Also,
a graph G together with a mapping c:E(G) → R is called a weighted graph. We will denote
a weighted graph by (G, c).

Proposition. Any connected weighted graph (G, c) has a minimal spanning tree (which is
not necessary unique). �

Justification. We already know that any connected graph has a spanning tree. On the other
hand, there are only finitely many spanning trees (as n− 1 element subsets of a finite set of
edges). So there must be a spanning tree with the least possible weight. �

A minimal spanning tree does not need to be unique; indeed, take any connected graph G
with n vertices and n edges (n > 2), and define c(e) = 1 for every edge e. Then any spanning
tree of G is a minimal one, and there are at least two spanning trees. (Note that a graph
with n vertices and n edges cannot be a tree itself.)

7.3.3 An Algorithm for Finding a Minimal Spanning Tree. There are several
algorithms that find a minimal spanning tree for a given connected weighted graph (G, c). We
will show only one of them, the Kruskal’s algorithm. It is an examples of so called “greedy
algorithms”, in other words, algorithms that in each step choose the most “promising” edge.

Kruskal’s Algorithm for Finding a Minimal Spanning Tree.

Input: A connected graph G with the weight function c.
Output: A minimal spanning tree of G represented by its set of edges L.

1. Sort edges by their weights into non decreasing sequence, i.e.

c(e1) ≤ c(e2) ≤ . . . ≤ c(em).

Put L := ∅.

2. Go through edges in the given order. Insert ei into L if and only if it does not close a
circuit in L. If ei closes a circuit, skip ei and continue with ei+1.

3. If L has n − 1 edges (n is the number of vertices of G) end the algorithm, (V,L) is a
minimal spanning tree.

�

Remarks.
1. If the input is a disconnected graph then the above algorithm will end with |L| < |V |−1

edges. So we do not need to check beforehand whether a given graph is connected.

2. If several edges have the same weight then the ordering in the first step of the algorithm
“determines” the minimal spanning tree which the algorithm finds.

7.3.4 Example. Given an undirected graph G = (V,E) with V = {1, . . . , 7} by the
following matrix of weights (it means, at the position (i, j) we have either c({i, j}) if {i, j} ∈ E,
or ”−” if {i, j} 6∈ E). Find a minimal spanning tree in (G, c) using the Kruskal’s algorithm

− 6 9 − − − 9
6 − 2 1 3 − −
9 2 − 1 − − 15
− 1 1 − 10 13 3
− 3 − 10 − 10 1
− − − 13 10 − 15
9 − 15 3 1 15 −
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Solution. First we sort the edges (we state the weight of an edge in the brackets)

e1 = {2, 4}(1), e2 = {3, 4}(1), e3 = {5, 7}(1), e4 = {2, 3}(2), e5 = {2, 5}(3), e6 = {4, 7}(3),

e7 = {1, 2}(6), e8 = {1, 3}(9), e9 = {1, 7}(9), e10 = {4, 5}(10), e11 = {5, 6}(10), e12 = {4, 6}(13),

e13 = {3, 7}(15), e14 = {6, 7}(15).

Put L = ∅.

Now we will go through edges in the given order and include ei into L if and only if it
does not close a circuit.

1. e1 does not close a circuit, hence L := {{2, 4}}.
2. e2 does not close a circuit, hence L := {{2, 4}, {3, 4}}.
3. e3 does not close a circuit, hence L := {{2, 4}, {3, 4}, {5, 7}}.
4. e4 closes a circuit formed by e1, e2 and e4, hence L is the same as in 3.
5. e5 does not close a circuit, hence L := {{2, 4}, {3, 4}, {5, 7}, {2, 5}}.
6. e6 closes a circuit formed by e1, e5, e3 and e6, hence L is the same as in 5.
7. e7 does not close a circuit, hence L := {{2, 4}, {3, 4}, {5, 7}, {2, 5}, {1, 2}}.
8. e8 closes a circuit formed by e1, e2, e7 and e8, hence L is the same as in 7.
9. e9 closes a circuit formed by e3, e5, e7 and e9, hence L is the same as in 7.

10. e10 closes a circuit formed by e1, e5 and e10, hence L is the same as in 7.
11. e11 does not close a circuit, hence L := {{2, 4}, {3, 4}, {5, 7}, {2, 5}, {1, 2}, {5, 6}}.

Since L contains 7− 1 = 6 edges, therefore

L = {{2, 4}, {3, 4}, {5, 7}, {2, 5}, {1, 2}, {5, 6}}

is the set of edges of a minimal spanning tree of G. The weight (price) of L is

c(L) = 1 + 1 + 1 + 3 + 6 + 10 = 22.

7.4 Directed Trees

In this section we will introduce the notion of a rooted tree – a directed tree that contains a
vertex r from which any other vertex is reachable by a directed path.

7.4.1 A Root.

Definition. Given a directed graph G = (V,E, ε). We say that a vertex r ∈ V is a root of G
if there exists a directed path from r to any vertex of G. �

Note that in the definition of a root we can require existence of a directed walk instead of
a directed path. Let us also note that a directed graph can have more than one root; indeed,
in a cycle every vertex is a root. There are also directed graphs that do not have a root –
find an example.

7.4.2 A Rooted Tree. A directed graph with a root which, at the same time, is a tree
plays an important role in applications. For example, data structures based on rooted trees
are widely used in computer science.

Definition. A directed graph which is a tree and contains a root is called a rooted tree. �

Since every graph with a root is connected (the opposite does not hold), we could define
a rooted tree as a directed graph with a root that does not contain a circuit.
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7.4.3 Proposition. Every rooted tree contains precisely one root. �

Justification. Assume, in contrary, that a rooted tree has roots r1 and r2, r1 6= r2. Then
there exists a directed path P1 from r1 to r2 (indeed, r1 is a root), as well as a directed path
P2 from r2 to r1 (indeed, r2 is a root). Moreover, P1 together with P2 form a closed walk,
and every closed walk contains at least one circuit. And this contradicts the fact that a tree
does not contain a circuit. �

7.4.4 Remark. Given a rooted tree G = (V,E) with its root r. Then for every vertex
v ∈ V there is a unique directed path from r to v. Indeed, there is a directed path form r to
v by definition, and if there are two different directed paths then there is a closed undirected
walk that always contains a circuit, which contradicts the fact that G is without circuits.

7.4.5 Successor, Predecessor, Leaf. We can distinguish different ”types” of vertices in
a rooted tree.

Definition. Let G = (V,E) be a rooted tree. If (u, v) is an edge of G then u is called
predecessor of v, and v is called a successor of u. A vertex which does not have a successor
is called a leaf. �

Note that any leaf must have in-degree 1 and out-degree 0, so d(v) = 1 for any leaf. The
other implication does not hold. A root of a tree may also have degree 1; but in this case it
is the out-degree.

7.4.6 Levels, the Hight of a Rooted Tree. Vertices of a rooted tree can be divided
into so called levels according to the number of edges that the only directed path from the
root to the vertex has.

Definition. Given a rooted tree G = (V,E) with the root r. A vertex v ∈ V belongs to k-th
level if the unique directed path from r to v contains precisely k edges.

The hight of a directed tree is the biggest k such that there is a vertex in k-th level. �

Remarks. 1. The hight of a rooted tree is, in fact, the number of edges in the longest
directed path from r (to a leaf).

2. Notice that the root itself forms the 0-th level. Indeed, the only directed path from r
to r is the trivial path containing 0 edges.

7.4.7 A Subtree Determined by a Vertex.

Definition. Given a rooted tree G. A subtree generated by a vertex v is the subgraph of G
induced by the set of all vertices directly reachable from v. �

Remark. It is easy to see that a subtree generated by v is again a rooted tree, its root is v.

7.4.8 Binary Rooted Trees. Rooted trees where each vertex has at most two successors
play an important role in data structures.

Definition. A rooted tree is called a binary rooted tree if every vertex has at most two
successors.

In binary rooted trees we speak about the right successor and the left successor of a vertex
v. A right subtree, a left subtree, of v is the subtree generated by the right successor, or the
left successor of v, respectively. �

An example of a binary rooted tree is a data structure called a heap. It is a basis of the
heap sort, one of the fast sorting algorithms.

7.5 Acyclic Graphs

Trees are connected graphs without circuits. Acyclic graphs are directed graphs that do not
contain a cycle. Unlike trees, acyclic graphs do not need to be connected.
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7.5.1 Definition. A directed graph is called acyclic if it does not contain a cycle. �

We will give another characterization of acyclic graphs; acyclic graphs are those directed
graphs that admit a topological sort of vertices or/and a topological sort of edges.

7.5.2 Topological Sort of Vertices.

Definition. Given a directed graph G = (V,E, ε) with n vertices. A sequence of vertices

v1, v2, . . . , vn

is called a topological sort, also topological ordering, if the following holds: for every edge e
with initial vertex vi and terminal vertex vj it necessarily holds that i < j. �

Informally, edges go from a vertex with a smaller index to a vertex with a bigger index.

7.5.3 Topological Sort of Edges.

Definition. Given a directed graph G = (V,E, ε) with m edges. A sequence of edges

e1, e2, . . . , em

is called a topological sort , also topological ordering , if for every two edges ei, ej for which the
terminal vertex of ei is the initial vertex of ej it necessarily holds that i < j. �

7.5.4 Proposition. In every acyclic graph there exists at least one vertex with in-degree 0.
�

Justification. We proceed by contradiction. Assume that every vertex of a graph G has its
in-degree at least 1. Choose any vertex v, and denote it by v1. Since d−(v1) ≥ 1, there is
an edge e1 with TV (e1) = v1. Denote by v2 the vertex IV (e1). We have v2 6= v1; indeed,
otherwise e1 is a cycle. Since d−(v2) ≥ 1, there is an edge e2 with TV (e2) = v2. Denote v3
the initial vertex of e2. Then v3 is a new vertex; indeed, if v3 = v1 or v3 = v2 then G contains
a cycle. Again, d−(v3) ≥ 1, hence there is e3 such that TV (e3) = v3, and v4 = IV (e3) must
be a new vertex, otherwise G contains a cycle.

In such a way, we get a directed path vn, en−1, vn−1, en−2, . . . , v2, e1, v1 containing all
vertices of G. But d−(vn) ≥ 1, so there must be an edge en with TV (en) = vn. On the other
hand, IV (en) must be among vertices v1, . . . , vn (indeed, we do not have more vertices);
therefore G contains a cycle – a contradiction.

7.5.5 Theorem. Given a directed graph G. Then the following conditions are equivalent:

1. G is an acyclic graph;
2. G has a topological sort of vertices;
3. G has a topological sort of edges.

Justification. First, we show that 2 implies 3. Assume that v1, v2, . . . , vn is a topological sort
of vertices of G. We list at first all edges with the initial vertex v1, then all edges with the
initial vertex v2, etc. and finally all edges with the initial vertex vn. This sequence contains
all edges, indeed, every edge has its initial vertex, hence was listed. The fact that it is a
topological sort of edges of G is evident.

3 implies 2: Let e1, e2, . . . , em be a topological sort of edges of G. We go through edges in
this order and we list the initial vertex of the edge if it has not been listed before. In this way
we get a sequence v1, v2, . . . , vk of (not all) vertices of G. We add, in an arbitrary order, the
remaining vertices. The sequence v1, v2, . . . , vk, vk+1, . . . , vn is a topological sort of vertices
of G.

It is easy to notice that if a graph G is not acyclic then it does not have a topological
sort of vertices; indeed, a cycle cannot be topologically ordered. The fact that any acyclic
graph has a topological sort of vertices will be shown by an algorithm bellow that constructs
a topological sort of vertices.
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7.5.6 An Algorithm for Topological Sort. The algorithm is based on the proposition
7.5.4. First, we find all vertices with in-degree 0, since any such vertex v can be the first
vertex of a topological sort of vertices. Then we remove all edges e with the initial vertex v.
This will be done by decreasing the in-degree of TV (e) by 1. If the new in-degree of TV (e)
becomes 0, then TV (e) may be inserted in the topological sort of G. The set M will always
contain all vertices with the actual in-degree 0; i.e. vertices that can be listed in a topological
sort of G.

More precisely:

An Algorithm for Finding a Topological Sort of Vertices.

Input: An acyclic graph G.
Output: A topological sort of vertices of G.

1) For each vertex v we calculate its in-degree d−(v).

2) The set M contains all vertices with in-degree 0.
We put i := 1.

3) While M 6= ∅ we do

3a) We choose a vertex v from M and delete it from M .
We put vi := v, i := i+ 1.

3b) For every edge e with IV (e) = v we do
d−(TV (e)) := d−(TV (e))− 1. If d−(TV (e)) = 0 we insert TV (e) into the set M .

7.6 Strong Connectivity

7.6.1 Strongly Connected Graphs. We have defined connected directed graphs as
directed graphs where any two vertices are joined by an undirected path. Now, we introduce
the notion of strong connectivity where we require that any two vertices are joined by a
directed path.

Definition. Given a directed graph G. We say that G is strongly connected if for any two
vertices u, v there exists a directed path form u to v and a directed path from v to u. �

Remark. In the definition of a strongly connected graph we could, for any two vertices u
and v, require only the existence of a directed path from u to v. Indeed, we require a directed
path for every pair of vertices u, v, hence also for the pair v, u.

Notice that there always is a directed path from a vertex v to itself; indeed, it is the trivial
path.

7.6.2 The following proposition gives a condition which guarantees that a connected
directed graph is strongly connected.

Proposition. A connected directed graph is strongly connected if and only if every its edge
is contained in a cycle. �

Justification: Assume that G is strongly connected and take an edge e, say from u to v. Since
G is strongly connected, there exists a directed path P from v to u. If we add the edge e to
P we obtain a cycle. So we have shown that e is contained in a cycle.

Assume that a directed graph G is connected and every its edge belongs to some cycle.
We will show that for every u, v ∈ V there is a directed path from u to v.

Take two vertices u and v. We know that G is a connected graph, hence there is an
undirected path, say P , from u to v. If it is a directed path, we are done. Assume that in
P there is an edge e for which P goes from the terminal vertex y of e to the initial vertex x
of e. Denote by C a cycle in G containing e. Denote by Pe the cycle C without e. Then Pe
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is a directed path from x to y. Replace the edge e by Pe in P . We do the procedure above
for every edge e of P such that the terminal vertex of e precedes the initial vertex of e. In
such a way, we get a directed walk from u to v. Now, any directed walk from u to v contains
a directed path from u to v. We have shown that for every pair u and v there is a directed
path from u to v. Hence G is strongly connected. �

7.6.3 Components of Strong Connectivity. If a directed graph is not strongly con-
nected we can ask about maximal subsets for which the induced subgraph is strongly con-
nected. Such maximal sets of vertices are called strongly connected components.

Definition. Given a directed graph G. A set K of vertices is called a strongly connected
component , also a component of strong connectivity , if the subgraph induced by K is strongly
connected and it is maximal with this property (i.e. if we add to K any other vertex then
the induced subgraph is not strongly connected). �

Remark. Every vertex of a directed graph G is contained in exactly one strongly connected
component of G. The same does not hold for edges; if a graph is not strongly connected then
it can contain edges that belong to no strongly connected component. Indeed, edges between
two distinct components of strong connectivity.

7.6.4 Condensation of a Graph. The structure of strongly connected components of
a directed graph is captured by so called condensation of a directed graph. For strongly
connected graphs the condensation is a trivial graph which has one vertex and no edge.

Definition. Given a directed graph G = (V,E). The condensation of G is a directed graph
Ḡ = (V̄ , Ē) where V̄ is the set of all strongly connected components of G, and there is an
edge from a component K1 to a component K2 if and only if K1 6= K2 and there exist vertices
u ∈ K1, v ∈ K2 such that (u, v) is an edge of G. �

Remark. Note the the condensation of a directed graph is always an acyclic graph.

7.7 Euler graphs

In the section 7.1, we promised to give the theoretical background for the Euler’s solution of
the problem of seven bridges. Before that, let us recall that a trail in a graph is a walk where
every edge is used at most once.

7.7.1 Euler Trails, Euler Graphs.

Definition. Given a directed graph G. A directed (an undirected) trail in G is called an
Euler trail if it contains all edges.

Given an undirected graph G. An undirected trail in G is called an Euler trail if it contains
all edges. �

Note that Euler trail can be open or closed. It is easy to notice that if a graph has an
open Euler trail (a closed Euler trail) then it cannot have a closed (an open) one.

Definition. A directed (undirected) graph G is called an Euler graph if it contains a closed
directed (undirected, respectively) Euler trail. �

7.7.2 Applications. Let us give two applications of Euler trails.

• Drawing graphs with the smallest possible number of trails. Given a connected
undirected graph G. The task is to find the least possible number of edge disjunctive
trails such that every edge of G is contained in some trail. It is evident that if G contains
an Euler trail then every Euler trail is a solution. If in G there is no Euler trail then at
least two trails are necessary to cover every edge of G.
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Solutions of this problem could be used for example if we draw a graph using a computer
and we want to minimize the number of ”shifts of the drawing pen”.

• Chinese Postman Problem. A postman has to go along every street. How to do it
if he wants to minimize the number of kilometers he has to walk?

Let us construct a graph G = (V,E) where V is the set of all crossings, and E is the
set of streets which a postman must walk along. If in G, there exists an Euler closed
trail then it is an optimal solution; indeed, in this case the postman will go along each
street exactly once.

If there is no closed Euler trail, the postman will have to go twice along some streets. To
find a solution which will minimize the number of kilometers the postman must walk,
we need the information how long each street is. So for every edge e a positive number
c(e) is given – its Length. We add parallel edges to the graph G in such a way that the
resulting graph will contain a closed Euler trail and the sum of lengths of added edges
will be the smallest possible.

7.7.3 Proposition. Given a connected directed graph G with at least two vertices. Then
G contains a closed directed Euler trail if and only if for every vertex v of G the following
holds

d−(v) = d+(v).

(In other words, the number of edges that terminate in v is the same as the number of edges
that start in v.)

In a connected graph G there is a closed undirected Euler trail if and only if each vertex
has an even degree. �

Justification. We give the proof only for directed graphs; for undirected graphs the proof is
similar and easier.

It is evident that if a graph G has a closed directed Euler trail then it should satisfy the
condition that d+(v) = d−(v) for any vertex v. Indeed, if we ”go” along such a closed trail
we can match the edge along which we enter v with the edge along which we leave v. Hence
there must be the same number of edges ”going into v” as is the number of edged that ”go
out of v”.

The other implication follows from an algorithm which constructs a closed directed Euler
trail for a connected directed graph that satisfy the condition above. �

7.7.4 A Procedure for Finding a Closed Directed Euler Trail. Let G be a graph
satisfying the condition from 7.7.3 with at least 2 vertices. We choose an arbitrary vertex v
of G. Since G is connected and satisfies the condition above, for every vertex v there is at
least one edge that starts in v and at least one edge that terminates in v.

We randomly form a directed trail starting in v as follows: We put v1 := v, we go
along an edge e1 with the initial vertex v1. Denote by v2 the terminal vertex of e1. Since
d−(v2) = d+(v2), there is an edge e2 with the initial vertex v2 that has not been used yet,
we go along e2 into its terminal vertex v3. We continue in this manner till it is possible.
The only situation when the trail cannot be extended is when we return to v = v1 and every
edge with the initial vertex v has already been used. Hence, we have randomly constructed
a closed directed trail T .

If the trail T contains all edges of G we are ready; it is a closed directed Euler trail.

If the closed directed trail T does not contain all edges there exists an edge e which is
not contained in T . Denote by x the initial vertex of e. Since G is connected, there exists
an undirected path from v to x. This path must start with some edge incident to v and so
contained in T . Hence there must be a vertex w where the undirected path from v to x leaves
the trail T . Then it means that there is an edge incident to w that is not included in T .
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Since d−(w) = d+(w), there is also an edge e′ with the initial vertex w and not contained in
T . Let us randomly form a maximal closed directed trail T1 starting in w formed by edges
that are not contained in T . Due to the condition in the proposition, T1 must end in w. We
disconnect T in w and insert T1. So we get a new closed directed trail, say T ′. If T ′ contains
all edges, T ′ is a closed directed Euler trail. If not, there must be a vertex w′ on T ′ and some
edge incident to w′ which is not contained in T ′ and we repeat the procedure.

Since G has only a finite number of edges, we must end up with a closed directed Euler
trail. �

7.7.5 Open Euler Trials. Now, we state a characterization of connected graphs (directed
and undirected) that contain an open Euler trial.

Proposition. Given a connected directed graph G. Then G contains an open directed Euler
trail if and only if there exist two vertices u1, u2 such that

d−(u1) = d+(u1)− 1, d−(u2) = d+(u2) + 1,

and for every other vertex v of G it holds that d−(v) = d+(v).

In a connected graph G there exists an open undirected Euler trail if and only if there are
two vertices with odd degree and all other vertices have even degree. �

Justification. Again, we prove the proposition for directed Euler trials only. The proof for
undirected Euler trials is analogous.

It is easy to see that if there is an open Euler trail in G then G satisfies the condition
from the proposition; indeed, u1 is the vertex where the Euler trail starts, and u2 where it
terminates.

To construct an open Euler trail we proceed similarly as in 7.7.4. We start in u1 and
randomly construct a maximal trail T . Because of the conditions, T must terminate in u2.
If T contains all edges, it is an open Euler trail. If not, there must be a vertex w, w 6= u1,
w 6= u2, where no all edges incident with w were used. We insert into T a maximal trail from
w to w containing edges not from T . After a finite number of inserting closed trails, we get
an open Euler trail. �

7.8 Hamiltonian graphs

Recall that a path is a trail where vertices are not repeated, only in a closed path (a circuit
if undirected, or a cycle if directed) initial and terminal vertices are the same.

7.8.1 Hamiltonian paths, circuits, and cycles. Another type of important walks in a
graph are paths (closed or open) that contain all vertices. Such paths/circuits/cycles will be
called Hamiltonian paths/circuits/cycles. More precisely:

Definition. Given a graph G. An open path is called a Hamiltonian path if it contains all
vertices of G (and hence every vertex precisely once).

Similarly, a Hamiltonian circuit is a circuit that contains every vertex of the graph; a
Hamiltonian cycle is a cycle that contains every vertex of the graph. �

7.8.2 Problems concerning Hamiltonian paths can be divided into two groups — existen-
tial and optimization problems. In existential problems we want to find out whether a given
graph contains a Hamiltonian path (circuit, cycle, respectively). In optimization problems
every edges of a graph has its weight (or length) which is an integer. In this case, the prob-
lem is to find a Hamiltonian path (circuit, cycle, respectively) with optimal sum of weights
(lengths) of its edges.

Unlike problems where we have to find Euler trails, the problems concerning Hamiltonian
paths, circuits, and/or cycles are rather difficult. A fast algorithm is not known that would
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solve either existential or optimization problems concerning Hamiltonian paths. Despite
of this fact (and maybe due to this fact), the problems of Hamiltonian paths have lot of
applications. In the next paragraph, we state some of them.

7.8.3 Applications. Let us give two applications of the problem of Hamiltonian paths.

• Traveling Salesman Problem. The original problem is the following: Given n towns,
we denote them 1, 2, . . . , n. For every pair of distinct towns i, j their distance d(i, j) is
given. The task is to find a succession of towns in which a salesman can visit the towns
so that the total distance traveled is the smallest possible one.

The problem can be reformulated as a graph problem: Given a complete graph G with
the set of vertices V = {1, 2, . . . , n}, i.e. for every two distinct vertices i 6= j there is an
edge {i, j} in G. For every {i, j}, we define its length to be d(i, j). The goal is to find
a Hamiltonian circuit C for which ∑

e∈C
d(e)

is the smallest possible.

• Planning of processes. Assume the following situation: we have a device on which
processes p1, p2, . . . , pn are carried out. Moreover, there are pairs of processes pi, pj
such that if pi should follow pj it is necessary to clean, convert, etc. the device. So in
this case, it is necessary to pay some price in order to realize pj just after finishing pi.

The task is to find a sequence of processes such that the sum of prices for its realization
is zero. If such sequence does not exist, the problem is to find a sequence where the
sum of prices is as small as possible.

This second case leads to the Traveling Salesman Problem.

7.8.4 There are easy necessary conditions for a graph to have a Hamiltonian path (circuit,
cycle, respectively). Let us state some of them.

• If in a graph G there is a Hamiltonian path then G must be connected. (Indeed, a
disconnected graph cannot have a Hamiltonian path.)

• If in a graph G there is a Hamiltonian circuit then every vertex of G must have degree
at least 2.

• If in a graph G there is a Hamiltonian cycle then G must be strongly connected.

A nontrivial necessary and sufficient condition for finding whether a given graph has a
Hamiltonian path (circuit, circle, respectively) is not known.
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Chapter 8

Combinatorics

In this lecture we will focus on so called enumerative combinatorics, it means a way how to
count the number of certain objects. At first, we introduce two main principles that will help
us to solve more complicated tasks.

8.1 Multiplication and Addition Principles

8.1.1 Multiplication Principle. Assume that a certain activity can be divided into k
independent consecutive steps. If step 1 can be done in n1 ways, step 2 can be done in n2
ways, etc., and step k can be done in nk ways, then the number of distinct ways the activity
can be done is

n1 · n2 · . . . · nk.

�

8.1.2 Example. How many distinct binary words of length n there are?

Solution. A binary word of length n is any sequence a1 a2 . . . an where for all i we have
ai ∈ {0, 1}. Such n-tuples can be formed as follow: we choose a1, then a2, etc, an. For each
ai there are 2 possibilities, indeed, either 0 or 1. So there are 2 ·2 · . . . ·2 = 2n different binary
words. �

8.1.3 Addition Principle. Assume that we have n sets A1, A2, . . . , An pairwise disjoint
(which means that for i 6= j it is Ai ∩ Aj = ∅). Further, assume that each set Ai has ki
elements. The number of elements that can be chosen from A1 or A2 or . . . or An is

k1 + k2 + . . .+ kn.

Notice that it is the same as the number of elements the set A1 ∪A2 ∪ . . . ∪An has. �

8.1.4 Example. How many ways can we select two different kinds chocolate bars if we
have 4 different dark bars, 5 different milk bars, and 3 different white bars?

Solution. Using the multiplication principle, we know that there are 4 · 5 different choices of
one dark and one milk bar, 4 · 3 different choices of one dark and one white bar, and 5 · 3
different choices of one milk and one white bar. These choices are pairwise disjoint, so the
number of different choices is

20 + 12 + 15 = 47.

�
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8.2 Permutations, Combinations, Variations

8.2.1 Permutations. To permute objects means to change order of the given objects.

Definition. Given n distinct elements a1, a2, . . . , an. A permutation of a1, a2, . . . , an is any
ordering of elements a1, a2, . . . , an. �

Recall that a permutation of a1, a2, . . . , an can be viewed as a bijective (i.e. one-to-one
and onto) mapping from {1, 2, . . . , n} to {a1, a2, . . . , an}.

Proposition. The number of different permutations of elements a1, a2, . . . , an equals to
n · (n− 1) · . . . · 2 · 1. �

Justification. We use the multiplication principle. For the first element we have n possibilities,
indeed, any element a1, a2, . . . , an. For the second element we can now choose one of n − 1
different elements (not to the one which was chosen as the first one). For the third element
we have n− 2 possibilities, etc. Hence, all together there are

n · (n− 1) · (n− 2) · . . . · 2 · 1

distinct permutations. �

8.2.2 Factorial. For n ≥ 1 the number

n · (n− 1) · . . . · 2 · 1

is called n factorial and denoted by n!.

For n = 0 we define 0! = 1.

8.2.3 Example. In a shop there are 6 types of chocolate. How many different ways these
6 types could be exhibited in a row?

Solution. Any permutation of t1, . . . , tn (where ti represents the i-th type) describes one such
exhibition. Hence, there are

6! = 6 · 5 · . . . · 2 · 1 = 720

different ways.

8.2.4 Example. How many permutations of letters A,B,C,D,E, F contains CDE as a
substring?

Solution. Since the letters CDE must be consecutive and in this order, we can assume that
CDE is a new symbol, say Y . Then the question is: how many permutations of A,B, F, Y .
There are

4 · 3 · 2 · 1 = 24

such permutations. �

8.2.5 Variations.

Definition. A k-variation of n distinct elements a1, a2, . . . , an is a sequence of k (distinct)
elements of the set {a1, a2, . . . , an}. The number of distinct k-variations is denoted by P (n, k).

�

Remark. k-variations are also called k-permutations.

Proposition. The number of k-variations of a set of n distinct elements (k ≤ n), is

P (n, k) = n · (n− 1) · . . . · (n− k + 1) =
n!

(n− k)!
.

�
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Justification. The proof is similar to the proof of the number of permutations. Indeed, for
the first element we have n distinct possibilities, for the second element we have n−1 distinct
possibilities, etc., . . . , for the k-th element we have n− k + 1 distinct possibilities. Now, the
multiplication principle finishes the argument. �

Example. A password for a credit card contains four distinct digits.

• How many passwords can be formed?
• How many passwords that do not start with 0 can be formed?

Solution.

1) These are 4-variations of ten digits 0, 1, . . . , 9. Hence, the number of distinct passwords
is

10 · 9 · 8 · 7 = 5040.

2) By the multiplication principle, the number of passwords is

9 · (9 · 8 · 7) = 4536.

Indeed, for the first digit we have nine possibilities (digits 1, . . . , 9), and this digit is followed
by 3-variation of the remaining digits and 0.

8.2.6 Combinations.

Definition. Given a finite set A = {a1, a2, . . . , an} of n distinct elements. An k-combination
of A is an unordered selection of k elements of A (in other words, an k element subset of A).
The number of distinct k-combinations of n element set is denoted by C(n, k). �

8.2.7 Proposition. The number of distinct k-combinations of n element set equals

C(n, k) =

(
n

k

)
=

n!

(n− k)! k!
.

�
Justification. There are P (n, k) distinct k-variations of n distinct elements. k-variations that
differ only by ordering correspond to the same k-combination. Since there are k! permutations
of a k element set, we get

C(n, k) =
P (n, k)

k!
=
n · . . . · (n− k + 1)

k!
=

n!

(n− k)! k!
.

�

8.2.8 Binomial Coefficients. Let k ≤ n be two natural numbers. Then the number(
n

k

)
=

n!

k! (n− k)!

is called a binomial coefficient (or a combinatorial number).

8.2.9 Proposition.

1) For all n ∈ N we have
(
n
0

)
= 1

2) For all n ∈ N we have
(
n
1

)
= n.

3) For all k ≤ n, k, n ∈ N, we have (
n

k

)
=

(
n

n− k

)
.
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4) For all k ≤ n, k, n ∈ N, it holds that(
n

k − 1

)
+

(
n

k

)
=

(
n+ 1

k

)
.

�

Justification. Properties 1), 2), and 3) are easy consequences of the definition of binomial
coefficients.

We will show the property 4): We have(
n

k − 1

)
+

(
n

k

)
=

n!

(n− k + 1)! (k − 1)!
+

n!

(n− k)! k!
=

n!

(n− k)! (k − 1)!

(
1

n− k + 1
+

1

k

)
=

n!

(n− k)! (k − 1)!

(
n+ 1

(n− k + 1) k

)
=

(n+ 1)!

(n+ 1− k)! k!
=

(
n+ 1

k

)
.

�
Remark. The last property from 8.2.9 is a basis of so called Pascal triangle.

8.2.10 Variations and Combinations with Repetition. If we allow repetitions then
the number of k-variations of n elements is

nk.

�
Justification. Indeed, every chosen element can be one of the n elements. Since there are k
elements to be chosen, the multiplication principle gives the total number nk. �

If we choose k elements of A where repetition is allowed then the number of combinations
is (

n+ k − 1

k

)
=

(n+ k − 1)!

k! (n− 1)!
.

�
Idea of a justification. Let us show the idea on an example. Assume that we should choose
strings of length 4 consisting of letters from the set {A,B,C,D,X, Y }, repetitions are allowed,
but the order letters is not important. Hence, AAAX, CXXY are examples of such strings,
and strings AAAX, AXAA, AAXA are considered to be the same. How many distinct strings
can be formed?

Any such string can be represented as an 9-tuple consisting of five symbols | and four
symbols ·. The symbol | shows the change of a letter (so we have 6− 1 = 5 of them, indeed,
change from A to B, from B to C, from C to D, from D to X, and from X to Y ). The symbol
· stands for a letter at the respective positions in the list {A,B,C,D,X, Y }. For instance

AAAX is represented by · · · | | | | · |

Indeed, there are three A’s, no B, no C, no D, one X, and no Y . Similarly,

CXXY is represented by | | · | | · · | ·

Indeed, there is no A, no B, one C, two X’s, and one Y .

Hence, such a string is represented by choosing four · out of nine positions where a · can
be placed (or equivalently, by choosing five | out of nine positions where | can be placed).
Therefore, the number of distinct string is(

4 + 6− 1

4

)
=

(
4 + 6− 1

6− 1

)
.

Marie Demlova: Discrete Mathematics and Graphs September 11, 2024, 12:28



8.2. Permutations, Combinations, Variations [240911-1228 ] 73

Generally, we choose subsets of k elements out of a set of k+ n− 1 distinct places, which
equals to (

n+ k − 1

k

)
.

8.2.11 Example. In a shop 6 types of chocolate bars are sold. Three friends come to a
shop and each of them buys one chocolate bar. How many ways could that be done if

1) each friend chooses different type of chocolate bars;
2) they may choose the same type of chocolate bars?

Solution.

1) Call the friends A, B, and C. The number of different choices is 6!
3! = 120, since we

choose triples (where the order is important) out of 6 different types and there is no repetition.

2) If repetitions are allowed then there are 6 · 6 · 6 = 216 possibilities.

8.2.12 Binomial Theorem. Let us recall the binomial theorem.

Theorem. Let n be a natural number. Then for every real numbers x, y it holds that

(x+ y)n =

n∑
k=0

(
n

k

)
xn−k yk.

�

8.2.13 Principle of Inclusion and Exclusion. The addition principle deals with the
number of elements which a union of pairwise disjoint sets has. But often we need to know
the number of elements a union of two sets A and B has even when A and B are not disjoint.

Theorem. For any sets A, B, C we have

|A ∪B| = |A|+ |B| − |A ∩B|.

|A ∪B ∪ C| = |A|+ |B|+ |C| − |A ∩B| − |A ∩ C| − |B ∩ C|+ |A ∩B ∩ C|.

�
Justification. The formula for the number of elements that A ∪B has is evident. Indeed, we
sum the number of elements of the both sets and subtract the number of elements of their
intersection, since they were calculated twice.

The justification for a union of three sets is similar, only tedious and we omit it. �

8.2.14 Proposition. Let A and B be two sets, |A| = n, |B| = k. Then there are kn

distinct mappings from A to B. �

Justification. The proposition above is an easy consequence of the multiplication principle.
Denote A = {a1, . . . , an}, B = {b1, . . . , bk}. �

8.2.15 Dirichlet’s, Pigeonhole Principle. This principle is an easy observation but
applicable in many counting problems.

Theorem (Pigeonhole principle). Let A and B be two sets, |A| = n, |B| = k. If n > k
then there does not exist a one-to-one mapping from A to B. �

Justification. We will use the multiplication principle. Denote A = {a1, a2, . . . , an}. Let us
construct an arbitrary mapping f :A → B which could be one-to-one. For f(a1) we have k
different choices, for f(a2) only k − 1 (indeed, we cannot use f(a1)), for f(a3) only k − 2
choices, etc, for f(ak) only a single element of B. Since n > k, there is ak+1 ∈ A and f(ak+1)
must be the same as some of f(a1), f(a2), . . . , f(ak). Hence, f is not one-to-one. �
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8.3 Asymptotic Growth of Functions

8.3.1 Symbol O. Let g(n) be a nonnegative function. We say that a nonnegative function
f(n) is O(g(n)) if there exists a positive constant c and a natural number n0 such that

f(n) ≤ c g(n) for every n ≥ n0.

O(g(n)) can be considered as a class of nonnegative function f(n):

O(g(n)) = {f(n) | ∃c > 0, n0 such that f(n) ≤ c g(n) ∀n ≥ n0}.

8.3.2 Symbol Ω. Let g(n) be a nonnegative function. We say that a nonnegative function
f(n) is Ω(g(n)) if there exists a positive constant c and a natural number n0 such that

f(n) ≥ c g(n) for every n ≥ n0.

Ω(g(n)) can be considered as a class of nonnegative functions f(n):

Ω(g(n)) = {f(n) | ∃c > 0, n0 such that f(n) ≥ c g(n) ∀n ≥ n0}.

8.3.3 Remark. We have f(n) is Ω(g(n)) if and only if g(n) is O(f(n)).

8.3.4 Symbol Θ. Let g(n) be a nonnegative function. We say that a nonnegative function
f(n) is Θ(g(n)) if there exist positive constants c1, c2 and a natural number n0 such that

c1 g(n) ≤ f(n) ≤ c2 g(n) for every n ≥ n0.

Θ(g(n)) can be considered as a class of nonnegative functions f(n):

Θ(g(n)) = {f(n) | ∃c1, c2 > 0, n0 such that c1 g(n) ≤ f(n) ≤ c2 g(n) ∀n ≥ n0}.

8.3.5 Remark. f(n) is Θ(g(n)) if and only if f(n) is O(g(n)) and Ω(g(n)).

8.3.6 Notation. Since the symbols O,Ω,Θ represent sets of functions, we write f(n) ∈
O(g(n)). Some authors prefer the notation f(n) = O(g(n)). If the later notation is used it is
necessary to take in mind that the equality sigh used there does not have all the properties
as a classical equality has. Similarly for other symbols.

8.3.7 Proposition. f(n) ∈ Θ(g(n)) if and only if g(n) ∈ Θ(f(n)).

8.3.8 Examples.

1. For every a > 1 and b > 1 we have

loga(n) ∈ Θ(logb(n)).

2. The logarithm with base 2 is usually denoted by lg, i.e. lg(n) = log2(n). It holds that

lg n! ∈ Θ(n lg n).

The second part of the above proposition follows from the following theorem.

8.3.9 Theorem (Gauss). For every n ≥ 1 it holds that

n
n
2 ≤ n! ≤

(
n+ 1

2

)n
.
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