
Discrete Mathematics and Graphs
This is a script for the lecture Discrete Mathematics and Graphs given in the

winter semester 2023/24 at FEE CTU, Prague. It is not a textbook, all explanations
are made very briefly. The purpose of this text is solely to list the stuff we made on
the lecture. Therefore, I recommend either attending the lectures or reading some
better written textbook. See references below.

References
[DP] N. Donaldson, A. Pantano: An Introduction to Abstract Mathematics Lecture

notes available online
[De] M. Demlová: Discrete Mathematics and Graphs. Lecture notes for an earlier

version of this course.
[C] L. N. Childs: A Concrete Introduction to Higher Algebra
[J] R. Johnsonbaugh: Discrete Mathematics

1 Logic and sets
1.1 Propositional logic
. . . is about propositions and how to combine them using logical connectives.

1.1.1 Informal definition. A proposition is a sentence, which is either true or
false. That is, every proposition 𝑃 has assigned its truth value, which is either true
or false denoted T and F or 1 and 0, respectively.

1.1.2 Definition. Let 𝑃 and 𝑄 be propositions. We define propositions

• “𝑃 and 𝑄” denoted 𝑃 ∧ 𝑄,
• “𝑃 or 𝑄” denoted 𝑃 ∨ 𝑄,
• “if 𝑃, then 𝑄” denoted 𝑃 ⇒ 𝑄,
• “𝑃 if and only if 𝑄” denoted 𝑃 ⇔ 𝑄,

Their truth values are determined according to the following table
𝑃 𝑄 𝑃 ∧ 𝑄 𝑃 ∨ 𝑄 𝑃 ⇒ 𝑄 𝑃 ⇔ 𝑄
F F F F T T
F T F T T F
T F F T F F
T T T T T T

For a proposition 𝑃, we also define the proposition “not 𝑃” denoted by ¬𝑃,
whose truth value is the opposite of the truth value of 𝑃.

1

The connectives ⇒ and ⇔ represent logical consequence and equivalence, which
is important for reasoning. In natural languages, they are translated in a several
different ways.

The sentence “𝑃 ⇒ 𝑄” can be read as

• If 𝑃, then 𝑄.
• 𝑄 if 𝑃.
• 𝑃 implies 𝑄.
• 𝑃 only if 𝑄.
• 𝑃 is sufficient for 𝑄.
• 𝑄 is necessary for 𝑃.

The sentence “𝑃 ⇔ 𝑄” can be read as

• 𝑃 if and only if 𝑄. (The “if and only if” is often shortened as “iff”.)
• 𝑃 is (logically) equivalent to 𝑄.
• 𝑃 is necessary and sufficient for 𝑄.

1.1.3 Remark. The implication ⇒ means logical, not causal consequence. For in-
stance, take:

𝑃 = I’ll go for a walk tomorrow.
𝑄 = There is no rain tomorrow.

Then 𝑃 ⇒ 𝑄 seems like a nonsense if you translate it by “if 𝑃, then 𝑄”. But it is
only because we intuitively assume speaking about a causal consequence. Logically
it is perfectly fine as becomes obvious if you phrase the sentence as “Tomorrow, I’ll
go for a walk only if there is no rain.” Makes perfect sense, right? And if I say that
and you see me tomorrow walking around, you can make a logical conclusion that
there must be no rain, because otherwise I wouldn’t go for a walk.

All this language we built is based on the informal definition of a proposition in a
beginning. It is not easy to make a formal definition of this notion since a proposition
is not a mathematical object. It is a sentence about mathematical objects. But notice
that all the stuff we were talking about afterwards do not really depend on what a
proposition really is. The only important thing is that propositions are either true
or false. So, if we wanted to formalize the logical connectives, we can do a slight
workaround using logical variables.

1.1.4 Definition. Let 𝐴 be a non-empty set whose elements will be called logical
variables. We define propositional formulas as follows:

• Any logical variable is a propositional formula.
• If 𝛼 and 𝛽 are propositional formulas, then (¬𝛼), (𝛼 ∧ 𝛽), (𝛼 ∨ 𝛽), (𝛼 ⇒ 𝛽),

(𝛼 ⇔ 𝛽) are propositional formulas as well.

A truth valuation is a function 𝑢: 𝐴 → {0, 1}. We extend this function to all
propositional formulas based on the truth tables above.

1.1.5 Definition. A propositional formula 𝛼 is said to be a tautology if 𝑢(𝛼) = 1
for every truth valuation 𝑢. We denote it by |= 𝛼. In contrast, if 𝑢(𝛼) = 0 for every

2

𝑢, then 𝛼 is called a contradiction. Finally, 𝛼 is called satisfiable if there exists a
truth valuation 𝑢 such that 𝑢(𝛼) = 1.

1.1.6 Example. Consider a pair of logical variables 𝑎, 𝑏. Then 𝑎 ∧ 𝑏 is satisfiable.
Indeed, it is true if both 𝑎 and 𝑏 are true. But it is not a tautology (it can also
happen that it is not true, for instance, if 𝑎 is false).

The formula 𝑎 ∨ (¬𝑎) is a tautology since it is true regardless of whether 𝑎 is
true or not. On the other hand 𝑎 ∧ (¬𝑎) is a contradiction as it is always false.

1.1.7 Definition. Propositional formulas 𝛼 and 𝛽 are tautologically equivalent
if 𝛼 ⇔ 𝛽 is a tautology. We denote it by 𝛼 |=| 𝛽.

1.1.8 Remark. Equivalently we may say that 𝛼 |=| 𝛽 if 𝑢(𝛼) = 𝑢(𝛽) for any truth
valuation 𝑢. That is, writing down the truth table, both 𝛼 and 𝛽 have the same
entries in every row.

1.1.9 Theorem (De Morgan’s laws). For any propositional formulas 𝛼 and 𝛽,
we have

¬(𝛼 ∧ 𝛽) |=| ¬𝛼 ∨ ¬𝛽,
¬(𝛼 ∨ 𝛽) |=| ¬𝛼 ∧ ¬𝛽.

Proof. We prove the first law, the second is by exercise. The proof is done by writing
the truth table.

𝛼 𝛽 ¬(𝛼 ∧ 𝛽) ¬𝛼 ∨ ¬𝛽
0 0 1 1
0 1 1 1
1 0 1 1
1 1 0 0 □

1.1.10 Definition. A propositional formula 𝛽 is said to be a tautological conse-
quence of a propositional formula 𝛼, denoted by 𝛼 |= 𝛽, if 𝛼 ⇒ 𝛽 is a tautology.

As an exercise, prove the following statements.

1.1.11 Theorem. ((𝛼 ⇒ 𝛽) ∧ (𝛽 ⇒ 𝛾)) |= (𝛼 ⇒ 𝛾) for any prop. formulas 𝛼, 𝛽, 𝛾.

1.1.12 Theorem. (𝛼 ⇒ 𝛽) |=| (¬𝛽 ⇒ 𝛼) for any prop. formulas 𝛼, 𝛽.

1.1.13 Theorem. ¬(𝛼 ⇒ 𝛽) |=| (𝛼 ∧ ¬𝛽) for any prop. formulas 𝛼, 𝛽.

1.2 Theorems and proving methods
1.2.1 Informal definition. A theorem is a true statement of the form 𝑃 ⇒ 𝑄.
Here, the proposition 𝑃 is called the hypothesis and 𝑄 is called the conclusion.
The truth of a theorem should be justified by a proof.

We usually distinguish three kinds of proves. The idea behind the three proving
strategies is based on the tautological consequences 1.1.11–1.1.13. We can prove
𝑃 ⇒ 𝑄 by:

Direct proof: Assume 𝑃 and deduce 𝑄 by a chain of implications.
Proof by contrapositive: Assume ¬𝑄 and deduce ¬𝑃.

3

Proof by contradiction: Assume 𝑃 and ¬𝑄 and deduce a false statement.
Let us illustrate this on a simple example:

1.2.2 Theorem. Suppose 𝑥 is an integer. If 𝑥 + 5 is even, then 𝑥 is odd.

Let me first remind that in order to manipulate with mathematical statements,
it is essential to have clear definitions. So, let me first recall the things we need here:

1.2.3 Definition. A number 𝑛 ∈ ℤ is said to be even if there is a number 𝑘 ∈ ℤ
such that 𝑛 = 2𝑘. It is said to be odd if there is a number 𝑘 ∈ ℤ such that 𝑛 = 2𝑘+1.

1.2.4 Fact. Every number 𝑛 ∈ ℤ is either even or odd.
(The fact above is itself a theorem. As an exercise, you can think about, how

would you prove it. We will actually formulate a more general version of it later.)

Direct proof of Thm. 1.2.2. The hypothesis means that 𝑥 + 5 = 2𝑘 for some 𝑘 ∈ ℤ.
This implies that 𝑥 = 2𝑘 − 5. This implies that 𝑥 = 2(𝑘 − 3) + 1. This by definition
means that 𝑥 is odd. □

Proof by contrapositiove of Thm. 1.2.2. We are supposed to assume that 𝑥 is not
odd. From Fact 1.2.4 it follows that 𝑥 is even, that is, 𝑥 = 2𝑘 for some 𝑘 ∈ ℤ. Hence
𝑥 + 5 = 2𝑘 + 5 = 2(𝑘 + 2) + 1, which means that 𝑥 + 5 is odd, so by Fact 1.2.4 𝑥 + 5
is not even, which is what we needed to show. □

Proof by contradiction of Thm. 1.2.2. We are supposed to assume that 𝑥 + 5
is even, but 𝑥 is not odd. The first assumption means that 𝑥 + 5 = 2𝑘 for some
𝑘 ∈ ℤ, while the second means that 𝑥 is even, so 𝑥 = 2𝑙 for some 𝑙 ∈ ℤ (we already
used the letter 𝑘, so we need to use another one this time). Substituting the second
assumption to the first, we have that 2𝑘 = 2𝑙 + 5 = 2(𝑙 + 2) + 1. On the left hand
side, there is an even number, while on the right hand side, there is an odd number.
The equality means that a single number is both even and odd, which contradicts
the Fact 1.2.4. □

This time the direct proof was easy and the other method made it just more
complicated. But in general, it can be the other way around.

1.3 Sets

We present the naïve set theory based on the following informal definition of what
a set is. This is connected with certain paradoxes (see e.g. Russel’s paradox). There
is a way to axiomatize set theory formally. That would, however, be unnecessarily
complicated for our purposes.

1.3.1 Informal definition. A set is a collection of objects. That is, a set 𝐴, it is
defined by specifying its elements. We write

• 𝑥 ∈ 𝐴 to denote that 𝑥 is an element of 𝐴,
• 𝑥 ∉ 𝐴 to denote that 𝑥 is not an element of 𝐴.

4

We say that sets 𝐴 and 𝐵 are equal, denoted by 𝐴 = 𝐵, if

𝑥 ∈ 𝐴 ⇔ 𝑥 ∈ 𝐵 for every 𝑥.

1.3.2 Notation. In order to specify a set, we use braces {, }. If the set is finite, we
can specify its elements directly like

𝑆 = {1, 3, 𝑎, {2}, {}}.

If it is clear, what we mean, we may describe even infinite sets like that:

ℕ = {1, 2, 3, 4, 5, . . .}.

Often, we will use the notation {𝑥 ∣ 𝑃 (𝑥)}, where 𝑃(𝑥) is some propositional function
(a proposition that depends on a variable 𝑥. This means the set of all 𝑥 such that
𝑃(𝑥) is true. For instance, the set of all positive even numbers can be described in
a several different ways as follows:

𝐸 = {2, 4, 6, 8, 10, . . .}
= {𝑥 ∣ 𝑥 ∈ ℕ, 𝑥 is even}
= {𝑥 ∈ ℕ ∣ 𝑥 is even}
= {𝑥 ∈ ℕ ∣ 𝑥 = 2𝑘 for some 𝑘 ∈ ℕ}
= {2𝑘 ∣ 𝑘 ∈ ℕ}.

1.3.3 Definition. The set containing no elements is called the empty set and we
denote it by ∅ = {}. A set is called finite if it has finitely many elements, infinite
if it has infinitely many elements. If 𝑆 is a finite set, we denote by |𝑆| or #𝑆 the
number of its elements.

1.3.4 Notation. We define the following sets

• ℕ = {1, 2, 3, 4, 5, . . .} the set of all natural numbers,
• ℕ0 = {0, 1, 2, 3, 4, 5, . . .} the set of all natural numbers including zero,
• ℤ = {. . . , −3, −2, −1, 0, 1, 2, 3, . . .} the set of all integers,
• ℚ = {𝑚/𝑛 ∣ 𝑚 ∈ ℤ, 𝑛 ∈ ℕ} the set of all rational numbers,
• ℝ the set of all real numbers,
• ℂ the set of all complex numbers.

1.3.5 Definition. Let 𝐴, 𝐵 be sets. We say that 𝐴 is a subset of 𝐵, denoted by
𝐴 ⊆ 𝐵 if 𝑥 ∈ 𝐵 for every 𝑥 ∈ 𝐴.

1.3.6 Definition. Consider two sets 𝐴, 𝐵. We define a new set 𝐴 ∩ 𝐵 called the
intersection of 𝐴 and 𝐵 by

𝐴 ∩ 𝐵 = {𝑥 ∣ 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵}

5

1.3.7 Definition. The union of two sets 𝐴 and 𝐵 is defined to be the following set

𝐴 ∪ 𝐵 = {𝑥 ∣ 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵}.

1.3.8 Definition. The complement of a set 𝐴 relative to set 𝐵 is defined to be
the following set

𝐵 ∖ 𝐴 = {𝑥 ∈ 𝐵 ∣ 𝑥 ∉ 𝐴}.

1.3.9 Remark. Sometimes we consider all sets to be a subset of some universe 𝑈.
Then we define the complement 𝐴∁ (or ̄𝐴) of 𝐴 as a complement relative to 𝑈, i.e.
𝐴∁ = 𝑈 ∖ 𝐴.

1.4 Quantifiers
Again, we will be slightly informal here. For a more formal introduction, see [[De]].

A propositional function is a proposition depending on some variable.
We introduce the symbol ∀ meaning for all and call it the universal quantifier

and the symbol ∃ meaning there exists called the existential quantifier.
If we equip a propositional function 𝑃(𝑥) with a quantifier ∀ or ∃, we get a

quantified proposition ∀𝑥 𝑃(𝑥) or ∃𝑥 𝑃(𝑥).

1.4.1 Example. We can define the following propositional functions:

𝑃(𝑥) = 𝑥 is an even number,
𝑄(𝑥) = 𝑥 has a brain

Now, we can form the following quantified propositions:

∀𝑥 𝑃(𝑥) Every number is even.
∃𝑥 ¬𝑄(𝑥) Somebody has no brain.

Actually, there is something missing in the formulas on the left. We are silently
assuming some domain for 𝑥. The formula ∀𝑥 𝑃(𝑥) actually says that every 𝑥 is
even. But this makes sense only if 𝑥 is an integer. If it is a real number or a set or a
person, then the notion even is not defined. So, if we really want to say that every
integer is even or some person has no brain, we should write

∀𝑥 𝑥 ∈ ℤ ⇒ 𝑃(𝑥)
∃𝑥 𝑥 is a human ∧ ¬𝑄(𝑥)

which is usually shortened as

(∀𝑥 ∈ ℤ)(𝑃(𝑥))
(∃𝑥 a human)(¬𝑄(𝑥))

An important question: How to negate quantified statements?

6

1.4.2 Fact. For any propositional function 𝑃(𝑥), we have

¬(∀𝑥 𝑃(𝑥)) is equivalent to ∃𝑥 ¬𝑃(𝑥),
¬(∃𝑥 𝑃(𝑥)) is equivalent to ∀𝑥 ¬𝑃(𝑥).

1.4.3 Exercise. Show that a similar rule holds also if you use domains for your
quantifiers. That is, for any set 𝑆, we have:

¬((∀𝑥 ∈ 𝑆)(𝑃 (𝑥))) is equivalent to (∃𝑥 ∈ 𝑆)(¬𝑃(𝑥)),
¬((∃𝑥 ∈ 𝑆)(𝑃 (𝑥))) is equivalent to (∀𝑥 ∈ 𝑆)(¬𝑃(𝑥)).

Finally, let us have a look on how to prove quantified statements.

1.4.4 Example. Consider the statement

𝑃 : (∀𝑥 ∈ ℝ)(∃𝑦 ∈ ℝ)(𝑥𝑦 = 3).

Do you think it is true? A good idea might be trying to formulate its negation

¬𝑃 : (∃𝑥 ∈ ℝ)(∀𝑦 ∈ ℝ)(𝑥𝑦 ≠ 3).

Now ¬𝑃 is easy to prove. Just take 𝑥 = 0 and you see that for every 𝑦 ∈ ℝ, we have
𝑥𝑦 = 0 ≠ 3. Consequently, the original statement 𝑃 was false. What we did was
disproving 𝑃 by constructing a counterexample.

In general, proving or disproving a quantified statement requires the following

Prove Disprove

∀𝑥 𝑃(𝑥) Needs abstract
argumentation

Counterexample
is enough

∃𝑥 𝑃(𝑥) Example is
enough

Needs abstract
argumentation

1.4.5 Exercise. In analysis you will learn (or maybe you already did) that a function
𝑓: ℝ → ℝ is said to be continuous in a point 𝑎 ∈ ℝ if

(∀𝜀 > 0)(∀𝛿 > 0)(|𝑥 − 𝑎| < 𝛿 ⇒ |𝑓(𝑥) − 𝑓(𝑎)| < 𝜀).

Your task is to characterize the situation when 𝑓 is not continuous in 𝑎. That is,
negate the quantified formula above.

1.5 Proof by induction
This is one last proof technique that we are going to learn. It is used in the cases
when we need to prove something for every 𝑛 ∈ ℕ (in general for all elements of
some totally ordered set).

1.5.1 Problem. What is the largest possible number of pieces you can divide a
convex pizza into by making 𝑛 straight cuts?

7

Solution. For 𝑛 ∈ ℕ0, denote by 𝑎𝑛 the maximal number of pieces you can get after
𝑛 cuts. Clearly 𝑎0 = 1 as we have exactly one piece at the beginning. After one cut,
we have surely two pieces, so 𝑎1 = 2. Then 𝑎2 = 4. If all cuts went through the
middle, we would have six pieces after the third cut. But tha maximal number of
pieces is obtained if no cut hits the already present intersection points. In that case
𝑎3 = 7. In general, we can construct the 𝑛-th cut always in such a way that we hit
all the previous 𝑛 − 1 cuts and hence we cut through 𝑛 regions of the pizza. This
adds new 𝑛 regions. So, after the 𝑛-th cut, we have 𝑎𝑛 = 𝑎𝑛−1 +𝑛. Now the question
is, what 𝑎𝑛 actually equals to?

Well, as a programmer, you would probably just open python and write

def pizza(n):
if n==0:

return(1)
else:

return(pizza(n-1)+n)

This very short programme would give you answer for any 𝑛. But can you also
give a formula?

1.5.2 Claim. 𝑎𝑛 = 1
2 (𝑛2 + 𝑛 + 2).

Proof. The proof goes exactly the same way as the computer code. First, check the
starting point. For 𝑛 = 0, we know that 𝑎0 = 1. That’s also what the formula says
since 1

2 (02 + 0 + 2) = 2/2 = 1. So, the formula works.
Now, take any 𝑛. Suppose that the formula works for 𝑛 − 1. That is, suppose

𝑎𝑛−1 = 1
2

((𝑛 − 1)2 + (𝑛 − 1) + 2) = 1
2

(𝑛2 − 𝑛 + 2).

Then this means

𝑎𝑛 = 𝑎𝑛−1 + 𝑛 = 1
2

(𝑛2 − 𝑛 + 2) + 𝑛 = 1
2

(𝑛2 + 𝑛 + 2),

which is what we wanted to show.
But remember there was this assumption that the formula works for 𝑛 − 1. But

since we checked the formula for 𝑛 = 0, the assumption works for 𝑛 = 1 and hence
we have the formula proven for 𝑛 = 1. But then this means that the assumption
works for 𝑛 = 2 as well, so have it proven for 𝑛 = 2. And so on and so forth. □

The general strategy for proof by induction is following. Suppose we have a
propositional formula 𝑃(𝑛) and we need to prove that it is true for every 𝑛 ∈ ℕ.
Then we proceed as follows

1. Prove 𝑃(1) (base case)
2. Assuming 𝑃(𝑛 − 1) (induction hypothesis), prove 𝑃(𝑛) (induction step).

1.5.3 Remark.

8

• If we need to prove something for all 𝑛 ∈ ℕ0. Then the base case is 𝑛 = 0, not
𝑛 = 1. In general, proof by induction works for any totally ordered set. We will
not define that formally, but you probably know what I mean.

• Often the induction step does not work right from the beginning, but maybe
from 𝑛 = 2. Then we have to prove more than one base case.

• Sometimes it is useful to assume not only that 𝑃(𝑛 − 1) is true as the induction
hypothesis, but that all 𝑃(1), 𝑃 (2), . . . , 𝑃 (𝑛 − 1) are true. This is called the
complete induction.

1.5.4 Exercise. Prove that

2 + 5 + 8 + · · · + (3𝑛 − 1) = 1
2

𝑛(3𝑛 + 1).

2 Number theory
2.1 Divisibility
2.1.1 Definition. Consider 𝑛, 𝑚 ∈ ℤ. We say that 𝑛 is a multiple of 𝑚 or that 𝑛
is divisible by 𝑚 or that 𝑚 divides 𝑛 and denote it by 𝑚 ∣ 𝑛 if there exists 𝑘 ∈ ℤ
such that 𝑛 = 𝑘𝑚.

2.1.2 Remark. Observe that 𝑚 ∣ 𝑛 implies 𝑚 ≤ 𝑛.

2.1.3 Theorem (Division). Consider 𝑛 ∈ ℤ, 𝑚 ∈ ℕ. Then there exists a unique
𝑘 ∈ ℤ, 𝑟 ∈ {0, 1, . . . , 𝑚 − 1} such that 𝑛 = 𝑘𝑚 + 𝑟.

The process of finding the two unique numbers 𝑘 and 𝑟 is called the division.
The number 𝑘 is called the quotient and the number 𝑟 is called the remainder.
Proof. First, we need to prove that there exists numbers 𝑘 and 𝑟. Then we will
prove that these numbers are unique.

So, take any 𝑛 ∈ ℤ and 𝑚 ∈ ℕ and let us find the appropriate 𝑘 and 𝑟. Taking
arbitrary 𝑘 ∈ ℤ, we can put 𝑟: = 𝑛 − 𝑘𝑚 and we have a pair of numbers satisfying
𝑛 = 𝑘𝑚 + 𝑟. The thing that makes it complicated is the condition that 0 ≤ 𝑟 < 𝑚.

So, take the set of all such possible remainders 𝑅: = {𝑛−𝑗𝑚 ∣ 𝑗 ∈ ℤ} and choose
the smallest non-negative one 𝑟: = min{𝑧 ∈ 𝑅 ∣ 𝑧 ≥ 0}. Obviously, 𝑟 ≥ 0. We claim
that the condition 𝑟 < 𝑚 is satisfied as well.

Since 𝑟 is the smallest, we must have that 𝑟 − 𝑚 = 𝑛 − (𝑘 + 1) < 0, because this
number is also an element of 𝑅. Therefore, 𝑟 < 𝑚.

It remains to prove the uniqueness. Suppose we have two solutions (𝑘1, 𝑟1)
and (𝑘2, 𝑟2). First, we will prove that 𝑘1 = 𝑘2 by contradiction. So, assume that
𝑘1 ≠ 𝑘2. Then 𝑟1 − 𝑟2 = 𝑚(𝑘2 − 𝑘1). On the left-hand-side, we have a number
which is in absolute value surely smaller than 𝑚, while on the right-hand-side, we
have a non-zero multiple of 𝑚. This is a contradiction. Now if 𝑘1 = 𝑘2, then also
𝑟1 = 𝑛 − 𝑘1 = 𝑛 − 𝑘2 = 𝑟2, which is what we wanted to show. □

2.1.4 Exercise. Prove Fact 1.2.4 using this theorem.

2.1.5 Definition. Suppose 𝑎, 𝑏 ∈ ℤ ∖ {0}. A number 𝑑 ∈ ℕ is called the greatest
common divisor of 𝑎 and 𝑏 if

9

• 𝑑 ∣ 𝑎 and 𝑑 ∣ 𝑏 (i.e. 𝑑 is a their common divisor)
• For every 𝑑′ ∈ ℕ we have (𝑑′ ∣ 𝑎 ∧ 𝑑′ ∣ 𝑏) ⇒ 𝑑′ ∣ 𝑑 (i.e. it is the greatest one)

The greatest common divisor of any two numbers is obviously given uniquely. We
will denote it by gcd(𝑎, 𝑏). From our definition of the greatest common divisor, it is
not obvious that it exists for any 𝑎, 𝑏. This will follow from Theorem 2.1.9.

2.1.6 Exercise. Assume that the greatest common divisor exists for 𝑎 and 𝑏. Prove
that we can replace 𝑑′ ∣ 𝑑 by 𝑑′ ≤ 𝑑 in the definition of gcd.

2.1.7 Problem. Find gcd(12, 18)!
Solution. So far we do not have much tools to look for the gcd. We may just try
all number ≤ 12 and just check, whether they divide both 12 and 18. Finally, we
find out that gcd(12, 18) = 6. Actually, we can make it a bit faster. After figuring
out that 2 is a common divisor, it is enough to only go through even numbers. After
figuring out that 6 is a common divisor, it is enough to only go through multiples of
six. Why?

2.1.8 Problem. Find gcd(216 + 1, 232 + 1).
This seems impossible by hand. But we are going to develop a tool that makes

computing the greatest common divisor very fast.

2.1.9 Theorem (Bézout). For any 𝑎, 𝑏 ∈ ℤ ∖ {0}, there exists 𝑥, 𝑦 ∈ ℤ such that
𝑎𝑥 + 𝑏𝑦 = gcd(𝑎, 𝑏). (In particular, the greatest common divisor of 𝑎 and 𝑏 exists.)
Proof. Put 𝑆𝑎,𝑏: = {𝑎𝑥 + 𝑏𝑦 ∣ 𝑥, 𝑦 ∈ ℤ}. Observe that

• 𝑆𝑎,𝑏 is closed under addition,
• 𝑆𝑎,𝑏 is closed under multiplying by any integer 𝑘 ∈ ℤ,
• 𝑆𝑎,𝑏 contains 𝑎 and 𝑏.

We need to show that it contains gcd(𝑎, 𝑏).
Put 𝑛: = min{𝑧 ∈ 𝑆𝑎,𝑏 ∣ 𝑧 > 0}. The claim is that 𝑛 = gcd(𝑎, 𝑏). So let us check

that it satisfies the definition of the greatest common divisor. Denote by 𝑥0, 𝑦0 ∈ ℤ
the numbers satisfying 𝑛 = 𝑎𝑥0 + 𝑏𝑦0.

We need to prove that 𝑛 is a divisor of 𝑎. By Division theorem (2.1.3), we have
that 𝑎 = 𝑘𝑛 + 𝑟 for some 0 ≤ 𝑟 < 𝑛. Clearly 𝑟 ∈ 𝑆𝑎,𝑏. It follows that 𝑟 = 0 since
otherwise we would have a contradiction with 𝑛 being minimal. The same way, we
prove that 𝑛 is a divisor of 𝑏.

Finally, suppose 𝑑′ ∣ 𝑎 and 𝑑′ ∣ 𝑏 for some 𝑑′. Then obviously 𝑑′ ∣ 𝑎𝑥0 + 𝑏𝑦0 =
𝑛. □

We can use the proof of the theorem to derive a method for computing the
greatest common divisor. Recall that gcd(𝑎, 𝑏) is the minimal positive element of
𝑆𝑎,𝑏. Now observe that 𝑆𝑎,𝑏 = 𝑆𝑎−𝑏,𝑏 = 𝑆𝑎−𝑘𝑏,𝑏 for any 𝑘. So, if 𝑎 > 𝑏 > 0 and
𝑎 = 𝑘𝑏 + 𝑟, then 𝑆𝑎,𝑏 = 𝑆𝑟,𝑏. Consequently gcd(𝑎, 𝑏) = gcd(𝑟, 𝑏). We can repeat this
taking 𝑏 = 𝑘1𝑟 + 𝑟1, then gcd(𝑎, 𝑏) = gcd(𝑟, 𝑏) = gcd(𝑟, 𝑟1) = · · ·.

2.1.10 Algorithm (Euclid). Input: 𝑎 > 𝑏 > 0. Output: gcd(𝑎, 𝑏).

10

Perform repeated integer division as follows:

𝑎 = 𝑘0𝑏 + 𝑟0

𝑏 = 𝑘1𝑟0 + 𝑟1

𝑟0 = 𝑘2𝑟1 + 𝑟2

...
𝑟𝑗 = 𝑘𝑗+2𝑟𝑗+1 + 𝑟𝑗+2

After finitely many steps, we get 𝑟𝑗+2 = 0. Then gcd(𝑎, 𝑏) = 𝑟𝑗+1.

2.1.11 Exercise. Try to rewrite the algorithm in pseudocode or some existing pro-
gramming language. You can try to execute it on a computer and check how it
works.

2.1.12 Example. Let us go back to computing gcd(216 + 1, 232 + 1):

232 + 1 = (216 − 1)(216 + 1) + 2
216 + 1 = 215 ⋅ 2 + 1

2 = 2 ⋅ 1 + 0

So, gcd(232 + 1, 216 + 1) = gcd(216 + 1, 2) = gcd(2, 1) = 2.

2.1.13 Example. Compute gcd(432, 234)!

432 = 1 ⋅ 234 + 198
234 = 1 ⋅ 198 + 36
198 = 5 ⋅ 36 + 18
36 = 2 ⋅ 18

Hence, gcd(432, 234) = gcd(36, 18) = 18.

2.2 Linear Diophantine equations
Now, we might be interested to know, what the particular numbers 𝑥 and 𝑦 are.

2.2.1 Problem. Find all 𝑥, 𝑦 ∈ ℤ such that 432𝑥 + 234𝑦 = 18.
Solution. In order to do this, it is just enough to do the Euclid’s algorithm back-
wards. In the example above, we found out that 198 = 5⋅36+18, so 18 = 198−5⋅36.
Now, we can substitute for 36 from the equality above. Finally replace 198 using the
first equality and we have the desired expression:

18 = 198 − 5 ⋅ 36 = 198 − 5 ⋅ (234 − 198) = 2 ⋅ 198 − 5 ⋅ 234
= 2 ⋅ (432 − 234) − 5 ⋅ 234 = 2 ⋅ 432 − 7 ⋅ 234.

So, the numbers are (for instance) 𝑥 = 2, 𝑦 = 7.

11

This sounds interesting. Maybe we could try to study equations 𝑎𝑥 + 𝑏𝑦 = 𝑐 in
general. Note that they are linear. You will learn solving linear equations in linear
algebra, but here we will consider the additional condition that the indeterminates
𝑥 and 𝑦 (as well as the coefficients 𝑎, 𝑏, 𝑐) are integers. While the original equation
always has infinitely many solutions in ℝ, it is not clear, whether and how many
solutions does it have in ℤ.

Note that equations in the domain of integers are called Diophantine equations.
Here, we will learn how to solve linear Diophantine equations with two variables.
Having more equations or more variables is possible as well, but we will not do it
here. Having non-linear Diophantine equations is of course more delicate.

2.2.2 Problem. Find all 𝑥, 𝑦 ∈ ℤ such that 16𝑥 − 12𝑦 = 0.
Solution. Well, the equation can clearly be simplified dividing by 4. We get 4𝑥−3𝑦 =
0. So, 𝑦 = 4

3 𝑥. Now the only point is to find all such 𝑥 ∈ ℤ that 𝑦 = 4
3 𝑥 is integer as

well. It is clear that if 𝑥 is a multiple of 3, then 𝑦 is an integer. Is it necessary that
𝑥 is a multiple of 3? Try to think about it before reading further.

Well, we can divide the equation by 𝑥 and get 𝑦
𝑥 = 4

3 . We have an equality of
two fractions. Notice that the fraction 4/3 is reduced to the lowest terms. So any
other fraction 𝑦/𝑥 can be equal to 4/3 only if 𝑦 = 4𝑘 and 𝑥 = 3𝑘, 𝑘 ∈ ℤ. And that’s
the solution we were looking for.

2.2.3 Theorem. Consider 𝑎, 𝑏 ∈ ℤ ∖ {0}. The equation 𝑎𝑥 + 𝑏𝑦 = 0 has infinitely
many solutions given by

𝑥 = 𝑘 𝑏
gcd(𝑎, 𝑏)

, 𝑦 = −𝑘 𝑎
gcd(𝑎, 𝑏)

, 𝑘 ∈ ℤ.

These are all solutions of the given equation.
Proof. One of the solutions is clearly 𝑥 = 𝑦 = 0 (and if 𝑥 = 0, then 𝑦 = 0 and
vice versa). So, suppose now that 𝑥, 𝑦 ≠ 0. In that case, the equation 𝑎𝑥 + 𝑏𝑦 = 0
is equivalent to 𝑦/𝑥 = −𝑏/𝑎. We can reduce the fraction 𝑏/𝑎 to the lowest terms by
cancelling the gcd(𝑎, 𝑏), so we get

𝑦
𝑥

= −𝑏/gcd(𝑎, 𝑏)
𝑎/gcd(𝑎, 𝑏)

.

From this, it already follows that 𝑦 = −𝑘 𝑏
gcd(𝑎,𝑏) , 𝑥 = 𝑘 𝑎

gcd(𝑎,𝑏) , 𝑘 ∈ ℤ. □
Now, let us get back to the linear equation with arbitrary right hand side 𝑎𝑥 +

𝑏𝑦 = 𝑐. Here, the existence of a solution is not always guaranteed.

2.2.4 Theorem. Consider 𝑎, 𝑏, 𝑐 ∈ ℤ ∖ {0}. Then there exists 𝑥, 𝑦 ∈ ℤ such that
𝑎𝑥 + 𝑏𝑦 = 𝑐 if and only if gcd(𝑎, 𝑏) ∣ 𝑐.
Proof. Suppose 𝑎𝑥 + 𝑏𝑦 = 𝑐. Since gcd(𝑎, 𝑏) divides both 𝑎 and 𝑏, it must clearly
divide 𝑐 as well.

For the converse, suppose 𝑐 is a multiple of gcd(𝑎, 𝑏), so 𝑐 = 𝑘 gcd(𝑎, 𝑏) for some
𝑘 ∈ ℤ. By Bézout’s theorem (2.1.9), there are 𝑥0, 𝑦0 such that 𝑎𝑥0 + 𝑏𝑦0 = gcd(𝑎, 𝑏).
Multiplying this equality by 𝑘, we get that 𝑎𝑥 + 𝑏𝑦 = 𝑐 for 𝑥 = 𝑘𝑥0, 𝑦 = 𝑘𝑦0. □

12

2.2.5 Problem. Find all solutions of 24𝑥 + 105𝑦 = 33.
Solution. First, we should figure out, whether the equation has a solution or not.
So, let us find gcd(24, 105) by Euclid’s algorithm.

105 = 4 ⋅ 24 + 9
24 = 2 ⋅ 9 + 6
9 = 1 ⋅ 6 + 3
6 = 2 ⋅ 3

We found out that gcd(24, 105) = 3, which divides 33, so the original equation indeed
has a solution. How do we find one? We can follow the proof of Theorem 2.2.4. First,
let us find some solution of 24𝑥 + 105𝑦 = 3. We know how to do that – by reversing
the Euclid’s algorithm:

3 = 9 − 6 = 3 ⋅ 9 − 24 = 3 ⋅ 105 − 13 ⋅ 24.

Now, we can just multiply this equality by 11 and get

33 = 33 ⋅ 105 − 143 ⋅ 24.

So, we have one solution, namely 𝑥 = 33, 𝑦 = 143. But this may not be the only
solution.

2.2.6 Theorem. Consider 𝑎, 𝑏, 𝑐 ∈ ℤ∖{0} such that gcd(𝑎, 𝑏) ∣ 𝑐. Suppose 𝑥1, 𝑦1 ∈ ℤ
is some solution of the equation 𝑎𝑥 + 𝑏𝑦 = 𝑐. Then all solutions 𝑥, 𝑦 ∈ ℤ are of the
form

𝑥 = 𝑥1 + 𝑘 𝑏
gcd(𝑎, 𝑏)

, 𝑦 = 𝑦1 − 𝑘 𝑎
gcd(𝑎, 𝑏)

, 𝑘 ∈ ℤ.

Proof. By assumption, we have 𝑎𝑥1 + 𝑏𝑦1 = 𝑐. Suppose that 𝑥, 𝑦 ∈ ℤ is another
solution, so 𝑎𝑥+𝑏𝑦 = 𝑐 as well. Subtracting these two, we get 𝑎(𝑥−𝑥1)+𝑏(𝑦−𝑦1) = 0.
By Theorem 2.2.3, all solutions of this equation are given by 𝑥 − 𝑥1 = 𝑘 𝑏

gcd(𝑎,𝑏) ,
𝑦 − 𝑦1 = −𝑘 𝑎

gcd(𝑎,𝑏) , 𝑘 ∈ ℤ, which is all we need. □

2.3 Positional number systems
2.3.1 Theorem. Consider 𝑞 ∈ ℕ, 𝑞 ≥ 2. Then every number 𝑛 ∈ ℕ can be uniquely
expressed as 𝑛 = ∑𝑘

𝑖=0 𝑎𝑖𝑞𝑖, where 𝑘 ∈ ℕ0, 𝑎0, . . . , 𝑎𝑘 ∈ {0, 1, . . . , 𝑞 − 1}, 𝑎𝑘 ≠ 0.

The number 𝑞 is called the base, the numbers 𝑎0, . . . , 𝑎𝑘 are the dig-
its, so the number 𝑘 represents the number of digits. We use the notation
𝑛 = (𝑎𝑘𝑎𝑘−1 · · · 𝑎1𝑎0)𝑞.

2.3.2 Example. We usually represent numbers in base 10. Here, the digits are
0, 1, 2, . . . , 9. For instance, if we write 174, what we mean is one hundred seventy
four, so more precisely, one hundred, seven tens, and four ones, so 174 = 1 ⋅ 102 +
7 ⋅ 101 + 4 ⋅ 100.

2.3.3 Problem. Write 𝑛 = 174 in base 3.

13

Solution. First, we determine the number of digits. We do this by finding 𝑘 ∈ ℕ0
such that 3𝑘 ≤ 𝑛 < 3𝑘+1. Here, 31 = 3, 32 = 9, 33 = 27, 34 = 81, 35 = 273.
So, the appropriate 𝑘 is four (hence we will have five digits). Secondly, we want to
determine the actual digits. We go from the most significant (the leftmost) to the
least (rightmost). Here, the most leftmost digit is 𝑎4, which stands for the eighty-
ones. So, we ask: How many eighty-ones fit into 𝑛 = 174. The answer is two since
2 ⋅ 81 = 162 (but 3 ⋅ 81 = 243, which is too big already). So, the leftmost digit is
two and we are left over with 174 − 162 = 12, which we need to represent by the
other digits. We essentially do the division with remainder. We continue in a similar
manner:

174 = 2⏟
𝑎4

⋅ 81⏟
34

+12

12 = 0⏟
𝑎3

⋅ 27⏟
33

+12

12 = 1⏟
𝑎2

⋅ 9⏟
32

+3

174 = 1⏟
𝑎1

⋅ 3⏟
31

+ 0⏟
𝑎0

So, we found out that 174 = (20110)3.

2.3.4 Algorithm. Input: Numbers 𝑛, 𝑞 ∈ ℕ, 𝑞 > 2. Output: Expressing 𝑛 in base 𝑞.

1. find 𝑘 ∈ ℕ0: 𝑞𝑘 ≤ 𝑛 < 𝑞𝑘+1

2. for 𝑗 = 𝑘, 𝑘 − 1, . . . , 1, 0 do
3. find 𝑎𝑗 ∈ {0, . . . , 𝑞 − 1}, 𝑟 ∈ {0, . . . , 𝑞𝑗 − 1}: 𝑛 = 𝑎𝑗𝑞𝑗 + 𝑟 (Euclid. division)
4. 𝑛 ← 𝑟
5. return (𝑎𝑘, . . . , 𝑎0)

2.3.5 Exercise. It is also possible to formulate an algorithm that would start with
the least significant digit and proceed to the most significant one. Try to figure it
out and formulate formally.

Proof of Theorem 2.3.1. Existence: Basically follows from the algorithm. As an
exercise, try to formulate a formal proof using mathematical induction.

Uniqueness: For the sake of contradiction, suppose 𝑛 ∈ ℕ is the smallest num-
ber that has two different possible expressions in base 𝑞. So, 𝑛 = (𝑎𝑘 · · · 𝑎1𝑎0)𝑞 =
(𝑏𝑙 · · · 𝑏1𝑏0)𝑞. We will study two cases – either 𝑘 ≠ 𝑙 or 𝑘 = 𝑙. In both we are going
to derive a contradiction.

So, assume 𝑘 = 𝑙. Then 𝑛−𝑞𝑘 would also have two different expressions, namely
((𝑎𝑘 − 1)𝑎𝑘−1 · · · 𝑎1𝑎0)𝑞 and ((𝑏𝑘 − 1)𝑏𝑘−1 · · · 𝑏1𝑏0). This is a contradiction with the
assumption that 𝑛 is the smallest with non-unique expression.

Now, assume 𝑘 ≠ 𝑙. Without loss of generality, suppose 𝑘 > 𝑙. Then using the
first expression, we have

𝑛 =
𝑘

∑
𝑖=0

𝑎𝑖𝑞𝑖 ≥ 𝑞𝑘,

14

but at the same time

𝑛 =
𝑙

∑
𝑗=0

𝑏𝑗𝑞𝑗 ≤
𝑙

∑
𝑗=0

(𝑞 − 1)𝑞𝑗 = (𝑞 − 1)𝑞𝑙+1 − 1
𝑞 − 1

= 𝑞𝑙+1 − 1 < 𝑞𝑘.

This is obviously a contradiction. □

2.4 Congruence
2.4.1 Definition. Two numbers 𝑎, 𝑏 ∈ ℤ ∖ {0} are called relatively prime if
gcd(𝑎, 𝑏) = 1. We denote it by 𝑎 ⟂ 𝑏.

2.4.2 Lemma (Euclid). Consider 𝑎, 𝑏, 𝑐 ∈ ℤ ∖ {0} such that 𝑎 ⟂ 𝑏. Then 𝑎 ∣ 𝑏𝑐
implies that 𝑎 ∣ 𝑐.
Proof. The assumption 𝑎 ∣ 𝑏𝑐 means by definition that 𝑏𝑐 = 𝑎𝑑 for some 𝑑 ∈ ℤ.
The assumption 𝑎 ⟂ 𝑏 implies by Bézout’s theorem that 𝑎𝑥 + 𝑏𝑦 = 1 for some 𝑥, 𝑦ℤ.
Multiplying this equality by 𝑐, we get 𝑐 = 𝑎𝑐𝑥 + 𝑏𝑐𝑦 = 𝑎𝑐𝑥 + 𝑎𝑑𝑦 = 𝑎(𝑐𝑥 + 𝑑𝑦), so 𝑐
is indeed a multiple of 𝑎. □

2.4.3 Definition. Consider 𝑎, 𝑏 ∈ ℤ, 𝑛 ∈ ℕ. We say that 𝑎 is congruent to 𝑏
modulo 𝑛 if 𝑛 ∣ (𝑎 − 𝑏). We denote it by 𝑎 ≡ 𝑏 (mod 𝑛).

2.4.4 Theorem (Equivalent definitions of congruence). The following are
equivalent.

1. 𝑎 ≡ 𝑏 (mod 𝑛), i.e. 𝑛 ∣ (𝑎 − 𝑏),
2. 𝑎 and 𝑏 have the same remainder when dividing by 𝑛,
3. 𝑎 = 𝑏 + 𝑘𝑛 for some 𝑘 ∈ ℤ.

Proof. (1) ⇒ (2): Suppose that 𝑛 ∣ (𝑎 − 𝑏), so 𝑎 − 𝑏 = 𝑙𝑛 for some 𝑙 ∈ ℤ and hence
𝑏 = 𝑎 − 𝑙𝑛. Now, denote by 𝑟 the remainder when dividing 𝑎 by 𝑛, so 𝑎 = 𝑘𝑛 + 𝑟 for
some 𝑘. Then 𝑏 = 𝑎 − 𝑙𝑛 = 𝑘𝑛 + 𝑟 − 𝑙𝑛 = (𝑘 − 𝑙)𝑛 + 𝑟, so 𝑟 is also the remainder
when dividing 𝑏 by 𝑛.

(2) ⇒ (3): Suppose that 𝑎 = 𝑙𝑛 + 𝑟 and 𝑏 = 𝑚𝑛 + 𝑟. Then 𝑎 = 𝑙𝑛 + 𝑏 − 𝑚𝑛 =
𝑏 + (𝑙 − 𝑚)𝑛 = 𝑏 + 𝑘𝑛, where 𝑘 = 𝑙 − 𝑚 ∈ ℤ.

(3) ⇒ (1): Suppose that 𝑎 = 𝑏 + 𝑘𝑛. Then 𝑎 − 𝑏 = 𝑘𝑛, which is what we wanted
to show. □

2.4.5 Theorem (Properties of congruence). Consider arbitrary 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℤ,
𝑛, 𝑘 ∈ ℕ. Then:

1. 𝑎 ≡ 𝑎 (mod 𝑛)
2. 𝑎 ≡ 𝑏 (mod 𝑛) ⇔ 𝑏 ≡ 𝑎 (mod 𝑛)
3. 𝑎 ≡ 𝑏 (mod 𝑛) ∧ 𝑏 ≡ 𝑐 (mod 𝑛) ⇒ 𝑎 ≡ 𝑐 (mod 𝑛)
4. 𝑎 ≡ 𝑏 (mod 𝑛) ∧ 𝑐 ≡ 𝑑 (mod 𝑛) ⇒ 𝑎 + 𝑐 ≡ 𝑏 + 𝑑 (mod 𝑛)
5. 𝑎 ≡ 𝑏 (mod 𝑛) ⇒ 𝑎 + 𝑐 ≡ 𝑏 + 𝑐 (mod 𝑛)
6. 𝑎 ≡ 𝑏 (mod 𝑛) ∧ 𝑐 ≡ 𝑑 (mod 𝑛) ⇒ 𝑎𝑐 ≡ 𝑏𝑑 (mod 𝑛)
7. 𝑎 ≡ 𝑏 (mod 𝑛) ⇒ 𝑎𝑐 ≡ 𝑏𝑐 (mod 𝑛)
8. 𝑎 ≡ 𝑏 (mod 𝑛) ⇒ 𝑎𝑘 ≡ 𝑏𝑘 (mod 𝑛)

15

9. 𝑎𝑐 ≡ 𝑏𝑐 (mod 𝑛) ∧ 𝑐 ⟂ 𝑛 ⇒ 𝑎 ≡ 𝑏 (mod 𝑛)
10. 𝑎 ≡ 𝑏 (mod 𝑛) ⇔ 𝑎𝑘 ≡ 𝑏𝑘 (mod 𝑘𝑛)

Proof. Exercise! □
As an application we will study divisibility criteria. You might know the follow-

ing one from high school:
2.4.6 Proposition. A number 𝑛 ∈ ℕ has the same remainder when dividing by 3
as the sum of its digits (in base 10). In particular, 𝑛 is divisible by 3 if and only if
its sum of digits is divisible by 3.
Proof. Suppose 𝑛 = (𝑎𝑘𝑎𝑘−1 · · · 𝑎1𝑎0)10 = 𝑎𝑘 ⋅ 10𝑘 + 𝑎𝑘−1 ⋅ 10𝑘−1 + · · · + 𝑎1 ⋅ 10 + 𝑎0.
We claim that 𝑛 ≡ 𝑎𝑘 + 𝑎𝑘−1 + · · · + 𝑎1 + 𝑎0 (mod 3).

Observe that 10 has remainder 1 when dividing by 3, so 10 ≡ 1 (mod 3). Con-
sequently, 10𝑖 ≡ 1 (mod 3) (using property (8) of congruence). Using property (7),
we derive 𝑎𝑖 ⋅ 10𝑖 ≡ 𝑎𝑖 (mod 3). Finally, repeatedly using property (4), we have
𝑛 = ∑𝑘

𝑖=0 10𝑖𝑎𝑖 ≡ ∑𝑘
𝑖=0 𝑎𝑖 (mod 3), which is what we wanted to show. □

2.4.7 Problem. Derive the divisibility criterion for 11 in base 10.
Solution. All computations will be modulo 11. We have 100 = 1, 101 ≡ −1, 102 ≡ 1
and so on. In general, 10𝑖 = (−1)𝑖 for any 𝑛 ∈ ℕ. That is:

102𝑖 ≡ 1, 102𝑖+1 ≡ −1.
Hence, for any 𝑛 = (𝑎𝑘 · · · 𝑎0)10 = ∑𝑘

𝑖=0 𝑎𝑖 ⋅ 10𝑖, we have

𝑛 ≡ 𝑎0 − 𝑎1 + 𝑎2 − 𝑎3 + · · · =
𝑘

∑
𝑖=0

(−1)𝑖𝑎𝑖.

So, a number 𝑛 is divisible by 11 if and only if the sum of its digits with
alternating +/− signs is.
2.4.8 Problem. Derive the divisibility criterion for 13 in base 10.
Solution. All computations will be modulo 13. Take 𝑛 = (𝑎𝑘 · · · 𝑎0)10 Observe:

100 ≡ 1,
101 ≡ −3,
102 ≡ −4,
103 ≡ −1.

Hence,
103𝑖 ≡ (−1)𝑖,

103𝑖+11 ≡ (−1)𝑖(−3),
103𝑖+2 ≡ (−1)𝑖(−4).

Consequently,
𝑛 ≡ 𝑎0 − 3𝑎1 − 4𝑎2 − 𝑎3 + 3𝑎4 + 4𝑎5 + 5𝑎6 − · · · = ∑

𝑖≥0
(−1)𝑖(𝑎3𝑖 − 3𝑎3𝑖+1 − 4𝑎3𝑖+2).

Finally, let us have a look on the problem of solving congruences. That is, the
same as solving equations, but having the congruence ≡ instead of equality =. We

16

will focus on the linear ones. That is, 𝑎𝑥 + 𝑏 ≡ 𝑐𝑥 + 𝑑 (mod 𝑛). But this is equivalent
to (𝑎 − 𝑐)𝑥 ≡ 𝑑 − 𝑏 (mod 𝑛), so we can actually focus on congruences of the form

𝑎𝑥 ≡ 𝑏 (mod 𝑛).
2.4.9 Problem. Find all 𝑥 ∈ ℤ such that 21𝑥 ≡ 8 (mod 39).
Solution. By equivalent definition of congruence, this means that 8 = 21𝑥 + 39𝑘
for some 𝑘 ∈ ℤ. That’s a Diophantine equation, so we know how to solve it. First,
compute gcd(21, 39) = 3. But 8 is not a multiple of 3, so this equation actually has
no solution.
2.4.10 Problem. Find all 𝑥 ∈ ℤ such that 29𝑥 ≡ 1 (mod 17).

We will show two ways how to solve this.
Solution using Euclid’s algorithm. The congruence is equivalent to solving 1 =
29𝑥+17𝑘. Now, let us solve this in the standard way. First, do the Euclid’s algorithm.

29 = 1 ⋅ 17 + 12
17 = 1 ⋅ 12 + 5
12 = 2 ⋅ 5 + 2
5 = 2 ⋅ 2 + 1

Then reversing it to get one solution:
1 = 5 − 2 ⋅ 2 = −2 ⋅ 12 + 5 ⋅ 5 = 5 ⋅ 17 − 7 ⋅ 12 = −7 ⋅ 29 + 12 ⋅ 17.

So, one solution is 𝑥 = −7 (and 𝑘 = 12, but we are not interested in 𝑘 now). All
other solutions are given by 𝑥 = −7 + 17𝑙, 𝑙 ∈ ℤ (where the corresponding 𝑘 is given
by 𝑘 = 12 − 29𝑙, but again, nobody asked for 𝑘).
Solution using simplification of the congruence. We can use the properties of
congruence in a similar way as we use the properties of equality when solving equa-
tions. In the following derivation, each row is equivalent to the next one. Everything
is computed modulo 17.

29𝑥 ≡ 1 //subtract 17𝑥 ≡ 0
12𝑥 ≡ 1 //add 0 ≡ 17
12𝑥 ≡ 18 //divide by 6
2𝑥 ≡ 3 //add 0 ≡ 18
2𝑥 ≡ 20 //divide by 2
𝑥 ≡ 10

By equivalent definition of congruence, 𝑥 ≡ 10 (mod 17) means that 𝑥 = 10+17𝑘
for some 𝑘 ∈ ℤ.
2.4.11 Theorem. Consider 𝑛 ∈ ℕ, 𝑎, 𝑏 ∈ ℤ. Then the congruence 𝑎𝑥 ≡ 𝑏 (mod 𝑛)
has some solution 𝑥 ∈ ℤ if and only if gcd(𝑎, 𝑛) ∣ 𝑏
Proof. The congruence 𝑎𝑥 ≡ 𝑏 (mod 𝑛) is equivalent to saying that 𝑏 = 𝑎𝑥 + 𝑘𝑛
for some 𝑘 ∈ ℤ. The latter equation has a solution if and only if gcd(𝑎, 𝑛) ∣ 𝑏 by
Theorem 2.2.4.

17

2.5 Primes
2.5.1 Definition. A prime number (or just a prime) is a number 𝑝 ∈ ℕ, 𝑝 > 1
that has exactly two positive divisors (namely 1 and 𝑝). A number 𝑛 ∈ ℕ, 𝑛 > 1
which is not a prime is called a composite number.

2.5.2 Theorem. Consider 𝑝 ∈ ℕ, 𝑝 > 1. Then 𝑝 is a prime if and only if, for all
𝑏, 𝑐 ∈ ℕ, we have that 𝑝 ∣ 𝑏𝑐 implies 𝑝 ∣ 𝑏 or 𝑝 ∣ 𝑐.
Proof. (⇒): Suppose 𝑝 is a prime and consider any 𝑏, 𝑐 ∈ ℕ such that 𝑝 ∣ 𝑏𝑐. We
want to prove that 𝑝 ∣ 𝑏 or 𝑝 ∣ 𝑐. If 𝑝 ∤ 𝑏, then 𝑝 ⟂ 𝑏 as 𝑝 is a prime. By Euclid’s
lemma (2.4.2) we immediately get 𝑝 ∣ 𝑐.

(⇐): Let’s assume the implication and prove that 𝑝 must be a prime. Suppose
𝑑1 is some divisor of 𝑝, so 𝑝 = 𝑑1𝑑2 for some 𝑑1, 𝑑2 ∈ ℕ. Clearly, we have 𝑑1, 𝑑2 ≤ 𝑝.
We want to prove that necessarily 𝑑1 = 1 and 𝑑2 = 𝑝 or vice versa. If 𝑝 = 𝑑1𝑑2,
then surely 𝑝 ∣ 𝑑1𝑑2. By assumption, 𝑝 ∣ 𝑑1 or 𝑝 ∣ 𝑑2. Suppose for instance the first
happens, but then 𝑝 ≤ 𝑑1. This actually means that 𝑝 = 𝑑1, which is what we wanted
to show. □

2.5.3 Theorem (Fundamental theorem of arithmetics). Every 𝑛 ∈ ℕ, 𝑛 > 1
can be written as a product of primes. This prime factorization is unique up to
the order of factors.
Proof. First, we prove the existence. If 𝑛 is a prime, then it is clear, so it remains to
prove it for the composites. We will do the proof by complete induction. We proved
the existence for the primes, which serves as the base case. Now, take any composite
𝑛 and assume that that the prime factorization exists for all numbers smaller than
𝑛. Since 𝑛 is composite, we have 𝑛 = 𝑛1𝑛2 for some 1 < 𝑛1, 𝑛2 < 𝑛. By induction
hypothesis both 𝑛1 and 𝑛2 have prime factorization, so their product 𝑛 clearly has
one too.

It remains to prove the uniqueness. We will do it by contradiction. Suppose 𝑛
is the smallest1 number, where the prime factorization is not unique. So,

𝑛 = 𝑝1𝑝2 · · · 𝑝𝑘 = 𝑞1𝑞2 · · · 𝑞𝑙

for some primes 𝑝1, . . . , 𝑝𝑘, 𝑞1, . . . , 𝑞𝑙. From the first expression, we have that 𝑝1 ∣ 𝑛.
Now, applying Theorem 2.5.2 to the second expression, we have that 𝑝1 ∣ 𝑞𝑗 for some
𝑗, so actually 𝑝1 = 𝑞𝑗. But this means that the number 𝑚: = 𝑛/𝑝1 = 𝑛/𝑞𝑗 also has
two different prime factorizations. □

2.5.4 Theorem. There is infinitely many primes
Proof. For the sake of contradiction, assume that 𝑝1, . . . , 𝑝𝑘 are the only primes that
exist. Consider 𝑛 = 𝑝1𝑝2 · · · 𝑝𝑘 + 1. Then no 𝑝𝑖 is a divisor of 𝑛 since the remainder
when dividing by 𝑝𝑖 is always equal to 1. But according to the fundamental theorem
of mathematics, 𝑛 has to have a prime factorization 𝑛 = 𝑞1 · · · 𝑞𝑙. But these primes
𝑞1, . . . , 𝑞𝑙 are missing in our list! □

1 This is a popular trick. It is essentially a hidden induction. As an exercise, you can try to
reformulate the proof and instead of proving by contradiction, prove it directly by induction.

18

2.5.5 Theorem (Fermat’s little theorem). Let 𝑝 be a prime, 𝑎 ∈ ℕ, 𝑎 ⟂ 𝑝. Then
𝑎𝑝−1 ≡ 1 (mod 𝑝).
Proof. The proof is based on the identity (𝑥 + 𝑦)𝑝 ≡ 𝑥𝑝 + 𝑦𝑝 (mod 𝑝), which holds
whenever 𝑝 is a prime. Indeed, we know that (𝑥 + 𝑦)𝑝 = ∑𝑝

𝑗=0 (𝑝
𝑗)𝑥𝑗𝑦𝑝−𝑗. But all the

binomial coefficients (𝑝
𝑗) = 𝑝(𝑝−1)···(𝑝−𝑗+1)

𝑗! are divisible by 𝑝 unless 𝑗 = 0 or 𝑗 = 𝑝.
Hence the corresponding summands are congruent to zero.

Now, we can use induction to prove that this holds for arbitrary sums: (𝑥1 +
𝑥2 + · · · 𝑥𝑛)𝑝 ≡ 𝑥𝑝

1 + 𝑥𝑝
2 + · · · + 𝑥𝑝

𝑛. The base case 𝑛 = 1 is clear, 𝑛 = 2 we proved
above. Now, let us prove it for arbitrary 𝑛 assuming it holds for 𝑛 − 1. But that is
easy as (𝑥1 +𝑥2 +· · ·+𝑥𝑛)𝑝 = ((𝑥1 +· · ·+𝑥𝑛−1)+𝑥𝑛)𝑝 = (𝑥1 +· · ·+𝑥𝑛−1)𝑝 +𝑥𝑝

𝑛 =
𝑥𝑝

1 + · · · + 𝑥𝑝
𝑛−1 + 𝑥𝑝

𝑛.
Finally, write 𝑎 = 1 + 1 + · · · + 1. Then we must have

𝑎𝑝 = (1 + 1 + · · · + 1)𝑝 ≡ 1𝑝 + 1𝑝 + · · · + 1𝑝 = 1 + 1 + · · · + 1 = 𝑎.

Dividing by 𝑎, we get the desired result 𝑎𝑝−1 ≡ 1 (mod 𝑝). □

2.5.6 Exercise. Did you read the proof carefully? How did we use the assumption
that 𝑝 is a prime? Where did we use the assumption 𝑎 ⟂ 𝑝?

2.6 RSA cryptosystem
We describe the public key encryption algorithm by Rivest, Shamir, Adleman (1977).

Suppose Bob wants to send a secret message to Alice, but they did not have
the opportunity to agree on some secret code beforehand. The solution is as follows:

Alice chooses randomly two very large prime numbers 𝑝 and 𝑞 and computes
𝑛: = 𝑝𝑞. Let us denote2 𝜙(𝑛): = (𝑝 − 1)(𝑞 − 1). Then Alice chooses some number
𝑖 ∈ {2, 3, . . . , 𝜙(𝑛)−1} such that 𝑖 is coprime with 𝜙(𝑛). She can do that by choosing
𝑖 randomly and then checking that gcd(𝑖, 𝜙(𝑛)) = 1 by Euclid’s algorithm. The
Euclid’s algorithm then produces a number 𝑗 such that 𝑖𝑗 − 𝑘𝜙(𝑛) = 1 (in other
words, 𝑖𝑗 ≡ 1 (mod 𝜙(𝑛))). This equation actually has infinitely many solutions, but
we can choose one such that 𝑗 ∈ {2, 3, . . . , 𝜙(𝑛) − 1}.

Now the pair (𝑛, 𝑖) is called the public key and Alice can send it to Bob or put
it on the Internet. She keeps the rest of the data (primes 𝑝 and 𝑞 and the number 𝑗)
private. Note that in principle, it is possible to compute these data from the public
key. (We just do the prime decomposition of 𝑛 and then run the Euclid’s algorithm.)
Nevertheless, if the primes 𝑝 and 𝑞 are large enough, it is computationally practically
impossible.3

Now, suppose Bob wants to send a message to Alice. In this setting a message
is a number4 𝑥, 0 < 𝑥 < 𝑛. Before sending the message through a public channel
he encrypts it as follows: He computes 𝑦: = 𝑥𝑖 mod 𝑛, that is, the remainder when

2 This is actually the Euler’s totient function. We will learn about it later in the course.
3 In fact, this is still an open question, i.e. it is not proven yet, that there is no quick algorithm

for prime decomposition. We just do not know any.
4 Remember that all data in a computer is stored as numbers.

19

dividing 𝑥𝑖 by 𝑛 (based on the public key). Try to think about how to do such an
exponentiation quickly!

Now Alice receives 𝑦. The claim is that the original message 𝑥 can be recovered
as 𝑦𝑗 mod 𝑛, that is, as the remainder when dividing 𝑦𝑗 by 𝑛.

Before proving this, let us have a look on an example.

2.6.1 Example. Suppose Alice chooses 𝑝 = 11, 𝑞 = 13, 𝑛 = 𝑝𝑞 = 143, 𝜙(𝑛) = (𝑝 −
1)(𝑞 −1) = 120, 𝑖 = 17. Let us compute 𝑗. This is easy in this case as 120 = 7⋅17+1.
So, 1 = 120 − 7 ⋅ 17 = −16 ⋅ 120 + 113 ⋅ 17, so 𝑗 = 113. Alice publishes the public key
𝑛 = 143, 𝑖 = 17.

Now, suppose Bob wants to send the number 𝑥 = 69 to Alice. But he would feel
somewhat embarrassed to send such a number publicly, so he wants to encrypt it. So,
he needs to compute 6917 mod 143. How to do this effectively? Using exponentiation
by squaring (the following computation goes mod 143):

69 ≡ 69
692 = 4761 ≡ 42
692 ≡ 422 ≡ 48
698 ≡ 482 ≡ 46

6916 ≡ 162 ≡ 113

Finally, 6917 = 6916 ⋅ 69 ≡ 113 ⋅ 69 ≡ 75. So, 𝑦 = 75, which looks pretty innocent, so
Bob can send this to Alice.

Now Alice is wondering, what is Bob sending to her, so she wants to decrypt the
message. Therefor she needs to compute 𝑦113 mod 143. Try to do the computation
yourself beforehand!

75 ≡ 75
752 ≡ 48
754 ≡ 482 ≡ 16
758 ≡ 162 ≡ 113

7516 ≡ 1132 ≡ 42
7532 ≡ 422 ≡ 48
7564 ≡ 482 ≡ 46

Now, 113 = 64 + 32 + 16 + 1 (in other words 113 = (1110001)2), so 75113 = 7564 ⋅
7532 ⋅ 7516 ⋅ 75 ≡ 46 ⋅ 48 ⋅ 42 ⋅ 75 ≡ 69.

So, it really works! Now, you may feel that doing the prime decomposition of 113
is actually fairly easy and, in particular, it is much easier than the rest of the stuff we
did here. But now imagine that we double the primes. Then the prime factorization
will take (about) twice as long, but the exponentiation or the Euclid’s algorithm
takes (about) just one more step. Double it again and the same happens. Once the
primes 𝑝 and 𝑞 are large enough, the prime factorization becomes impossible, while
the encryption/decryption process is still quite easy to handle.

20

Now, we prove that the algorithm works.

2.6.2 Theorem. Let 𝑝, 𝑞 be prime numbers. Denote 𝑛: = 𝑝𝑞 and 𝜙(𝑛): = (𝑝 −
1)(𝑞 − 1). Let 𝑖, 𝑗 ∈ ℕ satisfy 𝑖𝑗 ≡ 1 (mod 𝜙(𝑛)). Then for every 𝑥 ∈ ℤ, we have
𝑥𝑖𝑗 ≡ 𝑥 (mod 𝑛).
Proof. First, recall that 𝑖𝑗 ≡ 1 (mod 𝜙(𝑛)) means that 𝑖𝑗 = 𝑘𝜙(𝑛)+1 = 𝑘(𝑝−1)(𝑞 −
1)+1 for some 𝑘. Secondly, note that 𝑥𝑖𝑗 ≡ 𝑥 (mod 𝑛) is equivalent to 𝑥𝑖𝑗 ≡ 𝑥 (mod 𝑝)
and 𝑥𝑖𝑗 ≡ 𝑥 (mod 𝑞) (try to prove!). So, we will prove that 𝑥𝑖𝑗 ≡ 𝑥 (mod 𝑝) and the
proof for 𝑞 is then literally the same.

Suppose first that 𝑥 ⟂ 𝑝. Then by the little Fermat’s theorem, we have 𝑥𝑝−1 ≡
1 (mod 𝑝). We can raise this to the power 𝑘(𝑞 − 1) and then multiply by 𝑥 to obtain

𝑥𝑝−1 ≡ 1 (mod 𝑝)
𝑥𝑘(𝑝−1)(𝑞−1) ≡ 1𝑘(𝑞−1) = 1 (mod 𝑝)

𝑥𝑖𝑗 = 𝑥𝑘(𝑝−1)(𝑞−1)+1 ≡ 𝑥(mod 𝑝)

Now, suppose that 𝑥 /⟂ 𝑝. This means that 𝑥 = 𝑎𝑝 for some 𝑎. But then
𝑥 ≡ 0 (mod 𝑝) as well as 𝑥𝑖𝑗 ≡ 0 (mod 𝑝). □

3 Relations
3.1 Relations in general
The mathematical notion of a relation is used to describe a relations between in a
set of objects. For example, to be a grandfather (on the set of all people), to have
the same length (on the set of physical objects or on the set of all line segments or
similar), to be a subset (on the class of all sets) and so on.

3.1.1 Definition. Let 𝐴, 𝐵 be sets. We denote by 𝐴 × 𝐵 the Cartesian product
of 𝐴 and 𝐵, which is defined to be the set of all ordered pairs (𝑎, 𝑏), 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵.

3.1.2 Definition. Let 𝐴, 𝐵 be sets. A (binary) relation from 𝐴 to 𝐵 is a set of
ordered pairs 𝑅 ⊆ 𝐴 × 𝐵. If 𝐵 = 𝐴, we say that 𝑅 is a relation on 𝐴. If (𝑥, 𝑦) ∈ 𝑅,
we write 𝑥𝑅𝑦. If (𝑥, 𝑦) ∉ 𝑅, we write 𝑥 /𝑅 𝑦.

3.1.3 Examples.

• Taking 𝐴 = 𝐵 = {1, 2, 3, 4, 5}, we can define

𝑅 = {(1, 3), (2, 2), (2, 3), (3, 2), (4, 1), (5, 2)},

which is a relation on 𝐴. As an exercise, check the following:

2𝑅2, 1 /𝑅 1, 1𝑅3, 3 /𝑅 1.

Note that alternatively, we can also consider 𝑅 to be a relation from {1, 2, 3, 4, 5}
to {1, 2, 3}. Also, we can consider 𝑅 to be a relation on ℕ.

21

• Taking 𝐴 = 𝐵 = {all people}, we can define a relation 𝑅 on 𝐴 be saying
𝑎𝑅𝑏 ⇔ 𝑎 is a parent of 𝑏.

• Taking 𝐴 = 𝐵 to be any set, we can define 𝑅 = {(𝑎, 𝑎) ∣ 𝑎 ∈ 𝐴}. This a special
relation which is usually called the equality and denoted by = instead of 𝑅.

• Take any set 𝑆 and 𝐴 = 𝐵 = P(𝑆) = {𝑇 ∣ 𝑇 ⊆ 𝑆}. Then ⊆ is a relation on
P(𝑆).

• Take 𝐴 = 𝐵 = ℝ and define 𝑥𝑅𝑦 if and only if 𝑦 = sin 𝑥. That is 𝑅 = {(𝑥, sin 𝑥) ∣
𝑥 ∈ ℝ}. In general, any function is a special kind of relation.

• Take 𝐴 = 𝐵 = ℝ and define 𝑥𝑅𝑦 if and only if 𝑥2 +𝑦2 = 1. That is, 𝑅 = {(𝑥, 𝑦) ∣
𝑥2 + 𝑦2 = 1}. This is the circle in 𝑅2, which is not a function. Why?

3.1.4 Definition. Let 𝐴, 𝐵 be sets. A function from 𝐴 to 𝐵 is a relation 𝑓 ⊆ 𝐴×𝐵
such that

(∀𝑎 ∈ 𝐴)(∃1𝑏 ∈ 𝐵)((𝑎, 𝑏) ∈ 𝑓)
We write 𝑓: 𝐴 → 𝐵 instead of 𝑓 ⊂ 𝐴 × 𝐵 and 𝑓(𝑎) = 𝑏 instead of (𝑎, 𝑏) ∈ 𝑓.
3.1.5 Exercise. Formulate a definition of a function being injective, surjective,
bijective.
3.1.6 Definition. If 𝑅 ⊆ 𝐴 × 𝐵 is a relation, we define its inverse 𝑅−1 ⊆ 𝐵 × 𝐴 by

𝑅−1 = {(𝑦, 𝑥) ∣ (𝑥, 𝑦) ∈ 𝑅}.
3.1.7 Exercise. Any function 𝑓: 𝐴 → 𝐵 can be taken as a relation, so it must have
an inverse (as a relation). Prove that the inverse is again a function if and only if 𝑓
is bijective.

3.2 Equivalence relations
3.2.1 Definition. A relation on a set 𝐴 is called

• reflexive if (∀𝑎 ∈ 𝐴)(𝑎𝑅𝑎),
• symmetric if (∀𝑎, 𝑏 ∈ 𝐴)(𝑎𝑅𝑏 ⇒ 𝑏𝑅𝑎),
• transitive if (∀𝑎, 𝑏, 𝑐 ∈ 𝐴)((𝑎𝑅𝑏 ∧ 𝑏𝑅𝑐) ⇒ 𝑎𝑅𝑐)

3.2.2 Definition. A relation 𝑅 on a set 𝐴 is called an equivalence if it is reflexive,
symmetric, and transitive.
3.2.3 Examples. The motivating example is the equality. But there are others. You
may know congruence from Euclidean geometry, which is an equivalnce. Here, we
studied the congruence of numbers modulo, which we proved to be an equivalence.
3.2.4 Definition. Let ∼ be an equivalence on a set 𝐴. For every 𝑎 ∈ 𝐴, we define
its equivalence class

[𝑎]∼ = {𝑥 ∈ 𝐴 ∣ 𝑥 ∼ 𝑎}.
The set of all equivalence classes is called the quotient set and denoted

𝐴/∼ = {[𝑎] ∣ 𝑎 ∈ 𝐴}.
Any element 𝑏 of some equivalence class is called its representative.
3.2.5 Examples. What are the equivalence classes of the following relations?

22

• Take the relation of congruence modulo 𝑛 on the set ℤ of all integers. For
simplicity, take 𝑛 = 3 first:

[0] = {𝑥 ∈ ℤ ∣ 𝑥 ≡ 0 (mod 3)} = {3𝑘 ∣ 𝑘 ∈ ℤ}
[1] = {𝑥 ∈ ℤ ∣ 𝑥 ≡ 1 (mod 3)} = {3𝑘 + 1 ∣ 𝑘 ∈ ℤ}
[2] = {𝑥 ∈ ℤ ∣ 𝑥 ≡ 2 (mod 3)} = {3𝑘 + 2 ∣ 𝑘 ∈ ℤ}
[3] = {𝑥 ∈ ℤ ∣ 𝑥 ≡ 3 ≡ 0 (mod 3)} = [0]
[4] = {𝑥 ∈ ℤ ∣ 𝑥 ≡ 4 ≡ 1 (mod 3)} = [1]

...

So, there are just three equivalence classes of congruence modulo 3 – namely
[0], [1], [2]. In general, congruence modulo 𝑛 has 𝑛 classes [0], [1],. . . , [𝑛 − 1].
They are called the residue classes since

[𝑖] = {𝑥 ∈ ℤ ∣ 𝑥 ≡ 𝑖 (mod 𝑛)} = {𝑛𝑘 + 𝑖 ∣ 𝑘 ∈ ℤ}
= {numbers with remainder 𝑖 when dividing by 𝑛}

.

• Take 𝐴 = {all students, who passed DMG last year} and define 𝑎 ∼ 𝑏 if the
student 𝑎 got the same grade from the exam. There will be five equivalence
classes corresponding to the five possible grades A, B, C, D, E they could get.

• Take again the set of all integers ℤ and define 𝑥 ∼ 𝑦 if and only if 𝑥2 ≡
𝑦2 (mod 5). Show that there are three equivalence classes [0], [1], [2].

• Take 𝐴 = ℝ2 and define (𝑥1, 𝑦1) ∼ (𝑥2, 𝑦2) if and only if 𝑥2
1 +𝑦2

1 = 𝑥2
2 +𝑦2

2. Then
the equivalence class [(𝑥, 𝑦)] is the unique circle in ℝ2 with the centre in (0, 0)
that goes through the point (𝑥, 𝑦). The set of equivalence classes 𝐴/∼ can be
parametrized by a non-negative real number 𝑟 ≥ 0, which stands for the radius
of the corresponding circle.

3.2.6 Definition. Let 𝐴 be a set. A partition of 𝐴 is a set 𝑃 ⊆ P(𝐴) = {𝐵 ⊆ 𝐴}
of subsets of 𝐴 that

1. are non-empty, i.e. 𝐵 ≠ ∅ for every 𝐵 ∈ 𝑃,
2. are mutually disjoint, i.e. 𝐵 ∩ 𝐶 = ∅ for every 𝐵, 𝐶 ∈ 𝑃,
3. cover 𝐴, i.e. ⋃ 𝑃 = 𝐴.

3.2.7 Theorem. Let 𝐴 be a set. There is the following one-to-one correspondence
between equivalence relations on 𝐴 and partitions on 𝐴.

1. If ∼ is an equivalence on 𝐴, then 𝐴/∼ is a partition of 𝐴.
2. If 𝑃 is a partition of 𝐴, then we can define an equivalence on 𝐴 by 𝑥 ∼ 𝑦 ⇔

(∃𝐵 ∈ 𝑃)(𝑥, 𝑦 ∈ 𝐵)

3.2.8 Example. Consider 𝐴 = {1, 2, 3, 4, 5, 6} and 𝑅 = {(1, 2), (3, 2), (4, 5)}. Is
𝑅 an equivalence? Certainly no! It is clearly neither reflexive, nor symmetric, nor
transitive. Well, so try to figure out the smallest possible relation ∼ ⊆ 𝐴 × 𝐴 which
contains 𝑅 and which is an equivalence. We can do this by first determining the

23

equivalence classes. You see that 1𝑅2 and 3𝑅2. If 𝑅̄ is supposed to be an equivalence,
then all the elements 1, 2, 3 must be mutually in relation. They will form one of the
equivalence classes. Similarly, 4 and 5 are in a relation, so this will be the second
equivalence class and 6 is not in a relation with anything, so it will have its own
equivalence class.

So, we found out that 𝐴/∼ = {{1, 2, 3}, {4, 5}, {6}}. The equivalence is then
formally given by

∼ = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 1), (1, 3), (3, 1), (2, 3), (3, 2),
(4, 4), (5, 5), (4, 5), (5, 4), (6, 6)}.

But if we wanted to be more practical and explain to somebody, how this
relation works, we would just say that 1 ∼ 2 ∼ 3 ≁ 4 ∼ 5 ≁ 6 ≁ 1 and that it
is an equivalence, from which the rest follows. Or it is just enough to specify the
equivalence classes.

In order to prove the theorem, the following observation is crucial.

3.2.9 Lemma. Suppose ∼ is an equivalence on a set 𝐴. Then, for every 𝑎, 𝑏 ∈ 𝐴,

a) 𝑎 ∼ 𝑏 ⇒ [𝑎] = [𝑏],
b) 𝑎 ≁ 𝑏 ⇒ [𝑎] ∩ [𝑏] = ∅.

Proof. [(𝑎 ∼ 𝑏) ⇒ ([𝑎] = [𝑏])]: Let us first prove that [𝑎] ⊆ [𝑏]. Take any 𝑥 ∈ [𝑎]. We
are trying to prove that 𝑥 ∈ [𝑏] as well. The fact 𝑥 ∈ [𝑎] means that 𝑥 ∼ 𝑎. Since
𝑎 ∼ 𝑏, it follows by transitivity of ∼ that 𝑥 ∼ 𝑏. Hence, 𝑥 ∈ [𝑏]. The other inclusion
works similar.

[(𝑎 ≁ 𝑏) ⇒ ([𝑎] ∩ [𝑏] = ∅)]: Suppose there is 𝑥 ∈ [𝑎] ∩ [𝑏]. This means that 𝑥 ∼ 𝑎
and 𝑥 ∼ 𝑏. By symmetry of ∼, we have 𝑎 ∼ 𝑥 and by transitivity 𝑎 ∼ 𝑏. This is a
contradiction. □

Proof of Theorem 3.2.7. The theorem has two parts, so let us prove them sepa-
rately.

1. Take any equivalence ∼. We need to prove the defining properties of a parti-
tion. First, by reflexivity of ∼, all the equivalence classes are non-empty as 𝑎 ∈ [𝑎].
Second, the fact that the classes are mutually disjoint follows from Lemma 3.2.9.
Finally, the fact that the classes cover 𝐴 comes again from reflexivity as any 𝑎 ∈ 𝐴
is an element of [𝑎].

2. Take any partition 𝑃. Proving that the given relation is an equivalence is
straightforward. Do it as an exercise.

Finally, the reader may easily check that this is indeed a one-to-one correspon-
dence: If you start with an equivalence ∼, construct the corresponding partition
𝑃 = 𝐴/∼ and then reconstruct the equivalence again, you must obtain the same
thing you started with. The same work when starting with a partition 𝑃. □

24

3.3 Partial order
There are some other reasonable properties one might require from a relation. For
instance, instead of being symmetric, one might require the following:

3.3.1 Definition. A relation 𝑅 on a set 𝐴 is called antisymmetric if (∀𝑎, 𝑏 ∈
𝐴)(𝑎𝑅𝑏 ∧ 𝑏𝑅𝑎 ⇒ 𝑎 = 𝑏).

3.3.2 Definition. A relation 𝑅 on a set 𝐴 is called a partial order if it is reflexive,
antisymmetric and transitive.

3.3.3 Examples.

• Take any set 𝑆 and 𝐴 = P(𝑆). Then the relation ⊆ is a partial order on 𝐴.
• For 𝐴 = ℝ, we can consider the standard order ≤, which is a partial order. In

this case, it is not only a partial order, but actually a total order as for any
𝑥, 𝑦 ∈ ℝ, we have 𝑥 ≤ 𝑦 or 𝑦 ≤ 𝑥.

• For 𝐴 = ℕ, the relation divides is a partial order.

3.3.4 Exercise. As you can easily check, the strict order < on ℝ is not a partial
order. It is neither reflexive, nor antisymmetric. Try to modify these two axioms, so
that < would satisfy them. The modified axioms are known as being irreflexive and
asymmetric.

4 Abstract algebra
4.1 Basic algebraic structures
4.1.1 Definition. Let 𝑆 be a set. A binary operation on 𝑆 is a mapping 𝑆×𝑆 → 𝑆.

The operation is usually denoted by some symbol such as +, −, ⋅, ×, ∘, •, ∗, . . .
So, we map for instance (𝑥, 𝑦) ↦ 𝑥 ∗ 𝑦.

4.1.2 Definition. An operation ⋅: 𝑆 × 𝑆 → 𝑆 is called

• associative if (𝑥 ⋅ 𝑦) ⋅ 𝑧 = 𝑥 ⋅ (𝑦 ⋅ 𝑧),
• commutative if 𝑥 ⋅ 𝑦 = 𝑦 ⋅ 𝑥.

4.1.3 Definition. A semigroup is a pair (𝑆, ⋅), where 𝑆 is a set and ⋅ is a binary
operation on 𝑆, which is associative.

4.1.4 Examples.

• (ℝ, +), (ℤ, +), (ℕ, +) are a semigroups.
• Subtraction − is an operation on ℝ as well as ℤ. Nevertheless, it is not associa-

tive, so neither (ℝ, −), nor (ℤ, −) is a semigroup. It does not restrict to ℕ as for
instance 2 − 3 ∉ ℕ, so − is not a well-defined operation on ℕ at all.

• (ℝ, ⋅), (ℤ, ⋅), (ℕ, ⋅) are semigroups.
• (𝑀𝑛, +), (𝑀𝑛, ⋅) are semigroups, where 𝑀𝑛 stands for the set of 𝑛 × 𝑛 matrices

with entries in ℝ (or any semigroup actually).
• For any set 𝑋, (𝑋𝑋, ∘) is a semigroup, where 𝑋𝑋 = {𝑓: 𝑋 → 𝑋} and ∘ is the

composition of functions.

25

4.1.5 Definition. Let 𝑆 be a set, ⋅ a binary operation on 𝑆. An element 𝑒 ∈ 𝑆 is
called a neutral element (or an identity)5 with respect to ⋅ if, for every 𝑥 ∈ 𝑆,
𝑥 ⋅ 𝑒 = 𝑥 = 𝑒 ⋅ 𝑥.

4.1.6 Definition. A semigroup that contains an identity is called a monoid.

4.1.7 Examples.

• (ℝ, +) is a monoid with 𝑒 = 0. The same holds for (ℤ, +).
• (ℝ, ⋅) is a monoid with 𝑒 = 1. The same holds for (ℤ, ⋅).
• (ℕ, +) is not a monoid, but (ℕ, ⋅) is a monoid.
• (𝑀𝑛, +) is a monoid with 𝑒 = 𝕆, (𝑀𝑛, ⋅) is a monoid with 𝑒 = 𝕀.
• (𝑆𝑥, ∘) is a monoid with 𝑒 = id, where id is the identity function id(𝑥) = 𝑥.

4.1.8 Proposition. Let 𝑆 be a set. For any operation ⋅ on 𝑆, there is at most one
neutral element.
Proof. Suppose 𝑒1, 𝑒2 ∈ 𝑆 are both neutral elements. Then 𝑒1 = 𝑒1𝑒2 = 𝑒2. □

4.1.9 Definition. Let (𝑆, ⋅) be a monoid with identity 𝑒. We say that an element
𝑥 ∈ 𝑆 has an inverse 𝑦 ∈ 𝑆 if 𝑥 ⋅ 𝑦 = 𝑒 = 𝑦 ⋅ 𝑥.

4.1.10 Proposition. Let (𝑆, ⋅) be a monoid. If an element 𝑥 ∈ 𝑆 has an inverse,
then it is given uniquely.
Proof. Consider 𝑥 ∈ 𝑆 and suppose 𝑦1, 𝑦2 ∈ 𝑆 are both its inverse. Then

𝑦1 = 𝑦1𝑒 = 𝑦1(𝑥𝑦2) = (𝑦1𝑥)𝑦2 = 𝑒𝑦2 = 𝑦2. □

4.1.11 Notation. Let (𝑆, ⋅) be a monoid. If 𝑥 ∈ 𝑆 is invertible (has an inverse),
we denote the inverse by 𝑥−1. If the operation in the monoid is denoted by +, then
the inverse of 𝑥 is usually denoted by −𝑥. Note that typically the sign + is used to
denote group operation only for abelian groups.

4.1.12 Proposition. Let (𝑆, ⋅) be a monoid with a unit 𝑒. Then

1. The unit is invertible with 𝑒−1 = 𝑒.
2. If 𝑥 ∈ 𝑆 is invertible, then 𝑥−1 is invertible and (𝑥−1)−1 = 𝑥.
3. If 𝑥, 𝑦 ∈ 𝑆 are invertible, then 𝑥 ⋅ 𝑦 is invertible and (𝑥 ⋅ 𝑦)−1 = 𝑦−1 ⋅ 𝑥−1.

Proof. Follows from the following:

1. 𝑒 ⋅ 𝑒 = 𝑒,
2. 𝑥 ⋅ 𝑥−1 = 𝑒 = 𝑥−1 ⋅ 𝑥,
3. 𝑥𝑦 ⋅ (𝑦−1𝑥−1) = 𝑥(𝑦𝑦−1)𝑥−1 = 𝑥𝑒𝑥−1 = 𝑥𝑥−1 = 𝑒 = · · · = (𝑦−1𝑥−1)𝑥𝑦. □

4.1.13 Definition. A monoid where every element is invertible is called a group.
A group is called abelian if the corresponding operation is commutative.

4.1.14 Examples.

5 Actually the neutral element or the identity. See Prop. 4.1.8

26

• (ℝ, +), (ℤ, +) are abelian groups.
• (ℕ0, +) is a monoid, but not a group.
• (ℝ, ⋅) is not a group as 0 ∈ ℝ is not invertible.
• (ℝ ∖ {0}, ⋅) is an abelian group. Also (ℝ+, ⋅) is an abelian group.
• (ℤ, ⋅) as well as (ℕ, ⋅) is not a group.
• (𝑀𝑛, +) is an abelian group, while is (𝑀𝑛, ⋅) is not a group.
• (GL𝑛, ⋅) is a non-abelian group, where GL𝑛 is the set of all invertible 𝑛 × 𝑛

matrices with entries in ℝ (or any field).
• (𝑋𝑋, ∘) is not a group, but (𝑆𝑋, ∘) is a group, where 𝑆𝑋 is the set of all bijections

𝑋 → 𝑋.
4.1.15 Theorem. Let (𝑆, ⋅) be a semigroup. Then (𝑆, ⋅) is a group if and only if
𝑆 ≠ ∅ and, for every 𝑎, 𝑏 ∈ 𝑆, the equations 𝑎 ⋅ 𝑥 = 𝑏 and 𝑦 ⋅ 𝑎 = 𝑏 have a solution.
If this is true, then the solution is unique.
Proof. ⇒: Suppose (𝑆, ⋅) is a group. Then we can easily check that the solution is
𝑥 = 𝑎−1𝑏 and 𝑦 = 𝑏𝑎−1.

⇐: We need to check that (𝑆, ⋅) is a group. For that, we first need to find the
unit. Take any 𝑎 ∈ 𝑆 and 𝑏: = 𝑎 and denote the solution of the first equation by
𝑒𝑎. So, 𝑎𝑒𝑎 = 𝑎. Now, take arbitrary 𝑏 ∈ 𝑆. We find 𝑦 ∈ 𝑆 such that 𝑏 = 𝑦𝑎, so
𝑏𝑒𝑎 = 𝑦𝑎𝑒𝑎 = 𝑦𝑎 = 𝑏. So, 𝑒: = 𝑒𝑎 is a right unit. By a similar procedure, we find a
left unit 𝑒′ satisfying 𝑒′𝑏 = 𝑏 for every 𝑏 ∈ 𝑆. But now 𝑒 = 𝑒′𝑒 = 𝑒′, so both must
coincide and we have the unit. Finally, we must find the inverse for every 𝑎 ∈ 𝑆. For
that, solve equations 𝑎𝑥 = 𝑒 and 𝑦𝑎 = 𝑒. Then 𝑥 is the right inverse of 𝑎 and 𝑦 is
the left inverse of 𝑏. But these two must coincide by the proof of Proposition 4.1.10.

Finally, we prove the uniqueness. Suppose 𝑥1, 𝑥2 both satisfy the first equation.
Then 𝑥1 = 𝑒𝑥1 = 𝑎−1𝑎𝑥1 = 𝑎−1𝑏 = 𝑎−1𝑎𝑥2 = 𝑒𝑥2 = 𝑥2. Similarly for the second
equation. □

4.2 Groups associated to ℤ𝑛
4.2.1 Definition. Denoting ≡𝑛 the relation of congruence modulo 𝑛 for some 𝑛 ∈ ℕ,
we define

ℤ𝑛 = ℤ/≡𝑛 = {[0]𝑛, [1]𝑛, . . . , [𝑛 − 1]𝑛},
where

[𝑖]𝑛 = {𝑥 ∈ ℤ ∣ 𝑥 ≡ 𝑖 (mod 𝑛)}.
If it is clear, which 𝑛, we take, we will usually omit the subscript 𝑛.6

We define the operations + and ⋅ on ℤ𝑛 as follows:

[𝑖] + [𝑗] = [𝑖 + 𝑗],
[𝑖] ⋅ [𝑗] = [𝑖𝑗] for any 𝑖, 𝑗 ∈ ℤ.

Before proceding further, we have to prove that this is a good definition – we
have to prove that the result of these operations does not depend on the particular
representatives of the equivalence classes we took.

6 People are typically omitting the brackets as well and write just 𝑖 ∈ ℤ𝑛 instead of [𝑖] ∈ ℤ𝑛. I
do not recommend doing that until you start feeling really familiar with ℤ𝑛.

27

That is, for the addition +, we have to show that taking 𝑖′, 𝑗′ such that [𝑖′] = [𝑖]
and [𝑗′] = [𝑗], we have [𝑖′ + 𝑗′] = [𝑖 + 𝑗]. Well, our assumption means that 𝑖′ ≡ 𝑖 and
𝑗′ ≡ 𝑗. Now, we can sum these two congruences and obtain 𝑖′ + 𝑗′ ≡ 𝑖 + 𝑗. And this
is exactly what we need.

For multiplication, it works the same.

4.2.2 Remark. By this, we just proved the fact that you we were intuitively using
already when working with congruences. If we have any expression involving just
addition and multiplication in a congruence modulo 𝑛, we can replace any number
𝑥 ∈ ℤ by any other number 𝑦 ∈ ℤ which is congruent to 𝑥.

4.2.3 Proposition. (ℤ𝑛, +) is an abelian group for any 𝑛 ∈ ℕ.
Proof. Clearly, the operation + is associative and commutative, because it has these
properties on ℤ. Clearly, [0] is a neutral element. Finally, for any [𝑖] ∈ ℤ𝑛, we have
the inverse −[𝑖] = [−𝑖].

4.2.4 Example. Take 𝑛 = 3, 4. We can write the Cayley table for ℤ𝑛.

+ [0] [1] [2]
[0] [0] [1] [2]
[1] [1] [2] [0]
[2] [2] [0] [1]

+ [0] [1] [2] [3]
[0] [0] [1] [2] [3]
[1] [1] [2] [3] [0]
[2] [2] [3] [0] [1]
[3] [3] [0] [1] [2]

Now, what about multiplication. Does it also form a group?

4.2.5 Proposition. (ℤ𝑛⋅) is a commutative monoid for any 𝑛 ∈ ℕ.
Proof. Exercise! □

4.2.6 Example. Again, write the Cayley table for 𝑛 = 3, 4.

� [0] [1] [2]
[0] [0] [0] [0]
[1] [0] [1] [2]
[2] [0] [2] [1]

� [0] [1] [2] [3]
[0] [0] [0] [0] [0]
[1] [0] [1] [2] [3]
[2] [0] [2] [0] [2]
[3] [0] [3] [2] [1]

Now, we can see that ℤ𝑛 is clearly never a group with respect to the multipli-
cation simply because [0] ⋅ [𝑖] = [0] for every 𝑖 and hence [0] is never invertible. We
might try the idea of simply removing the [0] and ask, whether (ℤ𝑛 ∖[0], ⋅) is a group.
This looks that it might work for 𝑛 = 3, but it will not work for 𝑛 = 4 as you can
see that [2] ⋅ [2] = [0]. Let’s try to understand the invertibility of elements in (ℤ𝑛, ⋅)
better by computing some more complicated example.

4.2.7 Problem. Find the inverse of [13] in ℤ36.
Solution. We look for [𝑗] ∈ ℤ36 such that [13][𝑗] = [1]. That is, we are trying to find
𝑗 ∈ ℤ such that 13𝑗 ≡ 1 (mod 36). We know how to do that! Just solve 1 = 13𝑗+36𝑘.

28

First, do the Euclid’s algorithm:

36 = 2 ⋅ 13 + 10
13 = 1 ⋅ 10 + 3
10 = 3 ⋅ 3 + 1

Now, express

1 = 10 − 3 ⋅ 3 = −3 ⋅ 13 + 4 ⋅ 10 = 4 ⋅ 36 − 11 ⋅ 13,

so we found out that [−11][13] = [1]. That is [13]−1 = [−11] = [25].
Will this computation work always? When does it fail?

4.2.8 Proposition. Consider 𝑖, 𝑛 ∈ ℕ. Then [𝑖] is invertible in ℤ𝑛 if and only if
𝑖 ⟂ 𝑛.
Proof. By Theorem 2.4.11, there is 𝑗 ∈ ℤ with 𝑖𝑗 ≡ 1 if and only if 𝑖 ⟂ 𝑛.

4.2.9 Proposition. Let (𝑆, ⋅) be a monoid. Denote by 𝐺 the set of all invertible
elements in 𝑆. Then (𝐺, ⋅) is a group.
Proof. Follows from 4.1.12. □

4.2.10 Definition. For any 𝑛 ∈ ℕ, we denote by 𝑍×
𝑛 the group of all invertible

elements in ℤ𝑛 with respect to the multiplication.

4.2.11 Proposition. If 𝑝 is a prime, then all elements [𝑖] ∈ ℤ𝑝, [𝑖] ≠ [0] are invertible.
Therefore, ℤ𝑝 ∖ {[0]} = ℤ×

𝑝 is a group with respect to the multiplication.
Proof. For any 𝑖, 0 < 𝑖 < 𝑝, we clearly have gcd(𝑖, 𝑝) = 1. □

If 𝑛 is not a prime, we have to kick out more elements than just [0] from ℤ𝑛 to
obtain a group. So, it is not clear on the first sight, how many elements ℤ×

𝑛 should
have.

4.2.12 Definition. We define the Euler’s totient function 𝜙: ℕ → ℕ as

𝜙(𝑛) = #{𝑘 ∈ ℕ ∣ 𝑘 ≤ 𝑛, 𝑘 ⟂ 𝑛} = |ℤ×
𝑛 |.

4.2.13 Example. Let 𝑝, 𝑞 be prime numbers. Try to prove that

𝜙(𝑝) = 𝑝 − 1, 𝜙(𝑝𝑘) = 𝑝𝑘 − 𝑝𝑘−1, 𝜙(𝑝𝑞) = (𝑝 − 1)(𝑞 − 1).

4.2.14 Theorem. It holds that 𝜙(𝑛𝑚) = 𝜙(𝑛)𝜙(𝑚) if 𝑛 ⟂ 𝑚.
We will not prove this theorem as it would require too much time. But in

connection with Example 4.2.13 it gives us a practical way of computing the 𝜙(𝑛)
for any 𝑛. For any 𝑛, consider its prime decomposition 𝑛 = 𝑝𝑖1

1 · · · 𝑝𝑖𝑘
𝑘 such that all

the primes 𝑝1, . . . , 𝑝𝑘 are mutually distinct. Then

𝜙(𝑛) = (𝑝𝑖1
1 − 𝑝𝑖1−1

1) ⋅ (𝑝𝑖𝑘
𝑘 − 𝑝𝑖𝑘−1

𝑘) = 𝑝𝑖1−1
1 · · · 𝑝𝑖𝑘−1

𝑘 (𝑝1 − 1) · · · (𝑝𝑘 − 1).

As a motivation for the following section, we mention the following result:

29

4.2.15 Theorem (Euler). Consider, 𝑎, 𝑛 ∈ ℕ, 𝑎 ⟂ 𝑛. Then

𝑎𝜙(𝑛) ≡ 1 (mod 𝑛).

Notice that the Theorem is a generalization of Little Fermat’s theorem. Indeed,
if you take 𝑛 = 𝑝 to be a prime number, then 𝜙(𝑝) = 𝑝 − 1, so we exactly get what
we already know.

It is possible to prove this theorem directly, but the group theory allows us to
prove it in a much more elegant way. In fact, we are going to show in the next section
that 𝑎|𝐺| = 𝑒 for any finite group 𝐺 and any 𝑎 ∈ 𝐺.

4.3 Subgroups
4.3.1 Definition. Let (𝑆, ⋅) be a semigroup. We say that a set 𝑇 ⊆ 𝑆 forms a
subsemigroup of if, for every 𝑎, 𝑏 ∈ 𝑇, we have 𝑎 ⋅ 𝑏 ∈ 𝑇.

4.3.2 Observation. Let (𝑆, ⋅) be a semigroup and 𝑇 ⊂ 𝑆 a subsemigroup. Then
(𝑇 , ⋅) is a semigroup.
Proof. Exercise! □

The idea indeed is that a subsemigroup is just a subset, which itself is a semi-
group with respect to the same operation.

4.3.3 Examples.

• (ℕ, +) is a subsemigroup of (ℤ, +).
• (ℝ+, ⋅) is a subsemigroup of (ℝ, ⋅).
• (GL𝑛, ⋅) is a subsemigroup of (𝑀𝑛, ⋅).
• (GL𝑛, +) is not a subsemigroup of (𝑀𝑛, +).

4.3.4 Definition. Let (𝑆, ⋅) be a monoid with a unit 𝑒. A subsemigroup 𝑇 ⊂ 𝑆 is
called a submonoid if 𝑒 ∈ 𝑇.

4.3.5 Exercise. Go through the above examples of subsemigroups. Which of them
are submonoids?

4.3.6 Remark. Again, a submonoid is just a subset, which is also a monoid with
respect to the same operation and the same unit. The latter condition is essential!
It can happen that a monoid has a subsemigroup, which is a monoid again, but it
is not a submonoid as it has a different unit.

The simplest example can be constructed as follows. Consider 𝑆 = {(𝑎, 𝑏) ∣
𝑎, 𝑏 ∈ ℤ} with an operation (𝑎, 𝑏) ⋅ (𝑐, 𝑑) = (𝑎𝑐, 𝑏𝑑). This is a monid with the unit
(1, 1). Now, we can construct a subsemigroup 𝑇 = {(𝑎, 0) ∣ 𝑎 ∈ ℤ} ⊂ 𝑆. It actually
is a monoid with respect to the unit 𝑒′ = (1, 0). But since the unit is different, it is
not a submonoid.

4.3.7 Definition. Let (𝐺, ⋅) be a group with a unit 𝑒. Then a subset 𝐻 ⊂ 𝐺 forms
a subgroup of 𝐺 if

1. for all 𝑥, 𝑦 ∈ 𝐻, we have 𝑥𝑦 ∈ 𝐻,

30

2. we have 𝑒 ∈ 𝐻,
3. for all 𝑥 ∈ 𝐻, we have 𝑥−1 ∈ 𝐻.

4.3.8 Proposition (Equivalent definition of a subgroup). Let (𝐺, ⋅) be a group.
Then 𝐻 ⊂ 𝐺 forms a subgroup if and only if 𝐻 ≠ ∅ and, for every 𝑥, 𝑦 ∈ 𝐻, we have
𝑥𝑦−1 ∈ 𝐻.
Proof. Exercise! □

4.3.9 Proposition. Let (𝐺, ⋅) be a group. Suppose 𝐻1, 𝐻2 ⊆ 𝐺 are subgroups. Then
𝐻1 ∩ 𝐻2 is a subgroup.
Proof. Exercise! □

4.3.10 Definition. Let (𝐺, ⋅) be a group, 𝑔1, . . . , 𝑔𝑛 ∈ 𝐺. We denote by ⟨𝑔1, . . . , 𝑔𝑛⟩
the smallest7 subgroup containing the elements 𝑔1, . . . , 𝑔𝑛. We say call it the sub-
group generated by 𝑔1, . . . , 𝑔𝑛.

4.3.11 Exercise. Use Proposition 4.3.9 to prove that ⟨𝑔1, . . . , 𝑔𝑛⟩ always exists.

4.3.12 Problem. What is the smallest subgroup of (ℤ, +) containing the element
3 ∈ ℤ?
Solution. Let us denote the subgroup by ⟨3⟩. Since it is supposed to be a subgroup,
it must be closed under the operation +. So, it must contain also 3 + 3 = 6, 9, 12,
15, . . . It must also contain the neutral element 0. And it must also be closed under
taking the inverse (opposite number), so it must also contain −3, −6, −9 . . . We can
guess that the solution is

⟨3⟩ = {3𝑗 ∣ 𝑗 ∈ ℤ} = 3ℤ.

It remains to show that this is indeed a subgroup.

4.3.13 Proposition. For any 𝑘 ∈ ℤ, the set

𝑘ℤ = {𝑗𝑘 ∣ 𝑗 ∈ ℤ}

forms a subgroup of (ℤ, +).
Proof. Take any 𝑗1, 𝑗2 ∈ ℤ. Then 𝑗1𝑘 − 𝑗2𝑘 = (𝑗1 − 𝑗2)𝑘 ∈ 𝑘ℤ, which is according
to Proposition 4.3.8 enough. □

4.3.14 Problem. In (ℤ35, +), find ⟨[5]⟩, ⟨[7]⟩, ⟨[10]⟩, ⟨[6]⟩. How many elements do
these subgroups have?
Solution. Let’s start with ⟨[5]⟩. Since it is a subgroup, it must contain also [10],
[15], . . . and also [0]. That’s actually enough. We claim that

⟨[5]⟩ = {[0], [5], [10], [15], [20], [25], [30]} = {[5𝑘] ∣ 𝑘 = 0, 1, . . . , 6}.

It is indeed a subgroup since [5𝑘] − [5𝑙] = [5(𝑘 − 𝑙)] and the remainder of 5(𝑘 − 𝑙)
when dividing by 35 must be between 0 and 34 and it clearly must be a multiple of

7 Smallest with respect to the partial order being a subgroup. That is, if 𝐻 ⊆ 𝐺 is a subgroup
containing 𝑔1, . . . , 𝑔𝑛, then necessarily ⟨𝑔1, . . . , 𝑔𝑚⟩ ⊆ 𝐻.

31

five, so it must be one of the above numbers. As we can see, this subgroup has seven
elements. (Note that 7 = 35/5.)

For [7] it works the same. We find out that

⟨[7]⟩ = {[0], [7], [14], [21], [28]} = {[7𝑘] ∣ 𝑘 = 0, 1, 2, 3, 4}.

This subgroup has five elements. Again, recall that 35 = 5 ⋅ 7. Coincidence? I think
not.

For [10], it is a bit trickier. It must contain [0], [10], [20], [30], [40] = [5], [15],
[25], and again [35] = [0]. After all, we find out that actually ⟨[10]⟩ = ⟨[5]⟩.

Finally, maybe the most surprising is ⟨[6]⟩. It must contain [0], [6], [12], [18], [24],
[30], [36] = [1], [7], [13] . . . We could continue. But wait a moment. If it contains [1],
it must contain [2], [3], [4] and so on. So, actually, it is the whole group! ⟨[6]⟩ = ℤ35

The purpose of the following will be trying to understand the behaviour above.

4.3.15 Definition. Let (𝐺, ⋅) be a group, 𝐻 ⊂ 𝐺 a subgroup. For any 𝑔 ∈ 𝐺, we
define it’s left coset with respect to 𝐻 as

𝑔𝐻 = {𝑔ℎ ∣ ℎ ∈ 𝐻}.

We denote by 𝐺/𝐻 = {𝑔𝐻 ∣ 𝑔 ∈ 𝐺} the set of all left cosets.

4.3.16 Theorem. Let (𝐺, ⋅) be a group and 𝐻 ⊂ 𝐺 its subgroup. Then 𝐺/𝐻 is a
partition of 𝐺.
Proof. The cosets are clearly non-empty since any subgroup is non-empty (contain-
ing at least the identity). Secondly, the cosets clearly cover 𝐺 as 𝑔 ∈ 𝑔𝐻 for every
𝑔 ∈ 𝐺 (taking ℎ = 𝑒. Finally, we have to show that the cosets are mutually disjoint.
That is, taking 𝑔1, 𝑔2 ∈ 𝐺, we have to show that either 𝑔1𝐻 = 𝑔2𝐻 or 𝑔1𝐻 ∩𝑔2𝐻 = ∅.
Assume that 𝑔1𝐻 ∩ 𝑔2𝐻 ≠ ∅. So, there are ℎ1, ℎ2 ∈ 𝐻 such that 𝑔1ℎ1 = 𝑔2ℎ2. But
then, for any ℎ ∈ 𝐻,

𝑔1ℎ = 𝑔1ℎ1ℎ−1
1 ℎ = 𝑔2ℎ2ℎ−1

1 ℎ ∈ 𝑔2𝐻,

so 𝑔1𝐻 ⊆ 𝑔2𝐻. Similarly, we show the opposite inclusion and prove the desired
equality 𝑔1𝐻 = 𝑔2𝐻. □

4.3.17 Corollary. There is an equivalence relation

𝑔1 ∼ 𝑔2 ⇔ 𝑔1𝐻 = 𝑔2𝐻.

4.3.18 Exercise. Prove that 𝑔1 ∼ 𝑔2 if and only if 𝑔−1
2 𝑔1 ∈ 𝐻.

4.3.19 Remark. We can also define right cosets as 𝐻𝑔 = {ℎ𝑔 ∣ 𝑔 ∈ 𝐺} that would
define another equivalence 𝑔1 ∼ 𝑔2 if and only if 𝐻𝑔1 = 𝐻𝑔2, which holds if and only

32

if 𝑔2𝑔−1
1 ∈ 𝐻. If the group is commutative, then these two notions are the same. If

the group is not commutative, then they might and might not be the same.

4.3.20 Notation. If the opretaion is written additively (using the + sign), we write
𝑔 + 𝐻 instead of 𝑔𝐻.

4.3.21 Example. Take the group (ℤ, +) and its subgroup 𝑛ℤ. Then the cosets are
given by

𝑗 + 𝑛ℤ = {𝑗 + 𝑘𝑖 ∣ 𝑖 ∈ ℤ} = [𝑗]𝑛.

So, they are the residue classes modulo 𝑛. That is, ℤ/𝑛ℤ = ℤ𝑛. What is the equiv-
alence? Well, 𝑖 ∼ 𝑗 if and only if [𝑖] = [𝑗] if and only if 𝑖 − 𝑗 ∈ 𝑛ℤ. So, it is the
congruence modulo 𝑛.

4.3.22 Exercise. Suppose (𝐺, ⋅) is a group and ≡ is an equivalence on 𝐺 such that

𝑎 ≡ 𝑏 ∧ 𝑐 ≡ 𝑑 ⇒ 𝑎 ⋅ 𝑐 ≡ 𝑏 ⋅ 𝑑. (∗)

Prove that 𝐺/≡ is a group with respect to the operation [𝑥] ⋅ [𝑦] = [𝑥 ⋅ 𝑦]. (Do not
forget to prove that such an operation is well defined.) If 𝑒 is the unit of 𝐺, prove that
[𝑒] is a subgroup of 𝐺. Show that the associated cosets coincide with the equivalence
classes, i.e. 𝑥[𝑒] = [𝑥]. Conversely, given any subgroup 𝐻, prove that the associated
equivalence defined by Corollary 4.3.17 satisfies (∗) if and only if 𝑔𝐻 = 𝐻𝑔 for every
𝑔 ∈ 𝐺.

4.3.23 Definition. Let (𝐺, ⋅) be a group, 𝐻 ⊆ 𝐺 a subgroup. Then 𝐻 is called
normal if 𝑔𝐻 = 𝐻𝑔 for every 𝑔 ∈ 𝐺. In this case, we define the quotient group
to be the set of cosets 𝐺/𝐻 with respect to the operation [𝑔1][𝑔2] = [𝑔1𝑔2], where
[𝑔] = 𝑔𝐻.

4.3.24 Definition. Let (𝐺, ⋅) be a group, 𝐻 ⊆ 𝐺 a subgroup. Then the number of
cosets |𝐺/𝐻| is called the index of 𝐻 and denoted by [𝐺: 𝐻].

4.3.25 Definition. Let (𝐺, ⋅) be a group. We define the order of 𝐺 to be the number
of its elements (if 𝐺 is finite). If 𝐺 has infinitely many elements, we say that the
order is infinite.

4.3.26 Theorem (Lagrange). Let (𝐺, ⋅) be a finite group and 𝐻 ⊆ 𝐺 its subgroup.
Then |𝐺| = [𝐺: 𝐻] ⋅ [𝐻].
Proof. It is a direct consequence of the following lemma. □

4.3.27 Lemma. Suppose 𝐻 is finite. Then all left cosets have the same size |𝑔𝐻| =
|𝐻|.
Proof. Denote 𝐻 = {ℎ1, . . . , ℎ𝑛}. Then 𝑔𝐻 = {𝑔ℎ1, . . . , 𝑔ℎ𝑛}, so |𝑔𝐻| ≤ |𝐻|. But
also 𝐻 = {𝑔−1𝑔ℎ1, . . . , 𝑔−1𝑔ℎ𝑛}, so actually |𝐻| = |𝑔𝐻|. □

4.3.28 Notation. Let (𝐺, ⋅) be a group and 𝑒 its identity. Take 𝑎 ∈ 𝐺, 𝑘 ∈ ℕ. We
denote

𝑎0 = 𝑒, 𝑎𝑘 = 𝑎 ⋅ 𝑎 · · · 𝑎⏟
𝑘×

, 𝑎−𝑘 = 𝑎−1 ⋅ 𝑎−1 · · · 𝑎−1⏟⏟⏟⏟⏟⏟⏟
𝑘×

.

33

So, in total we define 𝑎𝑘 for any 𝑘 ∈ ℤ. If the operation is denoted by +, then we
rather use 𝑘𝑎 instead of 𝑎𝑘.
4.3.29 Proposition. Let (𝐺, ⋅) be a group, 𝑎 ∈ 𝐺. Then ⟨𝑎⟩ = {𝑎𝑗 ∣ 𝑗 ∈ ℤ}.
Proof. The right-hand-side clearly is a subgroup as 𝑎𝑗(𝑎𝑘)−1 = 𝑎𝑗−𝑘. Conversely,
any subgroup containing 𝑎 must also contain 𝑎𝑗 for any 𝑗 ∈ ℤ. □
4.3.30 Definition. Let (𝐺, ⋅) be a group, 𝑎 ∈ 𝐺. The smallest 𝑗 ∈ ℕ such that
𝑎𝑗 = 𝑒 is called the order of 𝑎. If there is no such 𝑗, we say that the order is infinite.
4.3.31 Observation. The order of 𝑎 is the order of ⟨𝑎⟩.
Proof. Exercise! □
4.3.32 Theorem. Let (𝐺, ⋅) be a finite group, 𝑎 ∈ 𝐺. Then the order of 𝑎 divides
the order of 𝐺.
Proof. By Lagrange’s theorem. □
4.3.33 Corollary (Euler’s theorem). Let 𝑎, 𝑛 ∈ ℕ, 𝑎 ⟂ 𝑛. Then 𝑎𝜙(𝑛) ≡
1 (mod 𝑛).
4.3.34 Definition. A group (𝐺, ⋅) is called cyclic if there is 𝑎 ∈ 𝐺 such that
𝐺 = ⟨𝑎⟩.
4.3.35 Observation. All (ℤ𝑛, +) ass well as (ℤ, +) are cyclic.
Proof. Clearly [1] ∈ ℤ𝑛 is a generator. For ℤ, 1 is a generator. □
4.3.36 Theorem. (ℤ×

𝑝 , ⋅) is cyclic whenever 𝑝 is a prime.
The proof of this theorem is beyond the scope of this subject, but let us check

it for a couple of examples.
4.3.37 Problem. Show that (ℤ×

7 , ⋅) is cyclic.
Solution. We just need to find a generator, i.e. an element 𝑎 ∈ ℤ×

7 of order 6. Let
us do some trial and error.

[1] clearly has order one.
What is the order of [2]?

[2]1 = [2], [2]2 = [4], [2]3 = [8] = [1],

so the order of [2] is 3.
What is the order of [3]?

[3]1 = 3, [3]2 = [2], [3]3 = [6], [3]4 = [4], [3]5 = [5], [3]6 = 1.

That’s it! We found a generator.
4.3.38 Problem. Show that (ℤ×

8 , ⋅) is not cyclic.
Solution. First, we should determine, what are actually the elements of ℤ×

8 . These
are all [𝑖] with 0 < 𝑖 < 8 such that 𝑖 ⟂ 8, which just means that 𝑖 is odd. That is
ℤ×

8 = {[1], [3], [5], [7]}. We easily compute that

[3]2 = [1], [5]2 = [1], [7]2 = [1],

so all elements (except for [1]) have order two.

34

You might already have noticed the following fact:

4.3.39 Theorem. Every cyclic group is isomorphic to (ℤ𝑛, +) for some 𝑛 ∈ ℕ or
(ℤ, +).

We did not define what isomorphic to actually means, so let us just give an
idea of what we mean by this. Well, take any cyclic group (𝐺, ⋅), 𝐺 = ⟨𝑎⟩ for some
𝑎 ∈ 𝐺. If it is finite of order 𝑛, then we have 𝐺 = {𝑎𝑖 ∣ 𝑖 = 0, 1, . . . , 𝑛} and the
group operation must be given by 𝑎𝑖 ⋅ 𝑎𝑗 = 𝑎𝑖+𝑗 = 𝑎(𝑖+𝑗) mod 𝑛. This is exactly how
the group operation in (ℤ𝑛, +) works, right?

If 𝐺 is infinite, then 𝐺 = {𝑎𝑖 ∣ 𝑖 ∈ ℤ} and the group operation is just 𝑎𝑖 ⋅ 𝑎𝑗 =
𝑎𝑖+𝑗, which exactly corresponds to (ℤ, +).

You can see this on the example of (ℤ×
7 , ⋅). We claim that it is isomorphic to

(ℤ6, +). Well, indead. Computing in (ℤ6, +) is just like computing on a clock dial
with five numbers 0, 1, 2, 3, 4, 5. Computing in (ℤ×

7 , ⋅) actually works the same,
except that somebody has shuffled the numbers.

ℤ6

0
1

2
3

4

5
+ ⟷ ℤ×

7

1
3

2
6

4

5
⋅

Finally, let us get back to the problem, we started with. Take a cyclic group
(ℤ𝑛, +) and choose some [𝑎] ∈ ℤ𝑛. Can you determine, what the order of ⟨[𝑎]⟩ is?

4.3.40 Lemma. Let (𝐺, ⋅) be a group, 𝑎 ∈ 𝐺. Then the order of 𝑎 equals 𝑟 ∈ ℕ if
and only if

1. 𝑎𝑟 = 𝑒,
2. if 𝑎𝑠 = 𝑒, then 𝑟 ∣ 𝑠.

Proof. The implication ⇐ is clear. For the opposite, (1) is obvious, so let us prove
(2). Take any 𝑠 ∈ ℕ such that 𝑎𝑠 = 𝑒. Sinc 𝑟 is the order, so the smallest number
with such a property, we must have 𝑠 ≥ 𝑟. Let us do the division with remainder:
𝑠 = 𝑘𝑟 + 𝑧, 0 ≤ 𝑧 < 𝑟. Then 𝑒 = 𝑎𝑠 = 𝑎𝑘𝑟+𝑧 = 𝑎𝑘𝑟𝑎𝑧 = 𝑎𝑧. Since 𝑟 is the order, we
must have 𝑧 = 0. □

4.3.41 Proposition. Let (𝐺, ⋅) be a group, 𝑎 ∈ 𝐺. Let 𝑎 be of order 𝑟. Then the
order of 𝑎𝑖 is given by 𝑟′ = 𝑟/ gcd(𝑟, 𝑖).
Proof. We use the preceding lemma. So, we need to show that (𝑎𝑖)𝑟′ = 𝑒 and that
if (𝑎𝑖)𝑠 = 𝑒, then 𝑟′ ∣ 𝑠. Denote 𝑑: = gcd(𝑟, 𝑖) and 𝑙 = 𝑖/𝑑.

For the first thing:

(𝑎𝑖)𝑟′ = 𝑎𝑖𝑟/𝑑 = 𝑎𝑟𝑙 = 𝑒𝑙 = 𝑒.

For the second, assume 𝑒 = 𝑎𝑖𝑠. Then 𝑟 ∣ 𝑖𝑠, i.e. 𝑟′𝑑 ∣ 𝑖𝑠, so in particular 𝑟′ ∣ 𝑖𝑠.
We have gcd(𝑟′, 𝑖) = 1, so by Euclid’s lemma 𝑟′ ∣ 𝑠. □

35

4.3.42 Example. In Problem 4.3.14, we asked what is the order of [5], [7], [10], and
[6] in (ℤ35, +). We can easily answer this now using the above formula. Note that in
(ℤ𝑛, +), we have that [𝑖] = 𝑖[1] for any 𝑖 ∈ ℤ and that the order of [1] is 𝑛. So:

|⟨[5]⟩| = 35/ gcd(35, 5) = 35/5 = 7
|⟨[7]⟩| = 35/ gcd(35, 7) = 35/7 = 5

|⟨[10]⟩| = 35/ gcd(35, 10) = 35/5 = 7
|⟨[6]⟩| = 35/ gcd(35, 6) = 35/1 = 35

As you can see from this example, we can in particular easily characterize the
generators of any cyclic group.

4.3.43 Problem. How many distinct generators does (ℤ𝑛, +) have? (Any cyclic
group of order 𝑛?)
Solution. Suppose (𝐺, ⋅) is a cyclic group of order 𝑛, 𝐺 = ⟨𝑎⟩ for some 𝑎 ∈ 𝐺.
That is, 𝐺 = {𝑎𝑖 ∣ 0 ≤ 𝑖 < 𝑛}. The order of an element 𝑎𝑖 is 𝑛/ gcd(𝑛, 𝑖), so 𝑎𝑖 is a
generator if and only if gcd(𝑛, 𝑖) = 1. Consequently, 𝐺 has 𝜙(𝑛) generators.

4.3.44 Problem. Classify all subgroups of (ℤ𝑛, +) (any cyclic group of order 𝑛).
Solution. For any 𝑑 ∣ 𝑛, we obviously have the following subgroup of order 𝑚 = 𝑛/𝑑:

⟨[𝑑]⟩ = {[0], [𝑑], [2𝑑], . . . , [𝑛 − 𝑑]}.

We claim that there are no other subgroups. In fact, it holds that

⟨[𝑖1], . . . , [𝑖𝑘]⟩ = ⟨[𝑑]⟩, where 𝑑 = gcd(𝑛, 𝑖1, . . . , 𝑖𝑘).

We can prove that in two steps as follows:

1. For any 𝑖 ∈ ℤ, we have ⟨[𝑖]⟩ = ⟨[𝑑]⟩, where 𝑑 = gcd(𝑛, 𝑖).
2. For any 𝑖, 𝑗 ∣ 𝑑, we have ⟨[𝑖], [𝑗]⟩ = ⟨[𝑑]⟩, where 𝑑 = gcd(𝑖, 𝑗).

Do it as an exercise!

4.4 Rings and fields
4.4.1 Definition. A ring is a triple (𝑅, +, ⋅) such that (𝑅, +) is a commutative
group and (𝑅, ⋅) is a monoid and, in addition, the distributive law holds: For every
𝑎, 𝑏, 𝑐 ∈ 𝑅,

𝑎 ⋅ (𝑏 + 𝑐) = (𝑎 ⋅ 𝑏) + (𝑎 ⋅ 𝑐),
(𝑏 + 𝑐) ⋅ 𝑎 = (𝑏 ⋅ 𝑎) + (𝑐 ⋅ 𝑎).

If the operation ⋅ is commutative, we call it a commutative ring.

4.4.2 Notation. We will always denote the first operation by + and call it the
addition, while the second will be denoted ⋅ and called multiplication. As with num-
bers, the dot is often ommited. We use the standard order of operations, where the
multiplication has a higher precedence. We denote by 0 ∈ 𝑅 the neutral element

36

of addition and by 1 ∈ 𝑅 the neutral element of multiplication. Also recall that we
denote by −𝑎 the inverse of 𝑎 with respect to addition. We also write 𝑎−𝑏: = 𝑎+(−𝑏).
4.4.3 Remark. Some authors do not assume the existence of 1, i.e. the neutral ele-
ment of multiplication. You should always check the exact definition when studying
some mathematical text about rings.
4.4.4 Theorem. Let (𝑅, +, ⋅) be a ring, 𝑎, 𝑏, 𝑐 ∈ 𝑅. Then

1. 𝑎(𝑏 − 𝑐) = 𝑎𝑏 − 𝑎𝑐, (𝑏 − 𝑐)𝑎 = 𝑏𝑎 − 𝑐𝑎,
2. 0 ⋅ 𝑎 = 0 = 𝑎 ⋅ 0,
3. (−𝑎)𝑏 = −(𝑎𝑏) = 𝑎(−𝑏).

Proof. Let’s prove that 0 ⋅ 𝑎 = 0. Do the rest as an exercise.
0 ⋅ 𝑎 = (𝑎 − 𝑎) ⋅ 𝑎 = 𝑎 ⋅ 𝑎 − 𝑎 ⋅ 𝑎 = 0. □

4.4.5 Remark. As a consequence, 0 ≠ 1 for any ring with more than one element.
Indeed, if 0 = 1, then 𝑎 = 1 ⋅ 𝑎 = 0 ⋅ 𝑎 = 0 for all 𝑎 ∈ 𝑅.
4.4.6 Examples.

• (ℝ, +, ⋅) is a commutative ring,
• (𝑀𝑛, +, ⋅) is a non-commutative ring for any 𝑛 ∈ ℕ, 𝑛 > 1,
• (ℤ, +, ⋅) is a commutative ring,
• (ℤ𝑛, +, ⋅) is a commutative ring for any 𝑛 ∈ ℕ.
• If 𝑅 is a (commutative) ring, then (𝑅[𝑥], +, ⋅) is a (commutative) ring, where

𝑅[𝑥] is the set of all polynomials with coefficients in 𝑅.
4.4.7 Definition. Let (𝑅, +, ⋅) be a ring. An element 𝑎 ∈ 𝑅, 𝑎 ≠ 0 is called a zero
divisor if there exists 𝑏 ∈ 𝑅, 𝑏 ≠ 0 such that 𝑎𝑏 = 0.
4.4.8 Examples.

• In ℤ6, we have [2] ⋅ [3] = [6] = 0.
• In 𝑀2, we have

(0 1
0 0) (0 1

0 0) = (0 0
0 0) or (1 0

0 0) (0 0
0 1) = (0 0

0 0) .

4.4.9 Lemma. Let (𝑅, +, ⋅) be a ring. If 𝑎𝑏 ∈ 𝑅 is a zero divisor, then it is not
invertible.
Proof. Suppose 𝑎 is invertible and 𝑎𝑏 = 0. Then

𝑏 = (𝑎−1𝑎)𝑏 = 𝑎−1(𝑎𝑏) = 𝑎−1 ⋅ 0 = 0 □
4.4.10 Definition. A commutative ring without zero divisors is called an integral
domain8.
4.4.11 Definition. A ring (𝑅, +, ⋅) such that (𝑅 ∖{0}, ⋅) is a group is called a field.
4.4.12 Examples.

8 The name might be slightly confusing. The adjective integral has nothing to do with integrals
from analysis and the name domain has nothing to do with domains in analysis. The only point is
that an integral domain has similar properties as the set (ring) of integers ℤ.

37

• (ℝ, +, ⋅), (ℚ, +, ⋅), (ℂ, +, ⋅) are fields.
• (ℤ𝑝, +, ⋅) is a field if and only if 𝑝 is a prime.
• There are so-called Galois fields 𝐺𝐹(𝑝𝑘) that have 𝑝𝑘 elements, where 𝑝 is a

prime and 𝑘 ∈ ℕ. These are the only finite fields. (Every finite field is isomorphic
to some Galois field.)

• (𝑀𝑛, +, ⋅) is not a field as not every non-zero matrix is invertible.
• (GL𝑛, +, ⋅) is not a field as invertible matrices are not closed under addition.

4.4.13 Theorem. Let (𝐹 , +, ⋅) be a finite field. Then (𝐹 ∖ {0}, ⋅) is a cyclic group.
This explains why (ℤ×

𝑝 , ⋅) is cyclic whenever 𝑝 is prime. Nevertheless, we leave
the theorem without proof.

4.5 Lattices and Boolean algebras
4.5.1 Definition. A lattice9 is a triple (𝐿, ∧, ∨), where ∧ and ∨ are binary opera-
tions on 𝐿 satisfying

• the associativity laws (𝑎 ∧ 𝑏) ∧ 𝑐 = 𝑎 ∧ (𝑏 ∧ 𝑐), (𝑎 ∨ 𝑏) ∨ 𝑐 = 𝑎 ∨ (𝑏 ∨ 𝑐),
• the commutativity laws 𝑎 ∧ 𝑏 = 𝑏 ∧ 𝑎, 𝑎 ∨ 𝑏 = 𝑏 ∨ 𝑎,
• the absorption laws 𝑎 ∧ (𝑎 ∨ 𝑏) = 𝑎, 𝑎 ∨ (𝑎 ∧ 𝑏) = 𝑎.

for every 𝑎, 𝑏, 𝑐 ∈ 𝐿. The operation ∧ is called the meet and ∨ is called the join.

4.5.2 Lemma. Let (𝐿, ∧, ∨) be a lattice. Then the operations satisfy 𝑎 ∧ 𝑎 = 𝑎 and
𝑎 ∨ 𝑎 = 𝑎 for every 𝑎 ∈ 𝐿 (the idempotent law).
Proof. For the first, use the absorption laws: 𝑎 ∧ 𝑎 = 𝑎 ∧ (𝑎 ∨ (𝑎 ∧ 𝑎)) = 𝑎. Do the
second as an exercise! □

4.5.3 Examples.

• For any set 𝑈, (P(𝑈), ∩, ∪) is a lattice.
• (ℝ, min, max) is a lattice. The same works with any 𝐴 ⊂ ℝ.
• (ℕ, gcd, lcm) is a lattice.
• For a vector space 𝐿, denote by 𝑆(𝑉) the set of all its subspaces. Then

(𝑆(𝑉), ∩, +) is a lattice.

It seems that lattices are closely connected to orders. (Which order was it for
the first example?) Let us now prove the correspondence.

4.5.4 Lemma. Let (𝐿, ∧, ∨) be a lattice, 𝑎, 𝑏 ∈ 𝐿. Then 𝑎 ∧ 𝑏 = 𝑎 if and only if
𝑎 ∨ 𝑏 = 𝑏.
Proof. Assume 𝑎 ∧ 𝑏 = 𝑎. Then 𝑎 ∨ 𝑏 = (𝑎 ∧ 𝑏) ∨ 𝑏 = 𝑏. Do the opposite as an
exercise! □

9 This is an unfortunate name. The notion lattice has also a different meaning in mathematics
and physics. See https://en.wikipedia.org/wiki/Lattice_(group).

38

4.5.5 Theorem. For every lattice (𝐿, ∧, ∨), the relation

𝑎 ≤ 𝑏 ⇔ 𝑎 ∧ 𝑏 = 𝑎 (⇔ 𝑎 ∨ 𝑏 = 𝑏)

is a partial order on 𝐿.

Proof. Exercise!

4.5.6 Remark. What is the meaning of ∧ and ∨ then? If 𝑎 and 𝑏 are comparable,
i.e. 𝑎 ≤ 𝑏 or 𝑏 ≤ 𝑎, then 𝑎 ∧ 𝑏 is the smaller element, while 𝑎 ∨ 𝑏 is the larger one.
What about if they are not comparable? Then 𝑎 ∧ 𝑏 is the infimum of the set {𝑎, 𝑏}.
That is, the greatest element of 𝐿, which is smaller than both 𝑎 and 𝑏 (their greatest
lower bound). Try to write a formal definition and prove this statement. Similarly,
𝑎∨𝑏 is in general the supremum (least upper bound) of {𝑎, 𝑏}. Note that for a general
partially ordered set an infimum or supremum of some given {𝑎, 𝑏} might not even
exist. But here it does.

This also gives a hint on how to formulate a converse of this theorem. A set 𝑃
equipped with a partial order ≤ is called a lattice if any two elements 𝑎, 𝑏 ∈ 𝑃 have
the greatest lower bound and the least upper bound. Denoting these two elements
by 𝑎 ∧ 𝑏 and 𝑎 ∨ 𝑏, these operations satisfy the axioms of a lattice according to
Definition 4.5.1.

4.5.7 Definition. Let (𝐿, ∧, ∨) be a lattice. An element 𝟬 is called the least element
of 𝐿 if 𝟬 ∧ 𝑎 = 𝟬 (or, equivalently, 𝟬 ∨ 𝑎 = 𝑎) for every 𝑎 ∈ 𝐿. An element 𝟭 is called
the greatest element of 𝐿 if 𝟭 ∧ 𝑎 = 𝑎 (or, equivalently, 𝟭 ∨ 𝑎 = 𝟭) for every 𝑎 ∈ 𝐿.
A lattice that has both is called bounded.

It is convenient to depict finite lattices using diagrams. Remember the graphs
we were drawing when dealing with relations. We will modify them here a bit. Given
a lattice (𝐿, ∧, ∨) and the corresponding order ≤, we will draw a line 𝑎 → 𝑏 if 𝑎 ≤ 𝑏
and there is no 𝑐 such that 𝑎 ≤ 𝑐 ≤ 𝑏. Without the second condition, there would
be too many lines. This way, it holds that 𝑎 ≤ 𝑏 if and only if there is a path from
𝑎 to 𝑏.10 In addition, we draw the elements in layers. Whenever 𝑎 ≤ 𝑏, we will draw
𝑎 below 𝑏. In that way, we do not have to draw arrows, but simple edges. See the
following examples, which should also reveal the reason for the name lattice.

4.5.8 Examples.

10 Recall for instance the order is ancestor of on the set of people. This is an order, but drawing
a family tree such that there is a line between any two people, where one is the ancestor of the
other would be too messy. Instead, we draw the graph corresponding to the relation is a parent
of, which is not an order. The order considered originally is, however, the transitive closure of the
latter.

39

• Consider the set 𝑈 = {𝑎, 𝑏, 𝑐}. Then the power set P(𝑈) has 23 = 8 elements
that can be arranged as follows:

∅

{𝑎} {𝑏} {𝑐}

{𝑎, 𝑏} {𝑎, 𝑐} {𝑏, 𝑐}

{𝑎, 𝑏, 𝑐}

Here, we have the least element 𝟬 = ∅ and the greatest element 𝟭 = 𝑈 = {𝑎, 𝑏, 𝑐}.
It is maybe worth pointing out that in mathematics, we distinguish the notions
least and minimal (as well as greatest and maximal). An element 𝑥 of a partially
ordered set is called minimal if there is no smaller element, i.e. for every 𝑦 ≤ 𝑥,
we have 𝑦 = 𝑥. If we remove ∅ from our set of subsets, then there will be no
least element. That is, there will be no set 𝐴 ⊂ 𝑈, which is a subset of all the
others. But there will be three minimal elements {𝑎}, {𝑏}, and {𝑐}.

• Consider the lattice (ℕ, gcd, lcm). Since ℕ is infinite, we clearly cannot draw
the whole diagram, but it would look approximately like this

1

2 3 5 7 · · ·

4 6 9 101525 · · ·

...

This set has a least element 𝟬 = 1. It does not have any greatest element (and
actually even any maximal element). If we define gcd(0, 𝑘) = 0 for any 𝑘 and
lcm(0, 𝑘) = 𝑘 for every 𝑘 (this corresponds to saying that everything divides
zero or that zero is a multiple of anything, which makes sense as 0 ⋅ 𝑘 = 0
for any 𝑘), then we can consider the lattice (ℕ0, gcd, lcm) which already has a
greatest element 𝟭 = 0.

40

• Consider the set 𝐷60: = {𝑖 ∈ ℕ ∣ 𝑖 ∣ 60} – the set of all divisors of 60. Then the
diagram corresponding to (𝐷60, gcd, lcm) looks as follows

1
2

4
3

6
12

5
10

20
15

30
60

4.5.9 Definition. A lattice (𝐿, ∧, ∨) is called distributive if the following distribu-
tive laws hold for every 𝑎, 𝑏, 𝑐 ∈ 𝐿

𝑎 ∧ (𝑏 ∨ 𝑐) = (𝑎 ∧ 𝑐) ∨ (𝑏 ∧ 𝑐),
𝑎 ∨ (𝑏 ∧ 𝑐) = (𝑎 ∨ 𝑏) ∧ (𝑏 ∨ 𝑐).

4.5.10 Remark. Actually, one already implies the other. Indeed, assume the first
one, then

(𝑎 ∨ 𝑏) ∧ (𝑎 ∨ 𝑐) = ((𝑎 ∨ 𝑏) ∧ 𝑎) ∨ ((𝑎 ∨ 𝑏) ∧ 𝑐) = 𝑎 ∨ ((𝑎 ∨ 𝑏) ∧ 𝑐)
= 𝑎 ∨ ((𝑎 ∧ 𝑐) ∨ (𝑏 ∧ 𝑐)) = (𝑎 ∨ (𝑎 ∧ 𝑐)) ∨ (𝑏 ∧ 𝑐) = 𝑎 ∨ (𝑏 ∧ 𝑐))

As an exercise, prove the other direction!
4.5.11 Definition. Let (𝐿, ∧, ∨) be a bounded lattice, 𝑎 ∈ 𝐿. We say that 𝑏 ∈ 𝐿 is
a complement of 𝑎 if 𝑎 ∧ 𝑏 = 𝟬 and 𝑎 ∨ 𝑏 = 𝟭.
4.5.12 Exercise. Which elements of 𝐷60 have a complement?
4.5.13 Theorem. Let (𝐿, ∧, ∨) be a distributive lattice, 𝑎, 𝑏, 𝑐 ∈ 𝐿. Then the equal-
ities 𝑎 ∨ 𝑏 = 𝑎 ∨ 𝑐 and 𝑎 ∧ 𝑏 = 𝑎 ∧ 𝑐 imply 𝑏 = 𝑐.
Proof. Assume the mentioned equalities. Then

𝑏 = (𝑎 ∨ 𝑏) ∧ 𝑏 = (𝑎 ∨ 𝑐) ∧ 𝑏 = (𝑎 ∧ 𝑏) ∨ (𝑐 ∧ 𝑏)
= (𝑎 ∧ 𝑐) ∨ (𝑏 ∧ 𝑐) = (𝑎 ∨ 𝑏) ∧ 𝑐 = (𝑎 ∨ 𝑐) ∧ 𝑐 = 𝑐. □

4.5.14 Corollary. In a bounded distributive lattice, every element has at most one
complement.

We will denote the unique complement of 𝑎 by ̄𝑎.
4.5.15 Definition. A Boolean algebra is a bounded distributive lattice, where
every element has a complement.
4.5.16 Theorem. Let (𝐵, ∧, ∨) be a Boolean algebra. Then

1. 𝟭̄ = 𝟬, 𝟬̄ = 𝟭.
2. 𝑎 ∧ 𝑏 = ̄𝑎 ∨ 𝑏̄, 𝑎 ∨ 𝑏 = ̄𝑎 ∧ 𝑏̄.
3. ̄̄𝑎 = 𝑎.

Proof. Exercise! □

41

4.5.17 Example. For any set 𝑈, the lattice (P(𝑈), ∩, ∪) is a Boolean algebra.

4.5.18 Exercise. Fix a finite set 𝑈. If you wanted to represent the elements of P(𝑈)
in a computer, you would probably number the elements of 𝑈, so 𝑈 = {𝑥1, . . . , 𝑥𝑛}
and then any given 𝐴 ⊆ 𝑈 would be represented by an array of booleans (𝑏1, . . . , 𝑏𝑛),
𝑏𝑖 ∈ {0, 1} (or 𝑏𝑖 ∈ {true, false}), where 𝑥𝑖 ∈ 𝐴 if and only if 𝑏𝑖 = 1. Now, try to
express the operations ∩ and ∪ in terms of the arrays (𝑏1, . . . , 𝑏𝑛).

4.5.19 Example. Put 𝐵 = {0, 1}. For 𝑎, 𝑏 ∈ 𝐵, define

𝑎 ∧ 𝑏 = min{𝑎, 𝑏}, (so 0 ∧ 0 = 0 ∧ 1 = 1 ∧ 0 = 0, 1 ∧ 1 = 1),
𝑎 ∨ 𝑏 = max{𝑎, 𝑏}, (so 0 ∨ 0 = 0, 0 ∨ 1 = 1 ∨ 0 = 1 ∨ 1 = 1).

Then (𝐵, ∧, ∨) is a Boolean algebra with 𝟬 = 0, 𝟭 = 1.
Now, define

𝐵𝑛 = 𝐵 × · · · × 𝐵⏟⏟⏟⏟⏟
𝑛×

= {(𝑏1, . . . , 𝑏𝑛) ∣ 𝑏1, . . . , 𝑏𝑛 ∈ 𝐵}.

We define the operations entrywise

(𝑎1, . . . , 𝑎𝑛) ∧ (𝑏1, . . . , 𝑏𝑛) = (𝑎1 ∧ 𝑏1, . . . , 𝑎𝑛 ∧ 𝑏𝑛),
(𝑎1, . . . , 𝑎𝑛) ∨ (𝑏1, . . . , 𝑏𝑛) = (𝑎1 ∨ 𝑏1, . . . , 𝑎𝑛 ∨ 𝑏𝑛).

Then (𝐵𝑛, ∧, ∨) is again a Boolean algebra.

4.5.20 Theorem. Every finite Boolean algebra is isomorphic to 𝐵𝑛 for some 𝑛.

5 Enumerative combinatorics
5.1 Problem. How many ordered pairs (𝑖, 𝑗), 𝑖 = 1, . . . , 𝑛, 𝑗 = 1, . . . , 𝑚 are there?
Solution. For each fixed 𝑗, we have 𝑛 pairs (𝑖, 𝑗) as 𝑖 can attain 𝑛 different values.
Since we have 𝑚 possibilities for 𝑗, the answer is 𝑛 ⋅ 𝑚.

5.2 Problem. How many functions {1, 2, 3, 4} → {1, 2, 3} are there? In general, how
many functions {1, . . . , 𝑛} → {1, . . . , 𝑚} are there?
Solution. A function 𝑓: {1, . . . , 𝑛} → {1, . . . , 𝑚} is determined by its function val-
ues. So, for each 𝑥 ∈ {1, . . . , 𝑛}, we have to fix the corresponding 𝑦 = 𝑓(𝑥). This
means that such a function is precisely determined by a tuple (𝑦1, . . . , 𝑦𝑛), 𝑦𝑖 = 𝑓(𝑖).
Each 𝑦𝑖 can attain 𝑚 different values. By a similar argumentation as in the previous
problem, we can see that there are 𝑚 ⋅ 𝑚 · · · 𝑚 = 𝑚𝑛 such tuples.

5.3 Observation. For any tuple of sets 𝐴1, . . . , 𝐴𝑘, we have

#(𝐴1 × · · · × 𝐴𝑘) = #𝐴1 · · · #𝐴𝑘.

This gives us a tool how to solve certain counting problems, which is sometimes
called the multiplication principle: Assume that a certain activity can be divided

42

into 𝑘 independent steps. Suppose Step 1 can be done in 𝑛1 ways, Step 2 in 𝑛2 ways
and so on. Then the total number of possibilities how to do the whole activity equals
to the product 𝑛1 ⋅ 𝑛2 · · · 𝑛𝑘.
5.4 Problem. Suppose we have 4 kinds of dark chocolate, 5 kinds of milk chocolate,
and 3 kinds of white chocolate. What is the number of ways we could choose two
kinds of chocolate of different colours?
Solution. There are three possibilities of how to combine the colours. Either we
take a dark and a milk chocolate, or we take a dark and a white one, or a milk and
a white one. Now let us study these three cases separately first. If we decide to take
a dark and a milk chocolate, there are, according to the multiplication principle,
4 ⋅ 5 = 20 ways of how to do that. Similarly, for the other two colour choices, we
have 4 ⋅ 3 = 12 and 5 ⋅ 3 = 15 possibilities, respectively. So, in total, we can choose
the chocolates in one of the total 20 + 12 + 15 = 47 ways.

The final consideration, where we conclude that something can be done either
𝑛1 ways or 𝑛2 different ways (or 𝑛3 other ones. . .) is called the addition principle.
It is based on the following trivial observation:
5.5 Observation. Suppose 𝐴1, . . . , 𝐴𝑘 are pairwise disjoint sets. Then

#(𝐴1 ∪ · · · ∪ 𝐴𝑘) = #𝐴1 + · · · + #𝐴𝑘.

The next notion we would like to introduce is a permutation. This word can
be understood from two slightly different viewpoints. In combinatorics, we usually
take the passive viewpoint. A permutation of a set is a way of how to arrange its
elements.
5.6 Definition. Let 𝐴 be a finite set with 𝑛 elements. A permutation of 𝐴 is
an ordered tuple (𝑎1, . . . , 𝑎𝑛) such that 𝐴 = {𝑎1, . . . , 𝑎𝑛}. (Since we assume that
#𝐴 = 𝑛, it follows that 𝑎𝑖 ≠ 𝑎𝑗 if 𝑖 ≠ 𝑗.)
5.7 Exercise. Equivalently, we may say that a permutation of 𝐴 is any bijection
{1, . . . , 𝑛} → 𝐴. Why?

Outside combinatorics, we often take the active viewpoint on permutations. We
assume that the elements of 𝐴 already are somehow arranged. Then a permutation is
some rearrangement of 𝐴. We also use the verb to permute, which essentially means
to shuffle.
5.8 Definition. Let 𝐴 be a finite set. A permutation (active) of 𝐴 is any bijection
𝐴 → 𝐴.

If we are counting permutations, it obviously does not matter, which defini-
tion/viewpoint we take.
5.9 Proposition. Any 𝑛-element set has 𝑛! = 𝑛(𝑛 − 1) ⋅ 2 ⋅ 1 permutations.
Proof. Denote the respective set by 𝐴. We need to choose the 𝑛-tuple (𝑎1, . . . , 𝑎𝑛).
We count the possibilities using the multiplication principle. There are 𝑛 possibilities
to choose 𝑎1 as there are 𝑛 elements of 𝐴. There are 𝑛 − 1 possibilities to choose 𝑎2
as we can take any element of 𝐴 except for 𝑎1. We continue this way up to 𝑎𝑛 for
which we already have only one candidate as all the others were already used. □

43

5.10 Problem. In a shop, they sell 6 types of chocolate. How many ways are there
to order them in a row?
Solution. We are exactly asking to count the permutations of the six types of
chocolate. So, the answer is 6! = 720.
5.11 Problem. How many permutations of letters A, B, C, D, E, F contain CDE
as a substring?
Solution. If the result has to contain CDE as a substring, we are not allowed to per-
mute these. We are essentially counting the permutations of the set {A, B, CDE, F}.
Since the set has four elements, the number of permutations is 4! = 24.
5.12 Definition. Let 𝐴 be a finite set with 𝑛 elements, 𝑘 ∈ ℕ0. A 𝑘-permutation11

of 𝐴 is any 𝑘-tuple (𝑎1, . . . , 𝑎𝑘) such that all 𝑎𝑖 ∈ 𝐴 and 𝑎𝑖 ≠ 𝑎𝑗 if 𝑖 ≠ 𝑗.
5.13 Exercise. Try again to formulate an alternative definition using functions.
5.14 Proposition. Let 𝐴 be a finite set with 𝑛 elements, 𝑘 ∈ ℕ0. Then 𝐴 has

𝑃(𝑛, 𝑘) = 𝑛(𝑛 − 1) · · · (𝑛 − 𝑘 + 1) = 𝑛!
(𝑛 − 𝑘)!

𝑘-permutations. (The second expression works only if 𝑘 ≤ 𝑛. Otherwise the result
clearly equals to zero.)
Proof. Exercise! □
5.15 Problem. How many 4-digit numbers are there, where no digit appears twice?
Solution. This sounds like a question for a direct application of the formula above.
But we have to pay attention a bit. We have ten digits in total, but the first one is
not allowed to be zero as otherwise we would not get a 4-digit number. So, we have
9 possibilities for the first digit, we have 9 possibilities for the second one (we cannot
use the first digit, but we are allowed to use zero), 8 possibilities for the third, and
7 for the last. In total 9 ⋅ 9 ⋅ 8 ⋅ 7 = 4536.
5.16 Remark. One can also ask, how many possibilities are there to construct an
ordered tuple (𝑎1, . . . , 𝑎𝑘) from elements of an 𝑛-element set 𝐴. Equivalently, how
many functions {1, . . . , 𝑘} → 𝐴 are there in total. The answer is obviously 𝑛𝑘 as
we already mentioned in the solution of Problem 5.2. Such a process is sometimes
called a permutation with repetitions.
5.17 Definition. Let 𝐴 be a finite set, 𝑘 ∈ ℕ0. A 𝑘-combination of 𝐴 is any
𝑘-element subset of 𝐴.
5.18 Proposition. Let 𝐴 be a set with 𝑛 elements, 𝑘 ∈ ℕ0. Then 𝐴 has

𝐶(𝑛, 𝑘) = (𝑛
𝑘

) = 1
𝑘!

𝑃 (𝑛, 𝑘) = 𝑛(𝑛 − 1) · · · (𝑛 − 𝑘 + 1)
𝑘!

= 𝑛!
𝑘!(𝑛 − 𝑘)!

𝑘-combinations.12 (The last expression works only if 𝑘 ≤ 𝑛. Otherwise the result
clearly equals to zero.)

11 In other languages, the word permutation is often reserved for the true permutations only.
For a 𝑘-permutation a different word is used. Like Variation in German or arrangement in French.

12 The notation (𝑛
𝑘) is read “𝑛 choose 𝑘”.

44

Proof. According to Proposition 5.14, there are 𝑃(𝑛, 𝑘) = 𝑛(𝑛 − 1) · · · (𝑛 − 𝑘 +
1) 𝑘-permutations. In the list of all 𝑘-permutations, each 𝑘-element subset of 𝐴
is represented 𝑘! times as 𝑘-element sets have 𝑘! permutations. Hence, 𝑃(𝑛, 𝑘) =
𝐶(𝑛, 𝑘)𝑘!. □

5.19 Theorem. Consider 𝑘, 𝑛 ∈ ℕ0, 𝑘 ≤ 𝑛. Then:

1. (𝑛
0) = 1,

2. (𝑛
1) = 𝑛,

3. (𝑛
𝑘) = (𝑛

𝑛−𝑘),
4. (𝑛+1

𝑘) = (𝑛
𝑘−1) + (𝑛

𝑘).

All four statements can be proven using the defining formula of the numbers
(𝑛

𝑘). Nevertheless, we would like to use this opportunity to introduce a new proving
technique called the combinatorial proof. If we have to prove that two integers are
equal, it is enough to show that they are counting the same thing!
Proof. Denote 𝐴 = {1, . . . , 𝑛}.

1. There is clearly just one zero-element subset of 𝐴.
2. There are clearly 𝑛 one-element subsets of 𝐴 (we just have to choose one

element and we have 𝑛 possibilities of how to do that).
3. On the left-hand-side, there is the number of all 𝑘-element subsets of 𝐴. We

have to show that the right-hand-side is counting the same thing. Well, it counts all
(𝑛 − 𝑘)-element subsets, but we can take their complements relative to 𝐴 and we
obtain exactly all the 𝑘-element subsets.

4. Consider the set {1, . . . , 𝑛 + 1}. The left-hand side counts all its 𝑘-element
subsets. We can obtain these in two distinct ways. Either the subset does not contain
𝑛 + 1, so it is a subset of {1, . . . , 𝑛} – we have (𝑛

𝑘) possibilities of doing that – or it
does contain 𝑛 + 1, in which case we have to choose the remaining 𝑘 − 1 elements
from the set {1, . . . , 𝑛}, so we have (𝑛

𝑘−1) possibilities of doing that. Now, use the
addition principle. □

This theorem allows us to construct the numbers (𝑛
𝑘) recursively. They are typ-

ically arranged in the Pascal triangle:

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

...
5.20 Theorem. For any 𝑛 ∈ ℕ, ∑𝑛

𝑘=0 (𝑛
𝑘) = 2𝑛.

5.21 Exercise. Prove the theorem above! Doing it directly from the formula would
be somewhat complicated. Instead try the following two approaches. First, do the
proof by induction using Theorem 5.19. Secondly, do the combinatorial proof.

45

5.22 Theorem. For any 𝑥, 𝑦 ∈ ℝ, 𝑛 ∈ ℕ, we have

(𝑥 + 𝑦)𝑛 =
𝑛

∑
𝑘=0

(𝑛
𝑘

)𝑥𝑛−𝑘𝑦𝑘.

Proof. Exercise! (Use induction.) □

5.23 Problem. Having 𝑛 = 6 kinds of chocolate, what is the number of ways, we
can choose 𝑘 = 4 chocolate bars? (Order is not important, repetition is allowed.)
Solution. I can perform the choosing procedure the following way. I will put the
four different kinds of the chocolate next to each other and I will take a look at each
and decide whether to take it. So, first I am staring on the first kind of chocolate.
My options are: take it (∗) or not to take it and move to the next one (|). If I choose
to take it, then I will not move to the next kind of chocolate. I will continue staring
at the first one and I will be thinking whether to take a second bar of the same
chocolate. I will repeat that until I have enough and choose the option (|) of moving
to the next one.

In total, my series of choices can look as follows: ∗ ∗ || ∗ | ∗ ||. Here, I chose twice
the first one, I did not take the second, I took once the third and the fourth, and I
did not take the fifth and sixth.

In general, the result of my decisions is a string of symbols ∗ and |, where the ∗
occurs 𝑘 times (since I decided to take exactly 𝑘 bars of chocolate) and the | occurs
(𝑛 − 1)-times (it is the separator between the 𝑛 types of chocolate). How many such
strings are there? Well the total length of the string is 𝑛+𝑘 −1. Now the exact form
of the string is determined by listing the positions, where the ∗ appears. This is a
𝑘-element subset of the total 𝑛 + 𝑘 − 1 elements.

That is, a general formula for combinations with repetitions is

((𝑛
𝑘

)) = (𝑛 + 𝑘 − 1
𝑘

).

The last thing that we would like to address here is counting the elements of a
union of sets. As one can easily check, we have

#(𝐴 ∪ 𝐵) = #𝐴 + #𝐵 − #(𝐴 ∩ 𝐵).

We can try to generalize this for three sets and obtain

#(𝐴1 ∪ 𝐴2 ∪ 𝐴3) = #𝐴1 + #𝐴2 + #𝐴3

−#(𝐴1 ∩ 𝐴2) − #(𝐴1 ∩ 𝐴3) − #(𝐴2 ∩ 𝐴3) + #(𝐴1 ∩ 𝐴2 ∩ 𝐴3).

In general, the following holds:

5.24 Theorem (Inclusion-exclusion principle). For any finite sets 𝐴1, . . . , 𝐴𝑛,
we have

#(𝐴1 ∪ · · · ∪ 𝐴𝑛) =
𝑛

∑
𝑘=1

(−1)𝑘+1 ∑
1≤𝑖1≤···≤𝑖𝑘≤𝑛

#(𝐴𝑖1
∩ 𝐴𝑖2

∩ · · · ∩ 𝐴𝑖𝑘
).

46

Proof. Take any 𝑥 ∈ 𝐴1 ∪· · ·∪𝐴𝑛. We need to prove that we are counting it exactly
once on the right-hand-side. Without loss of generality, suppose that 𝑥 ∈ 𝐴1, . . . , 𝐴𝑙
and 𝑥 ∉ 𝐴𝑙+1, . . . , 𝐴𝑛 for some 𝑙. In that case, we are counting it the following many
times:

𝑙
∑
𝑘=1

(−1)𝑘+1 ∑
1≤𝑖1≤···≤𝑖𝑘≤𝑙

1 =
𝑛

∑
𝑘=1

(−1)𝑘+1(𝑙
𝑘
)

= 1 −
𝑛

∑
𝑘=0

(−1)𝑘(𝑙
𝑘
) = 1 − (1 − 1)𝑙 = 1. □

5.25 Problem. Count all derangements {1, . . . , 𝑛} → {1, . . . , 𝑛}. A derangement
means a bijection 𝑓 that has no fixed point, i.e. 𝑓(𝑥) ≠ 𝑥 for all 𝑥.
Solution. The total number of permutations {1, . . . , 𝑛} → {1, . . . , 𝑛} is 𝑛!. We
have to take out these permutations that have a fixed point. For any 𝑖, we have
#{𝑓: {1, . . . , 𝑛} → {1, . . . , 𝑛} ∣ 𝑓 is a bijection, 𝑓(𝑖) = 𝑖} is clearly (𝑛 − 1)! because
𝑖 is fixed and we are permuting the rest (𝑛 − 1) points. But it could happen that
some permutation fixes two points 𝑖 and 𝑗. So, actually, we need to use the inclusion-
exclusion principle:

#{𝑓 a derangement} = #{𝑓 a permutation} − #
𝑛

⋃
𝑖=1

#{𝑓 perm. ∣ 𝑓(𝑖) = 𝑖}

= #{𝑓 a permutation} −
𝑛

∑
𝑖=1

#{𝑓 perm. ∣ 𝑓(𝑖) = 𝑖}

+ ∑
𝑖≤𝑗

#{𝑓 perm. ∣ 𝑓(𝑖) = 𝑖, 𝑓(𝑗) = 𝑗} − · · ·

= 𝑛! − 𝑛(𝑛 − 1)! + (𝑛
2
)(𝑛 − 2)! − (𝑛

3
)(𝑛 − 3)! + · · ·

= ∑
𝑖=0

(−1)𝑛(𝑛 − 1)!(𝑛
𝑖
) =

𝑛
∑
𝑖=0

(−1)𝑖 𝑛!
𝑖!

.

Now comes an extremely cool thing: Note that ∑∞
𝑖=0(−1)𝑖/𝑖! = 1/𝑒. And this

series converges pretty quickly. Consequently, the number of derangements equals
to 𝑛!/𝑒 rounded to the nearest integer. (This needs to be proven of course. We will
not get into the details here.)

6 Graphs

6.1 Basic definitions, examples
Informally, graph is a collection of points (vertices), where some of them are con-
nected by a line or an arrow (edge). The vertices stand for some objects and the
edges stand for some relation between them. So, mathematically, a graph is basically

47

the same thing as a relation. But we typically draw it as a picture (but we did that
for relations as well).

6.1.1 Examples.

• Recall the relation 𝑅 on the set of all people, where 𝑥𝑅𝑦 if and only if 𝑦 is a
child of 𝑥. Let us denote the relation by an arrow 𝑥 → 𝑦 instead. We obtain a
directed graph

son

me wife

mom dad

grandmom granddad
. . .

. . .

• If you have travelled by the Prague’s underground, you have definitelly seen the
following diagram

It features all the metro stations; two stations are connected by line if they
are connected by some metro line. That is the diagram shows the graph for
the relation 𝑅 on the set of all stations with 𝑥𝑅𝑦 if 𝑥 is a neighbouring station
of 𝑦. In addition, the lines are coloured according to the metro lines. Note in
particular that the diagram does not show the actual shape of the network at
all. The only information that is preserved is what is connected to what. Note
also that there are no arrows as you can always travel both directions. The
resulting graph is therefore undirected.

• Sometimes, it is useful to label the edges by some values related to the actual
cost of the edges (their length, the time it takes to get through, or the price we
have to pay when travelling). For instance, if you wanted to travel to Olomouc,
you may consider going either through Hradec Králové or through Brno. If you
are not sure, which way to take, it might be useful to draw a diagram like the

48

following one:

Praha

Liberec

Hradec

Brno

Olomouc

1:
10

1:00

1:30

1:50

1:50

0:5
0

2:10

You can see that it is slightly quicker to go through Brno. A similar but far mor
complicated weighted graph is stored in any navigation software. In this simple
case, it is easy to find the shortest way. If the graph is much more complicated,
it is worth looking for an effective algorithm.

6.1.2 Notation. For a set 𝑉, 𝑘 ∈ ℕ0 we will denote by (𝑉
𝑘) the set of all 𝑘-element

subsets of 𝑉.
6.1.3 Definition. A (simple) graph is a pair (𝑉 , 𝐸), where 𝑉 is a set, whose
elements are called vertices, and 𝐸 ⊆ (𝑉

2), whose elements are called edges.
6.1.4 Remark. A graph according to the above definition is undirected ({𝑣, 𝑤} =
{𝑤, 𝑣}, so the order is not important, therefore edges have no direction), contains
no loops ({𝑣, 𝑣} = {𝑣} is not a two-element set, so it cannot be an edge), and no
multiple edges (𝐸 is a set of edges, so we do not distinguish how many times a given
edge is contained).
6.1.5 Definition. A directed graph is a pair (𝑉 , 𝐸), where 𝑉 is a set of vertices,
𝐸 ⊆ 𝑉 × 𝑉 a set of (directed) edges.
6.1.6 Remark. In a directed graph (𝑉 , 𝐸), an edge (𝑣, 𝑣), 𝑣 ∈ 𝑉 is called a loop.
6.1.7 Definition. A directed multigraph is a triple (𝑉 , 𝐸, 𝜙), where 𝑉 and 𝐸 are
sets, 𝜙: 𝐸 → 𝑉 × 𝑉 is an incidence function.

Here, the elements of 𝑉 are interpreted as vertices, the elements of 𝐸 as edges
and given an edge 𝑒 ∈ 𝐸, denoting 𝜙(𝑒) = (𝑣, 𝑤), we interpret 𝑒 as an edge from 𝑣
to 𝑤. Sometimes, 𝑣 is called the source and 𝑤 the target. This allows having more
than one edge from 𝑣 to 𝑤.

In the following text, we will mostly work in the framework of simple graphs.
As an exercise, try to reformulate every statement and its proof for directed graphs
or multigraphs. (Of course, some may not be true in these cases.)
6.1.8 Definition. In a graph 𝐺 = (𝑉 , 𝐸), two vertices 𝑣, 𝑤 ∈ 𝑉 are called adjacent
if they are connected with an edge, so {𝑣, 𝑤} ∈ 𝐸. A vertex 𝑣 ∈ 𝑉 is said to be
incident with an edge 𝑒 ∈ 𝐸 if it one of the vertices the edge connects, so 𝑣 ∈ 𝑒.
6.1.9 Definition. Let 𝐺 = (𝑉 , 𝐸) be a graph. We define the degree of each vertex
𝑣 ∈ 𝑉 to be the number of its neighbours (incident edges):

𝑑𝐺(𝑣) = #{𝑤 ∈ 𝑉 ∣ {𝑣, 𝑤} ∈ 𝐸}.

49

6.1.10 Remark. For directed graphs, we distinguish the indegree (number of in-
coming edges) and outdegree (number of outgoing edges).

6.1.11 Theorem. Let 𝐺 = (𝑉 , 𝐸) be a graph. Then ∑𝑣∈𝑉 𝑑𝐺(𝑣) = 2#𝐸.
Proof. On the left-hand-side, we sum the number of edges incident to all vertices.
Since every edge is incident with exactly two vertices. Hence, each edge is counted
exactly twice. □

6.1.12 Corollary. Let 𝐺 = (𝑉 , 𝐸) be a graph. Then ∑𝑣∈𝑉 𝑑𝐺(𝑣) is always even.

6.1.13 Corollary. Every graph has an even number of vertices with odd degree.

6.1.14 Remark. Either the theorem above or one of its corollaries is often refered
to as the Handshaking lemma.

6.1.15 Examples.

• Complete graph 𝐾𝑛 = (𝑉 , 𝐸), 𝑉 = {1, . . . , 𝑛}, 𝐸 = (𝑉
2).

• Path graph 𝑃𝑛 = (𝑉 , 𝐸), 𝑉 = {1, . . . , 𝑛}, 𝐸 = {{𝑖, 𝑖 + 1} ∣ 𝑖 = 1, . . . , 𝑛 − 1}.
• Cycle graph 𝐶𝑛 = (𝑉 , 𝐸), 𝑉 = {1, . . . , 𝑛}, 𝐸 = {{𝑖, 𝑖 + 1} ∣ 𝑖 = 1, . . . , 𝑛 − 1} ∪

{{1, 𝑛}}.
• Star graph 𝑆𝑛 = (𝑉 , 𝐸), 𝑉 = {0, . . . , 𝑛}, 𝐸 = {{0, 𝑖} ∣ 𝑖 = 1, . . . , 𝑛}.

𝐾5 =

1 2

3

4

5 , 𝑃5 =

1 2

3

4

5 , 𝐶5 =

1 2

3

4

5 , 𝑆5 =
0

1 2

3

4

5

6.1.16 Definition. Let 𝐺 = (𝑉 , 𝐸) be a graph with 𝑉 = {1, . . . , 𝑛}. We define its
adjacency matrix 𝐴𝐺 by

[𝐴𝐺]𝑖𝑗 = { 1 if {𝑖, 𝑗} ∈ 𝐸,
0 otherwise.

6.1.17 Examples.

𝐴𝐾5
=

⎛⎜⎜⎜⎜⎜
⎝

0 1 1 1 1
1 0 1 1 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0

⎞⎟⎟⎟⎟⎟
⎠

, 𝐴𝑃5
=

⎛⎜⎜⎜⎜⎜
⎝

0 1 0 0 0
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
0 0 0 1 0

⎞⎟⎟⎟⎟⎟
⎠

,

𝐴𝐶5
=

⎛⎜⎜⎜⎜⎜
⎝

0 1 0 0 1
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
1 0 0 1 0

⎞⎟⎟⎟⎟⎟
⎠

, 𝐴𝑆5
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 1 1 1 1 1
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

50

6.2 Connectivity
6.2.1 Definition. Let 𝐺 = (𝑉 , 𝐸) be a graph.

• A walk (of length 𝑘 − 1, where 𝑘 ∈ ℕ) is a sequence of vertices 𝑣1, . . . , 𝑣𝑘 such
that {𝑣𝑖, 𝑣𝑖+1} ∈ 𝐸 for every 𝑖 = 1, . . . , 𝑘 − 1.

• A trail is a walk in which all edges are distinct, i.e. {𝑣𝑖, 𝑣𝑖+1} ≠ {𝑣𝑗, 𝑣𝑗 + 1}
whenever 𝑖 ≠ 𝑗.

• A path is a walk in which all vertices are distinct, i.e. 𝑣𝑖 ≠ 𝑣𝑗 whenever 𝑖 ≠ 𝑗.
• A circuit13 is a trail such that 𝑣1 = 𝑣𝑘.
• A cycle is a circuit where 𝑣𝑖 ≠ 𝑣𝑗 for any 1 ≤ 𝑖 < 𝑗 < 𝑘.

6.2.2 Definition. Let 𝐺 = (𝑉 , 𝐸) be a graph. We say that vertices 𝑣 and 𝑤 are
connected if there is a walk starting at 𝑣 and ending at 𝑤 in 𝐺.

6.2.3 Theorem. Being connected is an equivalence relation

6.2.4 Exercise. Prove the theorem above. Note that in this case it is indeed neces-
sary to assume that the graph is directed. Why? Can you modify the definition such
that it works also for directed graphs?

6.2.5 Definition. Let 𝐺 = (𝑉 , 𝐸) be a graph. The equivalence classes of the relation
being connected are called the (connected) components of 𝐺. We say that 𝐺 is
connected if it has only one component. That is, 𝐺 is connected if and only if there
is walk from 𝑣 to 𝑤 for every pair 𝑣, 𝑤 ∈ 𝑉.

6.3 Trees
6.3.1 Definition. A graph containing no cycles is called a forest. A connected
forest is called a tree.

6.3.2 Theorem. Let 𝐺 = (𝑉 , 𝐸) be a graph. The following are equivalent:

1. 𝐺 is a tree.
2. For every 𝑣, 𝑤 ∈ 𝑉, there is a unique path from 𝑣 to 𝑤.
3. 𝐺 is connected and for every edge 𝑒 ∈ 𝐸, the graph (𝑉 , 𝐸∖{𝑒}) is not connected.

Proof. (1) ⇒ (2): If 𝐺 is a tree, then it must be connected, so there is a walk from
𝑣 to 𝑤. It is easy to see that if there is a walk from 𝑣 to 𝑤, there must also be a path
from 𝑣 to 𝑤. So, there is at least one path. We have to prove that it is unique. Well,
if there were two paths connecting 𝑣 and 𝑤, then we can easily construct a cycle.
Indeed, denote by 𝑣 = 𝑎1, . . . , 𝑎𝑘 = 𝑤 and 𝑣 = 𝑏1, . . . , 𝑏𝑙 = 𝑤 the two paths. Denote
by 𝑖, 𝑗 the smallest indices such that 𝑎𝑖 = 𝑏𝑗 (such an index must exist as 𝑎𝑘 = 𝑏𝑙).
Then 𝑎1, 𝑎2, . . . , 𝑎𝑖 = 𝑏𝑗, 𝑏𝑗−1, . . . , 𝑏1 = 𝑎1 is a cycle.

(2) ⇒ (3): If there is a path between each pair of vertices, then 𝐺 must be
connected. Now, take any edge 𝑒 = {𝑣, 𝑤} ∈ 𝐸. If we assume that any two points
are connected by a unique path, the edge 𝑒 forms the unique path connecting 𝑣 and
𝑤. Removing this edge, the two points stop being connected.

13 Here, I am inconsistent with the notes by M. Demlová from the earlier version of this subject.
I believe my definition is more standard. See e.g. Wikipedia.

51

(3) ⇒ (1): Assume 𝐺 is connected, but contains a cycle. Then it is not true
that removing any edge in the graph makes it disconnected as removing any edge
from the mentioned cycle preserves connectivity (any walk using the edge can be
modified by using the rest of the cycle). □

6.3.3 Theorem. Let 𝐺 = (𝑉 , 𝐸) be a connected graph. Then 𝐺 is a tree if and only
if #𝐸 = #𝑉 − 1.
Proof. For the left-right implication, we proceed by induction. If 𝑛 = 1, we have a
graph with one vertex and no edge, which is a tree and satisfies the equation. Now,
take any 𝑛 > 1 and assume that any tree with the number of vertices smaller than 𝑛
satisfies the equation. Take any edge 𝑒 of 𝐺. Removing it, we obtain a disconnected
graph with two connected components 𝐺𝑖 = (𝑉𝑖, 𝐸𝑖), 𝑖 = 1, 2. Since #𝑉𝑖 < 𝑛, we
can use the induction hypothesis, so #𝐸𝑖 = #𝑉𝑖 −1. For the original graph, we have
𝐸 = 𝐸1 ∪ 𝐸2 ∪ {𝑒} and 𝑉 = 𝑉1 ∪ 𝑉2, so

#𝐸 = #𝐸1 + #𝐸2 + 1 = #𝑉1 − 1 + #𝑉2 − 1 + 1 = #𝑉 − 1.

For the right-left implication, suppose we have #𝐸 = #𝑉 − 1, but 𝐺 is not a
tree. Then it must contain an edge such that, if you remove it, the graph remains
connected. You can do that repeatedly until you obtain a tree 𝐺′ = (𝑉 , 𝐸′). But, we
already showed that such a tree must satisfy #𝐸′ = #𝑉 − 1. But since #𝐸 > #𝐸′,
this contradicts the original assumption. □

6.3.4 Exercise. Prove that any tree must contain a vertex of degree 1 (actually
at least two vertices if #𝑉 > 1). There are actually two ways to prove that: either
directly or using the formula #𝐸 = #𝑉 − 1. This can be used to formulate an
alternative proof of Theorem 6.3.3: For (⇒) use induction again, but for the inductive
step, remove the vertex of degree 1. For (⇐), also use induction removing the vertex
of degree one.

Let us mention a couple of applications regarding trees. First, many structures
are just naturally trees. Think, for instance, about the “family tree graph”. Secondly,
trees are widespread in programming as data structures. The reason is that they
allow very effective algorithms for searching or sorting (cf. heap sort). The reason is
that if you have a balanced tree with 𝑛 entries, the number of levels is just log 𝑛.

Finally, below we are going to study a third application called spanning trees. A
typical problem that motivated studying this concept in history is as follows. In the
beginning of 20. century when the electrical grids were built, a mathematician Otakar
Borůvka got the task to design such a grid for South Moravia as cost effectively as
possible. The problem is to connect every village to the grid while minimizing the
length of the cables needed. In today’s terms, this is a graph-theoretical problem of
finding a minimal spanning tree.

6.3.5 Definition. Let 𝐺 = (𝑉 , 𝐸) be a graph. A subgraph 𝐺′ = (𝑉 , 𝐸′), 𝐸′ ⊆ 𝐸
which is a tree is called a spanning tree of 𝐺.

6.3.6 Observation. Any graph has a spanning tree if and only if it is connected.

52

How do you construct one? As follows from Theorem 6.3.2, it is enough to break
all cycles. We actually used this idea already in the proof of Theorem 6.3.3. Now,
let us formulate a more sophisticated problem:

6.3.7 Problem. Given a graph 𝐺 = (𝑉 , 𝐸) and a cost function 𝑐: 𝐸 → (0, +∞),
find a subset 𝐸′ ⊆ 𝐸 such that 𝐺′ = (𝑉 , 𝐸′) is connected and 𝑐(𝐸′) = ∑𝑒∈𝐸′ 𝑐(𝑒)
is minimal. Such a graph will be called a minimal spanning tree.

6.3.8 Algorithm (Kruskal 1956). Input: A connected weighted graph 𝐺 =
(𝑉 , 𝐸, 𝑐). Output: It’s minimal spanning tree.

1. sort 𝐸 (according to 𝑐). That is, denote 𝐸 = {𝑒1, . . . , 𝑒𝑚} such that

𝑐(𝑒1) ≤ 𝑐(𝑒2) ≤ · · · ≤ 𝑐(𝑒𝑚)

2. 𝐸′ ← ∅.
3. for every 𝑖 = 1, . . . , 𝑚
4. if 𝐸′ ∪ {𝑒𝑖} contains no cycle
5. then 𝐸′ ← 𝐸′ ∪ {𝑒𝑖}

6.3.9 Exercise. What happens if the input is not connected? Checking whether a
graph is connected beforehand might be ineffective. Can we easily see that the input
was disconnected after running the algorithm?

6.3.10 Remark. We can make the algorithm slightly faster by breaking the for-loop
when #𝐸′ = #𝑉 − 1.

6.3.11 Remark. It is a greedy algorithm.

6.3.12 Remark. Checking whether some given graph contains a cycle seems like a
complex task. But in this particular case it is easy if we keep track of the components
of 𝐺′ = (𝑉 , 𝐸′). Indeed, 𝐸′ ∪ {𝑒𝑖} has a cycle if and only if 𝑒𝑖 connects two vertices
belonging to the same component of (𝑉 , 𝐸′). See example below.

6.3.13 Example. Consider the weighted graph 𝐺 = (𝑉 , 𝐸), where 𝑉 = {1, . . . , 7}
and the edges and their weights are given by the following matrix

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

− 6 9 − − − 9
6 − 2 1 3 − −
9 2 − 1 − − 15
− 1 1 − 10 13 3
− 3 − 10 − 10 1
− − − 13 10 − 15
9 − 15 3 1 15 −

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

where the numbers stand for weights and − means no edge. It is a undirected graph,
so the matrix is symmetric and all data is stored in the upper triangle.

53

So, first, let us sort the edges:

𝑒1 = {2, 4}, 𝑐(𝑒1) = 1, 𝑒8 = {1, 3}, 𝑐(𝑒8) = 9,
𝑒2 = {3, 4}, 𝑐(𝑒2) = 1, 𝑒9 = {1, 7}, 𝑐(𝑒9) = 9,
𝑒3 = {5, 7}, 𝑐(𝑒3) = 1, 𝑒10 = {4, 5}, 𝑐(𝑒10) = 10,
𝑒4 = {2, 3}, 𝑐(𝑒4) = 2, 𝑒11 = {5, 6}, 𝑐(𝑒11) = 10,
𝑒5 = {2, 5}, 𝑐(𝑒5) = 3, 𝑒12 = {4, 6}, 𝑐(𝑒12) = 13,
𝑒6 = {4, 7}, 𝑐(𝑒6) = 3, 𝑒13 = {3, 7}, 𝑐(𝑒13) = 15,
𝑒7 = {1, 2}, 𝑐(𝑒7) = 6, 𝑒14 = {6, 7}, 𝑐(𝑒14) = 15,

Now, we set 𝐸′: = ∅ and go through all the edges and try to add them to 𝐸′.
We keep track of the components we create. (At the beginning, all vertices are in
their own component. We call them singletons.)

Adding 𝑒1 = {2, 4} surely does not make a cycle, so we do that: 𝐸′ = {𝑒1}. Now,
we created the component {2, 4}, the rest are singletons. Adding 𝑒2 = {3, 4} also
surely does not make a cycle, so we do it: 𝐸′ = {𝑒1, 𝑒2}. Now, we have the component
{2, 3, 4} and the rest are singletons. The edge 𝑒3 = {5, 7} connects two singletons,
so it does not make a cycle, we can add it to 𝐸′ and we obtain 𝐸′ = {𝑒1, 𝑒2, 𝑒3}
creating two components {2, 3, 4} and {5, 7} while the rest are singletons.

Now the edge 𝑒4 = {2, 3} connects two vertices that are in the component
{2, 3, 4}, so adding it would create a cycle, so we do not do that. We can add
𝑒5 = {2, 5}, which connects the two components together, so we have {2, 3, 4, 5, 7}
and the rest are singletons. Adding 𝑒6 = {4, 7} would make a cycle as both 4 and
7 are in the component. We can add 𝑒7 = {1, 2}, which enlarges the component to
{1, 2, 3, 4, 5, 7}. We cannot add 𝑒8 = {1, 3}, 𝑒9 = {1, 7}, or 𝑒10 = {4, 5} as this would
create a cycle. We will add 𝑒11 = {5, 6} and obtain 𝐸′ = {𝑒1, 𝑒2, 𝑒3, 𝑒5, 𝑒7, 𝑒11}. The
resulting graph has a single component containing all the vertices, which means it
is connected and hence a tree. We are done!

Finally, we can determine the total cost of the graph we found:

𝑐(𝐸′) = 1 + 1 + 1 + 3 + 6 + 10 = 22.

6.3.14 Theorem. The Kruskal’s algorithm indeed constructs the minimal spanning
tree.

The proof is not too hard, but a bit too technical, so we will skip it here.

6.3.15 Exercise. Is the minimal spanning tree determined uniquely? Try to con-
struct an example of a weighted graph that has a unique minimal spanning tree. Try
to construct an example of a weighted graph that has exactly two minimal spanning
trees.

6.3.16 Definition. A rooted tree is a pair (𝐺, 𝑟), where 𝐺 is a tree and 𝑟 is its
vertex, which will be called the root.

6.3.17 Observation. A root in a tree uniquely defines a direction “from the root”
to every edge. Indeed, for any other vertex 𝑣, there is a unique path from 𝑟 to 𝑣 by

54

Theorem 6.3.2. Consequently, if we choose a root in a undirected tree, this induces
a directed tree.

6.3.18 Definition. Let (𝐺, 𝑟) be a rooted tree, 𝐺 = (𝑉 , 𝐸).

• A vertex 𝑣 ∈ 𝑉 belongs to 𝑘-th level of (𝐺, 𝑟) if there is a path from 𝑟 to 𝑣 of
length 𝑘.

• The height of (𝐺, 𝑟) is the maximum of the levels. That is, the length of the
longest path starting at 𝑟.

• Let 𝑢, 𝑣 ∈ 𝑉. We say that 𝑢 is a predecessor (or parent) of 𝑣 and that 𝑣 is a
successor (or a child) of 𝑢 if {𝑢, 𝑣} ∈ 𝐸 and 𝑣 is on a greater level than 𝑢.

• A vertex is called a leaf if it has no successors.

6.3.19 Exercise. Following the “family terminology” think about what a descendant
and ancestor should be. Write a formal definition.

6.3.20 Example. Take the tree 𝐺′ = (𝑉 , 𝐸′) that we constructed in Example 6.3.13.
Choose a root 𝑟 = 2. Then the rooted tree looks as follows:

2

1 4 5

3 6 7

Level 0

Level 1

Level 2

The height is 2. The leaves are vertices 1, 3, 6, and 7. Vertex 5 has successors 6 and
7 (but not 3), its predecessor is the root 2.

6.3.21 Definition. Let 𝑘 ∈ ℕ0. A 𝑘-ary tree is a rooted tree, where every vertex
has at most 𝑘 successors. A 2-ary tree is called a binary tree.

6.4 Directed acyclic graphs
6.4.1 Definition. A directed graph 𝐺 = (𝑉 , 𝐸) is called acyclic if there is no
(directed) cycle.

6.4.2 Example. For instance, the following directed graph is acyclic:

Note that reversing any of the arrows creates a directed cycle and hence the graph
stops being acyclic.

6.4.3 Example. For any lattice, the corresponding graph (e.g. Examples 4.5.8 if we
draw the arrow always from top to bottom) is acyclic.

55

Note that in all the examples, we draw the directed edges from top to bottom.
This clearly ensures that the graph is acyclic. Actually, the converse also holds as
we are going to show below.
6.4.4 Definition. Let 𝐺 = (𝑉 , 𝐸) be a directed graph, #𝑉 = 𝑛. A topological
sort of vertices is an ordering (𝑣1, . . . , 𝑣𝑛) of 𝑉 such that (𝑣𝑖, 𝑣𝑗) ∈ 𝐸 only if 𝑖 < 𝑗.
6.4.5 Theorem. A directed graph is acyclic if and only if it has a topological sort
of vertices.
Proof. As we mentioned above, the implication ⇐ is clear: Suppose 𝐺 has a topo-
logical sort of vertices (𝑣1, . . . , 𝑣𝑛). If a graph 𝐺 has a cycle (𝑣𝑖1

, . . . , 𝑣𝑖𝑘−1
, 𝑣𝑖𝑘

= 𝑣𝑖1
),

then by the definition of topological sort we must have 𝑖1 < · · · < 𝑖𝑘−1 < 𝑖𝑘 = 𝑖1,
which is a nonsense.

To prove the converse direction, we are going to formulate an algorithm that
constructs the topological sort below. □
6.4.6 Lemma. In every finite acyclic directed graph, there is a vertex with no
incoming edges.
Proof. Suppose there is no such vertex. Then take any 𝑣1 ∈ 𝑉 and find 𝑣2 ∈ 𝑉 such
that (𝑣2, 𝑣1) ∈ 𝐸. We can repeat this construction over and over finding 𝑣𝑘 ∈ 𝑉 such
that (𝑣𝑘, 𝑣𝑘−1) ∈ 𝐸. Since the graph is finite, the vertices must eventually repeat,
so there is 𝑣𝑘 = 𝑣𝑙 for some 𝑘 > 𝑙. But this means we have constructed a cycle
(𝑣𝑘, 𝑣𝑘−1, . . . , 𝑣𝑙). □
6.4.7 Algorithm (Kahn 1962). Input: An acyclic directed graph 𝐺 = (𝑉 , 𝐸);
Output: Topological sort (𝑣1, . . . , 𝑣𝑛) of 𝑉

1. 𝐿 ← ()
2. while 𝑉 ≠ 0 do
3. append any vertex 𝑣 ∈ 𝑉 with no incoming edges to the list 𝐿
4. remove 𝑣 from 𝐺

6.5 Strong connectivity
6.5.1 Definition. A directed graph 𝐺 = (𝑉 , 𝐸) is strongly connected if there is
a (directed) path from 𝑢 to 𝑣 for each pair 𝑢, 𝑣 ∈ 𝑉.

For a directed graph, we will say that it is connected if it is connected as an
undirected graph, i.e. ignoring the directions of the edges.
6.5.2 Theorem. A directed graph is strongly connected if and only if it is connected
and every edge is contained in a (directed) cycle.
Proof. (⇒): Take any edge (𝑢, 𝑣) ∈ 𝐸. Since 𝐺 is connected, there must be a path
from (𝑣 = 𝑣1, . . . , 𝑣𝑘 = 𝑢). Thus, we obtain a cycle (𝑣1, . . . , 𝑣𝑘, 𝑣1).

(⇐): Take any pair of vertices 𝑢, 𝑣 ∈ 𝑉. Since 𝐺 is connected, there exists an
undirected path (𝑢 = 𝑣1, . . . , 𝑣𝑘 = 𝑣) in 𝐺. We can transform this to a directed path
as follows. For any 𝑖 = 1, . . . , 𝑘 − 1, if (𝑣𝑖, 𝑣𝑖+1) ∈ 𝐸 do nothing, otherwise there
must be an edge (𝑣𝑖+1, 𝑣𝑖) ∈ 𝐸, which is a part of a cycle (𝑣𝑖+1, 𝑣𝑖, 𝑤1, . . . , 𝑤𝑙, 𝑣𝑖+1).
So, add the vertices 𝑤1, . . . , 𝑤𝑙 between 𝑣𝑖 and 𝑣𝑖+1 in our undirected path, which
makes it a directed path. □

56

6.5.3 Definition. Let 𝐺 = (𝑉 , 𝐸) be a directed graph. Vertices 𝑢, 𝑣 ∈ 𝑉 are said to
be strongly connected if there is a directed path from 𝑢 to 𝑣 and a directed path
from 𝑣 to 𝑢.

6.5.4 Proposition. Being strongly connected is an equivalence relation.
Proof. Exercise. □

6.5.5 Definition. Let 𝐺 = (𝑉 , 𝐸) be a directed graph. The equivalence classes of the
relation being strongly connected are called the strongly connected components
of 𝐺.

6.5.6 Definition. Let 𝐺 = (𝑉 , 𝐸) be a directed graph. We define the condensation
of 𝐺 to be the graph ̄𝐺 = (̄𝑉 , ̄𝐸) defined as follows. ̄𝑉 is the set of all strongly
connected components of 𝐺. We put (𝐶, 𝐾) ∈ ̄𝐸 if there is 𝑢 ∈ 𝐶 and 𝑣 ∈ 𝐾 such
that (𝑢, 𝑣) ∈ 𝐸.

6.5.7 Remark. A condensation of a graph is a particular instance of a quotient
graph: For any graph 𝐺, we can take a partition of its vertices ̄𝑉 and define a graph

̄𝐺 = (̄𝑉 , ̄𝐸), where two elements 𝐴, 𝐵 ∈ ̄𝑉 are connected if they have representatives
that are connected.

6.5.8 Proposition. The condensation of a directed graph is always acyclic.
Proof. Exercise. □

6.5.9 Exercise. Let 𝐺 be a strongly connected directed graph on 𝑛 vertices. Find
the smallest and the largest number of edges that 𝐺 can have.

6.6 Eulerian graphs
6.6.1 Problem (Seven bridges of Königsberg). This is a famous problem solved
by Leonhard Euler in 1736. Below, there is a map14 of Königsberg in Euler’s time
with seven bridges of the Pregel river highlighted. Can you cross all the bridges
exactly once? If so, can you do it in such a way that you end where you started?

Solution. It is of course totally irrelevant, where the bridges exactly are, how far
they are apart or what is the name of the river. The only important thing is that 1.
the river divides the city into four parts and 2. which part is connected to which by
how many bridges. The ideal way to formalize this in mathematics is using graph

14 https://en.wikipedia.org/wiki/File:Konigsberg_bridges.png

57

theory. We replace city quarters by vertices and the bridges by edges. Now, the
question is whether there is a trail or even a circuit that goes through all the edges.
The answer to both questions is no as follows from the characterization below.

6.6.2 Problem (Haus vom Nikolaus). Can you draw the following picture in
one stroke?

6.6.3 Definition. Let 𝐺 = (𝑉 , 𝐸) be a graph. An Eulerian trail is a trail that
uses all edges exactly once. An Eulerian circuit is a circuit, where all edges are
used exactly once. A graph is called Eulerian if it admits an Eulerian circuit.
6.6.4 Theorem. Let 𝐺 = (𝑉 , 𝐸) be a connected graph. Then 𝐺 is Eulerian if and
only if the degree of every vertex in 𝐺 is even.
Proof. (⇒): For every vertex, its degree must be twice the number of times the
Eulerian circuit visits the vertex.

(⇐): We give a constructive proof: Pick any vertex. Start a walk in any direction
and colour the edges you walk through. Never use the same edge twice. Since the
degree of every vertex is even, you always have a possibility to continue unless you
arive to the vertex where you started. If that happens, you have produced a circuit
(𝑣1, . . . , 𝑣𝑘 = 𝑣1). If you used all the edges, you are done. Otherwise, pick some
vertex 𝑣𝑖 which is incident to a coloured edge as well as some uncoloured one. (It
must exist, otherwise the graph is not connected.) Do the same avoiding the coloured
edges (never repeat the edge you have already used in this walk or the walks before).
This again must produce some circuit (𝑣𝑖 = 𝑤1, . . . , 𝑤𝑙 = 𝑣𝑖). We can now connect
the two circuits in a big one as (𝑣1, . . . , 𝑣𝑖 = 𝑤1, . . . , 𝑤𝑙 = 𝑣𝑖, . . . , 𝑣𝑘 = 𝑣1). If this
still is not Eulerian, we continue in a similar way. □
6.6.5 Exercise. Try to reformulate the statement for directed graphs. What should
be the condition in this case?
6.6.6 Theorem. Let 𝐺 = (𝑉 , 𝐸) be a connected graph. Then there is an Eulerian
trail on 𝐺 if and only if exactly two vertices in 𝐺 have odd degree.
Proof. We can either repeat the proof above or note the following are equivalent:

• 𝐺 has an Eulerian trail (𝑢 = 𝑣1, . . . , 𝑣𝑘 = 𝑣).
• 𝐺′: = (𝑉 ∪ {𝑥}, 𝐸 ∪ {{𝑥, 𝑢}, {𝑣, 𝑥}}) has an Eulerian cycle (𝑥, 𝑢 = 𝑣1, . . . , 𝑣𝑘 =

𝑣, 𝑥). (Here, 𝑥 is a new vertex not appearing in 𝑉.)
• 𝐺′ has only vertices of even degree.
• 𝐺 has only vertices of even degree except for 𝑢 and 𝑣 which have odd degree. □

58

If a graph does not satisfy the assumption that the degree of each edge is even,
we can still try to solve the optimization problem: what is the shortest circuit that
visits every edge? This is known as the Chinese postman problem. You are a postman
and you want to go through every street at least once while keeping your route as
short as possible.

6.7 Overview over some other areas of graph theory
In this section, we would like to give some other examples of application of graph
theory. We will often start by formulating a certain (more or less famous) problem.
For each problem, try to formulate it in the graph theoretical terms before reading
further. (But do not try to solve it. The solution is usually hard.) The purpose
is to gain some intuition in what kind of problems can be formulated in terms of
graph theory and how do you do that. If you can do that, it is very likely that
the corresponding algorithm is known and somebody has it already coded, so it is
enough to load the corresponding library.
Hamiltonian graphs and the travelling salesman
6.7.1 Problem (Travelling salesman). Given a list of cities and distances between
them what is the shortest path to visit all (and return to the original city)?
Solution. The graph-theoretical formulation is quite straightforward here. We have
a weighted graph, where the vertices stand for cities and the weight of an edge
between two vertices corresponds to their distance. The problem is now to find a
circuit that visits all vertices and its length (the sum of the weights) is minimal. There
is no exact algorithm that would solve this problem in polynomial time. The best
known are exponential. (Actually the decision problem “Is there a circuit visiting all
vertices of length 𝑙?” is proven to be NP-complete.) There are some approximation
algorithms that are faster (but you are not guaranteed to get the optimal solution).
See wikipedia for details.

We get an easier version of this concept if we consider just ordinary (not
weighted) graphs.
6.7.2 Definition. Let 𝐺 = (𝑉 , 𝐸) be a graph, 𝑛 = #𝑉. A Hamiltonian path is
a path of length 𝑛 (i.e. visiting all vertices). A Hamiltonian cycle is a cycle of
length 𝑛. A graph is Hamiltonian if it contains a Hamiltonian cycle.

But there is no easy characterization here either. Again, the decision problem
whether a graph is Hamiltonian is NP-complete. Nevertheless, there are some special
cases, where we know the answer. For instance, by the theorem of Ore (1960), a graph
is Hamiltonian if, for every pair of non-adjacent vertices, the sum of their degrees is
greater or equal to 𝑛. This was further generalized in 1972 by Chvátal and 1976 by
Bondy. We will not mention the exact formulations here.
Pairings and Hall’s marriage problem
6.7.3 Problem (Hall’s marriage problem). Consider a set of girls and boys such
that each girl knows several boys. Under what condition can all the girls mary the
boys such that each girl marries a boy she knows?

59

6.7.4 Theorem (Hall 1935). The problem has a solution if and only if, for every
𝑘 = 1, . . . , 𝑚: = #{girls}, each set of 𝑘 girls collectively knows at least 𝑘 boys.

The actual solution is not that interesting as the new graph-theoretical concepts
it introduces. We have a graph, where the set of vertices are the people (boys and
girls) involved and there is an edge between girl and boy if the girl knows the boy.
(We do not draw edges between girls or between boys as they are not relevant – the
graph is bipartite.) The task is to find a matching – a set of mutually disjoint edges
– that would cover all the girls.

6.7.5 Definition. Let 𝐺 = (𝑉 , 𝐸) be a graph. A matching in 𝐺 is a subset 𝑀 ⊂ 𝐸
such that, for every 𝑒, 𝑓 ∈ 𝑀, 𝑒 ∩ 𝑓 = ∅. The matching is called perfect if, for every
𝑣 ∈ 𝑉, there is 𝑒 ∈ 𝑀 with 𝑣 ∈ 𝑒.

6.7.6 Examples.

• Organizing a tournament: The teams form the set of vertices. Before each round,
we must decide, who will play against whom. We list all the possible pairs as
the set of edges and find a perfect matching.

• Molecules of benzene rings: You might remember from chemistry the molecule
of benzene having the structure ↔ ↔ . You can also combine the
benzene rings to obtain more complicated aromatic compounds like napthtalene:

↔ ↔ ↔ . Is there a chemical compound with the following
formula ?

Another thing worth noticing in the original problem, which also appears very
often in graph theory, is that the set of vertices is divided into two subsets – boys
and girls – and there are edges only connecting vertices of different parts.

6.7.7 Definition. A graph 𝐺 = (𝑉 , 𝐸) is called bipartite if there are 𝑉1, 𝑉2 such
that 𝑉 = 𝑉1 ∪ 𝑉2 and 𝑉1 ∩ 𝑉2 = ∅ and 𝐸 ∩ (𝑉1

2) = ∅ = 𝐸 ∩ (𝑉2
2).

There is a surprisingly simple characterization of bipartite graphs:

6.7.8 Theorem. A graph is bipartite if and only if it has no cycle of odd length.

Proof. Exercise! □

Planar graphs, colourings and the four-colour-theorem

6.7.9 Problem. Given a political map, what is the least amount of colours one
has to use to colour the states such that neighbouring states always get a different
colour? (As in the image15.)

15 https://commons.wikimedia.org/wiki/File:Map_of_United_States_accessible_colors_sh
own.svg

60

6.7.10 Thoerem (Four colour theorem). 4.16

Note that the proof of the four colour theorem is extremely complicated and
involves a lot of brute force checking performed by a computer. Note also that it is
relatively easy to prove that five colours are enough. But our aim is again just to
understand what the statement says from the perspective of graph theory.

So, what we can do is to construct a graph where the vertices are the states and
two states are connected by an edge if they share a border. The goal is to colour the
vertices such that no two vertices of the same colour are connected.

6.7.11 Definition. Let 𝐺 = (𝑉 , 𝐸) be a graph, 𝑘 ∈ ℕ. A 𝑘-vertex colouring of
𝐺 is a map 𝜙: 𝑉 → {1, . . . , 𝑘}. It is called proper if for every edge {𝑣, 𝑤} ∈ 𝐸 we
have 𝜙(𝑣) ≠ 𝜙(𝑤). The minimal 𝑘 such that a 𝑘-vertex colouring exists is called the
chromatic number of the graph and denoted 𝜒(𝐺).

So, what do we mean by the four colour theorem. Is the chromatic number of
every graph at most five? Certainly not! For instance, the full graph 𝐾𝑛 clearly has
the chromatic number equal to 𝑛. The point is that our graphs that come from maps
are planar.

6.7.12 Informal definition. A graph 𝐺 = (𝑉 , 𝐸) is called planar if it can be
drawn in a plane such that the edges do not cross.

6.7.13 Thoerem (Four colour theorem formulated properly). Let 𝐺 be a
planar graph. Then 𝜒(𝐺) ≤ 4.

Both the concept of planarity and colouring is very useful, so let us mention a
couple of additional comments and applications.

6.7.14 Problem. Given a convex polyhedron, what is the relationship between the
number of its vertices, edges, and faces?

For a planar graph, one can also define faces as the regions the plane is divided
into by the edges. Here, you can ask the same question. Actually, any polyhedron
can be deformed and identified with the plane, so the answer to both questions is
actually the same.

16 This is a joke. Please formulate theorems more precisely on the exam.

61

6.7.15 Theorem (Euler). For any connected planar graph, we have

#{vertices} − #{edges} + #{faces} = 2.

Inspired by the concept of vertex colouring, we can study the same for edges:

6.7.16 Definition. Let 𝐺 = (𝑉 , 𝐸) be a graph, 𝑘 ∈ ℕ. A 𝑘-edge colouring is a
map 𝜙: 𝐸 → {1, . . . , 𝑘}. It is called proper if, for every 𝑒, 𝑓 ∈ 𝐸, we have 𝜙(𝑒) = 𝜙(𝑓)
only if 𝑒 ∩ 𝑓 = ∅.

6.7.17 Problem. Create a school timetable. You are given a set of teachers 𝑇 a set
of classes (groups) of students 𝐶 and you know which teacher is supposed to each
which class (and how many times a week). You are supposed to assign time slots to
each lecture such that no teacher gives two lecture at the same time and no class is
supposed to attend two lectures at the same time.
Solution. Define a bipartite graph with the set of vertices 𝑉 = 𝑇 ∪ 𝐶; a teacher 𝑡 is
connected with a class 𝑐 if 𝑡 is supposed to teach 𝑐. (We can create a multigraph by
using multiple edges if the class is more than once a week.) Now assigning the time
slots just means that we have to find an edge colouring of the graph. Each colour
then represents a certain time slot. The less colours we use, the better as it makes
the timetable more compact.

62

