
Probability theory

Probability theory



σ-algebra 1

Definition

Consider a set Ω 6= ∅ of elementary random events. This set Ω is called
the sample space. Let A be a nonempty system of subsets of the set Ω
such that

a) ∅ ∈ A,

b) if A ∈ A, then Ac ∈ A, where Ac is the complement of the set A.

c) if Ai ∈ A, i = 1,2,. . ., then ∪∞i=1Ai ∈ A.
Then A is called σ-algebra.
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Probability space 2

Definition

Let Ω 6= ∅ and A be a σ-algebra defined on Ω. Then the probability P is
defined as a real function on A, which satisfies

a) P(Ω) = 1, P(∅) = 0,

b) P(A) > 0 for all A ∈ A,

c) for all sequences of disjoint events {Ai}∞i=1, it holds

P(∪∞i=1Ai ) =
∞∑
i=1

P(Ai ).

Triple (Ω,A,P) is called the probability space.
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Terminology 3

1) ∅ ... impossible event

2) Ω ... sure event

3) A ∪ B ... union of the events A, B (the event, which occurs if and
only if at least one from the events A, B occurs)

4) A ∩ B ... intersection of the events A, B (the event, which occurs if
and only if both the events A and B occur together)

5) B − A ... difference of the events B and A (the event, which occurs
if and only if the event B occurs and the event A does not occur)

6) A ⊂ B ... A is subevent of the event B

7) Ac = Ω− A ... complement of the event A (the event, which occurs
if and only if the event A does not occur)

8) A ∩ B = ∅ ... events A, B are disjoint (they can not occur together)

9) The sequence of disjoint events {Ai}∞i=1 such that ∪∞i=1Ai = Ω is
called a partition of the sample space Ω.

Probability theory



Properties 4

1) 0 ≤ P(A) ≤ 1, ∀A ∈ A,

2) A,B ∈ A,A ⊂ B ⇒ P(A) ≤ P(B),

3) P(Ac) = 1− P(A), ∀A ∈ A,

4) P(A ∪ B) = P(A) + P(B)− P(A ∩ B), ∀A,B ∈ A,

5) A,B ∈ A,A ⊂ B ⇒ P(B − A) = P(B)− P(A),

6) for all {Ai}∞i=1 forming a partition of the sample space Ω, it holds
that P(∪∞i=1Ai ) =

∑∞
i=1 P(Ai ) = 1;
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Special probability spaces: classical 5

Probability space (Ω,A,P) is called the classical probability space, if

a) the set Ω is finite and all possible results have the same probability,
i.e. denoting p1, . . . ,pm the probabilities of the individual elementary
events, then p1 = p2 = . . . = pm = 1

m (when we have m elementary
events),

b) σ-algebra A is the system of all subsets of the set Ω,

c) probability P of the random event A is equal to

P(A) =
mA

m
,

where mA is the number of results corresponding to the event A and m is
the number of all possible results of the random trial.
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Special probability spaces: geometrical 6

Geometrical probability space is the probability space (Ω,A,P) such that

a) Ω ⊂ Rd (usually d = 1, 2, 3), i.e. the elementary events can be
represented by points of an geometrical object,

b) A = B(Ω) is Borel σ-algebra on Ω (i.e. the smallest σ-algebra
including all open subsets of Ω, and thus also all closed subsets and
their combinations),

c) P(A) = µd (A)
µd (Ω)

, where µd is d-dimensional Lebesque measure. For our

purposes, it is enough to consider µ1(A) as the length of A, µ2(A)
as the area of A and µ3(A) the volume of A.
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Special probability spaces: general discrete 7

General discrete probability space is the probability space (Ω,A,P) such
that

a) Ω = {ω1, ω2, . . .},
b) A is the set of all subsets of Ω,

c) there are given probabilities P(ωi ) of elementary events ωi satisfying∑∞
i=1 P(ωi ) = 1. Then the probability of arbitrary event is given by

the relation P(A) =
∑
ωi∈A P(ωi ).
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Special probability spaces: general continuous 8

General continuous probability space is given by

a) Ω = R, i.e. all elementary events can be represented by points on
real axis,

b) A = B(R) is Borel σ-algebra on R,

c) there exists a function f: R→ [0,∞] such that
∫
R f (x)dx = 1 and

the probability of arbitrary event A ∈ A is uniquely given by

P(A) =

∫
A

f (x)dx .

Remark: It is possible to work with more general Ω ⊂ Rd , d = 2, 3, ...,
but we do not use it so in this lesson.
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Conditional probability 9

Definition

Let (Ω,A,P) be a probability space. Consider random events A and B,
where P(B) > 0. Probability of the event A conditionally on the event B
is defined as

P(A|B) =
P(A ∩ B)

P(B)
.
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Conditional probability is probability 10

Theorem

Let (Ω,A,P) be a probability space and B be a random event, where
P(B) > 0. Then for an arbitrary event A ∈ A, it holds:

a) P(A|B) ≥ 0,

b) P(Ω|B) = 1,

c) P(∪∞i=1Ai |B) =
∑∞

i=1 P(Ai |B) for all sequences {Ai} of disjoint
events.

Remark: Interpretation of this theorem is such that the properties of
conditional probability are the same as the properties of unconditional
probability.
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Proof 11

Proof

a) obvious,

b) it follows from the definition that

P(Ω|B) =
P(Ω ∩ B)

P(B)
=

P(B)

P(B)
= 1,

c) since A1, A2, . . . are disjoint, then A1 ∩ B,A2 ∩ B, . . . are disjoint,
too. Thus

P(∪∞n=1An|B) =
P(∪∞n=1An ∩ B)

P(B)
=

∑∞
n=1 P(An ∩ B)

P(B)
=

=
∑∞

n=1 P(An|B)
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Chain rule 12

Theorem

For an arbitrary sequence of random events A1,A2, . . . ,An,
P(A1 ∩ A2 ∩ . . . ∩ An−1) > 0, it holds

P(∩ni=1Ai ) = P(A1)P(A2|A1)P(A3|A1 ∩ A2) . . . (1)

. . .P(An|A1 ∩ A2 ∩ . . . ∩ An−1).
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Proof 13

Proof

Repeating definition of conditional probability, we get:

P(∩n−1
i=1 Ai ∩ An) = P(∩n−1

i=1 Ai )P(An| ∩n−1
i=1 Ai ) =

= P(∩n−2
i=1 Ai )P(An−1| ∩n−2

i=1 Ai )P(An| ∩n−1
i=1 Ai ) . . .

= P(A1)P(A2|A1)P(A3|A1 ∩ A2) . . .P(An| ∩n−1
i=1 Ai ).

Thanks to monotony of probability, we have

P(A1) ≥ P(A1 ∩ A2) ≥ . . . ≥ P(A1 ∩ . . . ∩ An−1) > 0,

thus all conditional probabilities in the theorem are well defined.
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Law of total probability 14

Theorem

Let A1, A2, . . . be a partition of the sample space Ω, i.e.

Ai ∩ Aj = ∅, ∀i 6= j and ∪∞i=1 Ai = Ω.

Let these random events have the probabilities P(A1),P(A2), . . . , and
P(Ai ) > 0, ∀i = 1, 2, . . . Consider an arbitrary random event B, for
which we know the conditional probabilities

P(B|Ai ), ∀i = 1, 2, . . .

Then

P(B) =
∞∑
i=1

P(Ai ) · P(B|Ai ).
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Proof 15

Proof

A1, . . . ,An form a partition of the sample space Ω

⇒ (Ai ∩ B) ∩ (Aj ∩ B) = ∅ ∀i 6= j , ∪∞i=1(Ai ∩ B) = B.

Then

P(B) = P(∪∞i=1(Ai ∩ B)) =
∞∑
i=1

P(Ai ∩ B) =
∞∑
i=1

P(Ai ) · P(B|Ai ).
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Bayes theorem 16

Theorem

Let A1, A2, . . . be a partition of the sample space Ω. Let these random
events have the probabilities P(A1),P(A2), . . . , so that
P(Ai ) > 0, ∀i = 1, 2, . . . Consider an arbitrary random event B, for
which we know the conditional probabilities P(B|Ai ), ∀i = 1, 2, . . .
Then

P(Ai |B) =
P(B|Ai ) · P(Ai )∑∞
j=1 P(Aj) · P(B|Aj)

, i = 1, 2, . . .
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Proof 17

Proof

From definition of conditional probability, we have

P(Ai |B) =
P(Ai ∩ B)

P(B)
.

From Law of total probability, we get

P(Ai |B) =
P(Ai ∩ B)∑∞

j=1 P(Aj) · P(B|Aj)
=

P(B|Ai ) · P(Ai )∑∞
j=1 P(Aj) · P(B|Aj)

.
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Independent events 18

Definition

Random events A and B are called independent, if it holds

P(A ∩ B) = P(A) · P(B).

Definition

Let A1,A2, . . . ,An be random events. We call them to be multiple
independent, if for an arbitrary sequence of indexes
{k1, k2, . . . , kr} ⊂ {1, . . . , n}, r = 2, . . . , n, it holds

P(Ak1 ∩ Ak2 ∩ . . . ∩ Akr ) = P(Ak1 ) · P(Ak2 ) · . . . · P(Akn).

Definition

Let A1, . . . ,An be random events. We call them to be pairwise
independent, if the events Ai ,Aj are independent for all
i , j = 1, . . . , n, i 6= j .
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Independency of complements 19

Theorem

Let A,B be independent random events. Then the pairs of events
(A,Bc), (Ac ,B), (Ac ,Bc) are independent.

Proof

P(Ac ∩ B) = P(B − A) = P(B − [A ∩ B]) = P(B)− P(A ∩ B) =
= P(B)− P(B) · P(A) = P(B) · (1− P(A)) =
= P(B) · P(Ac).

Proof of independency of the events A,Bc is analogous.
If the events A,B are independent, then also the events A,Bc are
independent, and so alsoAc ,Bc are independent.
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Definition of random variable 20

Definition

Let (Ω,A,P) be a probability space. The real function X defined on Ω is
called the random variable, if X is measurable mapping
X : (Ω,A)→ (R,B), i.e.

{ω ∈ Ω : X (ω) ∈ B} ∈ A

for an arbitrary Borel set B ∈ B.
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Notation and properties 21

Notation:

1 Random variables are denoted by capitals, i.e. X ,Y ,Z . . .

2 Their values are denoted by small letters x , y , z . . .

3 Instead of {ω ∈ Ω : X (ω) ∈ B} we write {X ∈ B}, especially instead
of {ω ∈ Ω : X (ω) ≤ x} we write {X ≤ x}.

Properties: Sum, product, ratio, minimum, maximum etc. of random
variables are again random variables.
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Distribution function 22

Definition

Let X be a random variable. Its distribution function is a real function F
defined as

F (x) = P(X ≤ x) = P({ω : X (ω) ≤ x}), x ∈ R.

Basic properties of the distribution function:
The distribution function F (x) of a random variable X is

1 nondecreasing, i.e. for arbitrary a, b ∈ R, a ≤ b, it holds that
F (a) ≤ F (b),

2 right continuous in an arbitrary point x ∈ R,

3 limx→−∞ F (x) = 0, limx→∞ F (x) = 1.
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Discrete random variable 23

Definition

The random variable X is called discrete (or we say that it has a discrete
distribution), if there exists a finite or countably infinite sequence of real
numbers {xn} with corresponding sequence of non-negative numbers
{pn} = P(X = xn) such that

∑∞
n=1 pn = 1.

Distribution function of the discrete random variables X is of the form

F (x) = P(X ≤ x) =
∑

{n:xn≤x}

P(X = xn) =
∑

{n:xn≤x}

pn

and it holds that

P(a < X ≤ b) = F (b)− F (a) =
∑

{n:a<xn≤b}

P(X = xn) =
∑

{n:a<xn≤b}

pn

for arbitrary real numbers a, b, where a ≤ b.
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Absolutly continuous random variable 24

Definition

The random variable X is called absolutely continuous (or we say that it
has an absolutely continuous distribution), if there exists a non-negative
inegrable function f such that

F (x) = P(X ≤ x) =

∫ x

−∞
f (t)dt, x ∈ (−∞,∞).

The function f is called probability density.

Basic properties of the density f :

1 f (x) = d
dx F (x) a.s.,

2
∫∞
−∞ f (x)dx = 1,

3 P(a < X ≤ b) = F (b)− F (a) =
∫ b

a
f (x)dx

for arbitrary real numbers a, b, where a ≤ b.
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Generalisation 25

Definition

A measure is defined as a set function on (Ω,A), i.e.

1 µ : A → [0,∞],

2 µ(∅) = 0,

3 if An ∈ A, n ≥ 1 are disjoint, then µ(∪∞n=1An) =
∑∞

n=1 µ(An).

If µ(Ω) = 1, we call it probability measure.

Definition

Each random variable X and Borel set B ∈ B may be connected with a
probability measure on (R,B),

µX (B) = P({ω ∈ Ω : X (ω) ∈ B}),

which is called probability distribution of the random variables X .
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Generalisation 26

Denoting B = (−∞, x ], we get

µX (B) = P({ω ∈ Ω : X (ω) ≤ x}) = F (x),

i.e. the distribution function.

Denoting B = (a, b]; −∞ < a ≤ b <∞, we get

P(X ∈ (a, b]) = F (b)− F (a) = µX ((a, b]).

Thus for all Borel sets, it holds that

P(X ∈ B) = µX (B) =

∫
B

1dµX (x) =

∫
B

1dF (x), ∀B ∈ B.
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Expected value 27

Definition

Let X be a random variable defined on a probability space (Ω,A,P).
Expected value EX of the random variable X is

EX =

∫ ∞
−∞

xdF (x),

if the integral exists.
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Expected value of discrete and continuous random
variables 28

Let X be a discrete random variable with the values x1, x2,
x3,. . . Then its expected value EX is of the form

EX =
∞∑
i=1

xi · P(X = xi ),

if the sequence converges.

Let X be an absolutely continuous random variable with the density
f . Then its expected value is of the form

EX =

∫ ∞
−∞

xf (x)dx ,

if the integral exists.
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Basic properties of the expected value 29

1 Ea = a,

2 E(aX + bY ) = aEX + bEY ,

3 X1 ≤ X ≤ X2 a.s.⇒ EX 1 ≤ EX ≤ EX 2,

4 X ≥ 0 a.s.⇒ EX ≥ 0
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Expected value of a function of random variable 30

Theorem

Let X be a random variable defined on probability space (Ω,A,P) and
let φ : R→ R. Then

Eφ(X ) =

∫ ∞
−∞

φ(x)dFX (x),

if the integral exists.
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Expected value of a function of random variable 31

1 For a random variable X having the discrete distribution with the
values x1, x2, x3,. . . , it holds that

Eφ(X ) =
∞∑
i=1

φ(xi ) · P(X = xi ),

if both sides of the equation exist.

2 For a random variable X having the absolutely continuous
distribution with the density f , it holds that

Eφ(X ) =

∫ ∞
−∞

φ(x)f (x)dx ,

if both sides of the equation exist.
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Moments, variance and covariance 32

Definition

Let X be a random variable.
EX n is called the n-th moment of the random variable X ,
E(X − EX )n is called the n-th central moment of the random variable X ,
E|X − EX | is called the absolute moment of the random variable X .

Definition

The second central moment is called the variance and it is denoted by
varX = E(X − EX )2.

Definition

Let X ,Y be the random variables such that EX 2 <∞ and EY 2 <∞.
Then their covariance is defined as

cov(X ,Y ) = E(X − EX )(Y − EY ).

Remark: cov(X ,X ) = var(X ).
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Properties of the variance and covariance 33

1 Let X be a random variable. Then varX = E(X 2)− (EX )2

2 Let c be a constant. Then var c = 0.

3 Let X be a random variable and a be a real number. Then
var(aX ) = a2varX .

4 Let X be a random variable and c be a constant. Then
var(X + c) = varX .

5 Let X be a random variable with finite expected value and finite
non-zero variance. Let

Z =
X − EX√

varX
.

Then EZ = 0 and varZ = 1.

6 For random variables X ,Y it holds that
var(X + Y ) = varX + varY + 2cov(X ,Y ).

7 For random variables X ,Y it holds that cov(X ,Y ) = E(XY ) -
EXEY .
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Chebyshev inequality 34

Theorem

Let X be a random variable with finite variance. Then for an arbitrary
ε > 0, it holds that

P[|X − EX | ≥ ε] ≤ varX

ε2
.

Proof

Consider a random variable Y = X − EX with the distribution function
F . Then

varX = EY 2 =
∫∞
−∞ x2dF (x) ≥

∫
|x|≥ε x2dF (x) ≥

≥ ε2
∫
|x|≥ε dF (x) = ε2P[|Y | ≥ ε].
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Alternative distribution (X ∼ Alt(p)) 35

X takes only the values 0 and 1 subsequently with probabilities
1− p and p.

The number p is called the parameter of the alternative distribution,
0 < p < 1.

The distribution function is of the form

F (x) =

{ 0 for x < 0
1− p for 0 ≤ x < 1

1 for x ≥ 1

The expected value EX = p and the variance varX = p(1− p).
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Binomial distribution (X ∼ Binom(n, p)) 36

X takes the values k = 0, 1, 2, . . . , n.

It is uniquely given by two parameters n ∈ N and p ∈ (0, 1).

Probabilities P(X = k) are of the form

P(X = k) =
(n
k

)
pk(1− p)n−k , for k = 0, 1, . . . , n.

The distribution function is

F (x) =

{ 0 x < 0∑
0≤k≤x

(n
k

)
pk(1− p)n−k 0 ≤ x < n

1 x ≥ n.

The expected value EX = np and the variance varX = np(1− p).
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Binomial distribution (X ∼ Binom(n, p)) 37

Calculation of the expected value

EX =
n∑

k=0

k
(n
k

)
pk(1− p)n−k =

n∑
k=0

k
n!

k!(n − k)!
pk(1− p)n−k

=
n∑

k=1

k
n!

k!(n − k)!
pk(1− p)n−k

= np
n∑

k=1

(n − 1)!

(k − 1)!(n − k)!
pk−1(1− p)n−k

= np
n−1∑
k=0

(n − 1)!

k!(n − k − 1)!
pk(1− p)n−k−1

= np(p + (1− p))n−1 = np.
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BinomickŽ distribution (X ∼ Binom(n, p)) 38

Calculation of the variance
For the calculation of the variance we use the relation

varX = EX 2 − (EX )2 = EX (X − 1) + EX − (EX )2.

The calculation of the first term

EX (X − 1) =
n∑

k=0

k(k − 1)
(n
k

)
pk(1− p)n−k = ... = n(n − 1)p2

is analogous to that one for expected value. In this way, we obtain the
variance

varX = np(1− p).

.
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Poisson distribution (X ∼ Po(λ)) 39

X takes the values k = 0, 1, 2, . . .

It is uniquely given by the parameter λ > 0.

Probabilities P(X = k) are of the form

P(X = k) = e−λ
λk

k!
, for k = 0, 1, . . .

The distribution function is

F (x) =

{
0 for x ≤ 0∑

0≤j≤x e−λ λ
j

j! for 0 ≤ x <∞.

The expected value and the variance are EX = varX = λ (the
calculation is analogous to the previous one).
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Poisson distribution (X ∼ Po(λ)) 40

Relation between binomial and Poisson distributions
Consider the random variable X ∼ Binom(n, p), where n→∞, p → 0,
while np = λ. Then

P(X = k) =
n(n − 1) . . . (n − k + 1)

k!
pk(1− λ

n
)n−k −→

n→∞,p→0

λk

k!
e−λ,

so we obtain Poisson distribution.
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Geometrical distribution (X ∼ Ge(p)) 41

X takes the values k = 0, 1, 2, . . .

It is uniquely given by the parameter p ∈ (0, 1).

Probabilities P(X = k) are of the form

P(X = k) = p(1− p)k for k = 0, 1, . . .

The distribution function is

F (x) =
{ 0 for x < 0∑

0≤k≤x p(1− p)k for x ≥ 0.

Using relations for geometrical sequences, we obtain the expected
value EX = 1−p

p and the variance varX = 1−p
p2 .
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Uniform distribution in [a, b] (X ∼ Ro(a, b)) 42

X takes the values from the interval [a, b] (a, b ∈ R are the
parameters).

It is given by the density

f (x) =
{ 1

b−a a ≤ x ≤ b,

0 x < a, x > b.

The distribution function is

F (x) =

{ 0 x < a,
x−a
b−a a ≤ x ≤ b,

1 x ≥ b.

The expected value and the variance are

EX =
a + b

2
, varX =

1

12
(b − a)2.
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Exponential distribution (X ∼ Exp(λ)) 43

X takes the values from the interval (0,∞).

It is given by the density with parameter λ:

f (x) =
{
λe−λx x > 0
0 otherwise.

The distribution function is

F (x) =
{ 0 for x ≤ 0

1− e−λx x > 0.

Using per partes, we obtain the expected value

EX =

∫ ∞
0

xλe−λxdx =
1

λ
.

Further,

EX 2 =

∫ ∞
0

x2λe−λxdx =
2

λ2

so the variance is

varX = EX 2 − (EX )2 =
1

λ2
.
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Exponential distribution (X ∼ Exp(λ)) 44

Properties of the exponential distribution:

1 It has no memory:
For the random variable X with exponential distribution, it holds
that

P(X > x + y |X > y) = P(X > x) ∀x > 0, y > 0,

since P(X > x + y |X > y) can be rewritten (using the definition of
conditional probability) to the form

P(X > x + y)

P(X > y)
=

e−λ(x+y)

e−λy
= e−λx .

2 Connection with Poisson distribution:
If the random variable X describing the time of waiting for an event
has the distribution Exp(λ), then the random variable Y describing
the number of that events in the time interval of the length T has
the distribution Po(λT ).
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General normal distribution (X ∼ N(µ, σ2)) 45

X takes the values from R.

It is uniquely determined by the parameters µ ∈ R and σ2 > 0.

It is given by the density

f (x) =
1√

2π σ2
e−

(x−µ)2

2σ2 , −∞ < x <∞.

The distribution function is

F (x) =
1√

2π σ2

∫ x

−∞
e−

(t−µ)2

2σ2 dt, −∞ < x <∞.

The expected value is EX = µ and the variance is varX = σ2.
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Standard normal distribution (X ∼ N(0, 1)) 46

X again takes the values from R.

It is given by the density

f (x) =
1√
2π

e−
x2

2 , −∞ < x <∞.

The distribution function is

Φ(x) =
1√
2π

∫ x

−∞
e−

t2

2 dt, −∞ < x <∞.

The expected value is EX = 0 and the variance is varX = 1.

The values of Φ can be found in statistical tables.

Thanks to the symetry of the function Φ(x) = 1− Φ(−x), the
values of Φ are often tabulated only for non-negative x .
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Normal distribution (X ∼ N(0, 1)) 47

Transformation of the variables with normal distribution

Theorem

1 If X has standard normal distribution and Y = µ+ σX , then Y has
normal distribution with the parameters µ and σ2.

2 If X has normal distribution with parameters µ, σ2 and if
Y = a + bX , then Y has again normal distribution with parameters
a + bµ and b2σ2.

3 Let X ,Y be random variables, X ∼ N(µ1, σ
2
1), Y ∼ N(µ2, σ

2
2) and

cov(X ,Y ) = 0. Then Z = X + Y has the distribution
N(µ1 + µ2, σ

2
1 + σ2

2).
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Recall that... 48

... sum, product, ratio, minimum, maximum etc. of random variables are
again random variables.

Further, if X is a random variable, then

Y = ϕ(X )

is also a random variable for any ϕ : R→ R.
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Function of a random variable 49

Theorem

Let X be a random variable with distribution function F and let
ϕ : R→ R. Denote Y = ϕ(X ) and G its distribution function. Then

G (y) =

∫
{x ;ϕ(x)≤y}

dF (x), ∀y ∈ R.

Especially, if F is discrete {xn, pn}, then

G (y) =
∑

{xn;ϕ(xn)≤y}

pn, ∀y ∈ R

and if it is absolutely continuous with the density f , then

G (y) =

∫
{x ;ϕ(x)≤y}

f (x) dx , ∀y ∈ R.
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Proof

Denote By = {x ;ϕ(x) ≤ y}. Then

G (y) = P(Y ≤ y) = P(ϕ(X ) ≤ y) = P(X ∈ By ) =

∫
{x ;ϕ(x)≤y}

dF (x).
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Sum of random variables - convolution 51

Consider two independent (mathematical definition - see below) random
variables X and Y with distribution functions F (x) and G (y),
respectively. The aim is to obtain the distribution function of Z = X + Y .
Let H(z) be the distribution function of the random variable Z . Then

H(z) =
∫ ∫

x+y≤z dF (x)dG (y) =
∫∞
−∞ F (z − y)dG (y) =

=
∫∞
−∞ G (z − x)dF (x).

Definition

The probability distribution given by the distribution function H(z) is
called the convolution of the distributions with distribution functions
F (x) and G (y) and H is called the convolution of distribution functions
F and G .

Convolution is denoted as H = F ∗ G .
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Theorem

Let F ,G be discrete distribution functions with corresponding
probabilities {pn}, {qn}, i.e.

F (x) =
∑

0≤n≤x

pn, G (y) =
∑

0≤n≤y

qn.

Let H = F ∗ G . Then H is discrete distribution function given by

H(z) =
∑

0≤n≤z

hn, where hn =
n∑

k=0

pk qn−k .
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Theorem

Let X and Y be independent random variables with absolutely
continuous distribution functions F(x) and G(y), respectively, and
corresponding densities f (x) a g(y), respectively. Then H = F ∗ G is
absolutely continuous and for its density h(z) (i.e. for the density of the
random variable Z = X + Y ) it holds that

h(z) =

∫ ∞
−∞

f (x)g(z − x)dx =

∫ ∞
−∞

f (z − y)g(y)dy . (2)

Remark

The function h(z) defined by (2) is called the convolution of the densities
f (x) and g(y) and denoted as h = f ∗ g. In order to verify the property
of the density, we know from (2) that h(z) ≥ 0 and∫∞
−∞ h(z)dz =

∫∞
−∞

∫∞
−∞ f (x − y)g(y)dydx =

=
∫∞
−∞

( ∫∞
−∞ f (x − y)dx

)
g(y)dy =

∫∞
−∞ g(y)dy = 1.
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Convolution of two binomial distributions
Let X and Y be independent random variables, X ∼ Binom(n1, p)
and Y ∼ Binom(n2, p). Then the distribution of the random variable
Z = X + Y is Binom(n1 + n2, p).

Convolution of two Poisson distributions
Let X ∼ Po(λ1) and Y ∼ Po(λ2) be independent. Then the
distribution of the random variable Z = X + Y is Po(λ1 + λ2).
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Convolution of two uniform distributions
Let

f (x) =

{ 1
b−a for a ≤ x ≤ b

0 otherwise

and

g(y) =

{ 1
d−c for c ≤ y ≤ d

0 otherwise.

For d − c ≥ b − a it holds that

h(z) =

{
0 for z ≤ a + c or b + d ≤ z

z−(a+c)
(b−a)(d−c) for a + c ≤ z ≤ b + c

1
d−c for b + c ≤ z ≤ a + d

(b+d)−z
(b−a)(d−c) fora + d ≤ z ≤ b + d .
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Convolution of two normal distributions
Let X ,Y be independent random variables, X ∼ N(µ1, σ

2
1) and

Y ∼ N(µ2, σ
2
2). Then the distribution of Z = X + Y is

N(µ1 + µ2, σ
2
1 + σ2

2).

Convolution of two exponential distributions
If X ,Y are independent random variables with the same exponential
distributions with parameter λ > 0, then the density of the random
variable Z = X + Y is

h(z) =
{ λ2z exp{−zλ} z > 0,

0 z ≤ 0.
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Definition

Let (Ω,A,P) be a probability space. Consider random variables X1, X2,
. . . , Xn defined on this space. Then the vector X = (X1, . . . ,Xn)T is
called random vector.

Remark:
Random vector is thus a mapping from Ω to Rn. The values of the
random vector may be interpreted as points in the n-dimensional space.
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Definition

Let X = (X1, . . . ,Xn)T be a random vector defined on a probability space
(Ω,A,P). (Joint) distribution function FX of the random vector X is the
real function of n variables defined on Rn as

FX(x1, . . . , xn) = P(X1 ≤ x1,X2 ≤ x2, . . . ,Xn ≤ xn) =

= P(∩ni=1{ω : Xi (ω) ≤ xi}),

−∞ < xi <∞, i = 1, . . . , n.
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1 FX(x1, . . . , xn) is nondecreasing function in each variable while the
values of the remaining values are fixed.

2 FX(x1, . . . , xn) is right continuous in each variable.

3 limxi→−∞ FX(x1, . . . , xn) = 0, i = 1, . . . , n,
where the remaining values xj (j = 1, . . . , n, j 6= i) are fixed.

4 limx1,...,xn→∞ FX(x1, . . . , xn) = 1.
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Definition

The random vector X has discrete distribution, if there exists a sequence
{xk}∞k=1, xk ∈ Rn, and corresponding sequence {pk}∞k=1 of positive
numbers such that

∞∑
k=1

pk = 1, where pk = P(X = xk) = P({ω ∈ Ω : X(ω) = xk}).

Distribution function of the discrete random vector X is of the form

FX(x) =
∑

{k:xk≤x}

pk , ∀x ∈ Rn,

where xk ≤ x is considered in each variable, i.e. x i
k ≤ x i for all

i = 1, . . . , n.
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Definition

The random vector X = (X1, . . . ,Xn)T has absolutely continuous
distribution, if there exists a non-negative function fX of n real variables
such that

FX(x1, . . . , xn) =

∫ x1

−∞
. . .

∫ xn

−∞
fX(t1, . . . , tn)dt1, . . . , dtn,

where the function fX is called the probability density of the random
vector X or joint density of the random variables X1, . . . , Xn.
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Remark

As in the case of random variables, we can generalise the random vector
using probability measure. However, it is enough for our purposes to
consider the random vectors of discrete and continuous type, respectively.
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Definition

Distribution (distribution function, probability density, respectively) of a
random vector (X1, . . . ,Xk)T , which is subvector of the random vector
X = (X1, . . . ,Xn)T , is called marginal distribution (distribution function,
probability density, respectively).
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Calculation of marginal distribution: discrete case 64

If the random vector X = (X1, . . . ,Xn)T has discrete distribution with
joint probabilities P(X1 = ., ..., Xi−1 = ., Xi = ., Xi+1 = ., ..., Xn = .),
where the random variables Xl have values xl,1, ..., xl,kl for l = 1, ..., n,
then the marginal probabilities are

P(Xi = x) =
k1∑

j1=1

...

ki−1∑
ji−1=1

ki+1∑
ji+1=1

...

kn∑
jn=1

P(X1 = x1,j1 , ..., Xi−1 = xi−1,ji−1 ,

Xi = x , Xi+1 = xi+1,ji+1 , ..., Xn = xn,jn).

Probability theory



Calculation of marginal distribution: continuous case 65

If the random vector X = (X1, . . . ,Xn)T is continuous with joint density
fX, then marginal density of the random variable Xi is
(n − 1)-dimensional integral

fXi (x) =

∫
R
. . .

∫
R

fX(x1, . . . , xi−1, x , xi+1, . . . , xn)dx1, . . . , dxi−1dxi+1, . . . , dxn.
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Consider the random vector X = (X1, . . . ,Xn)T .

1 Vector of expected values

EX = (EX1, . . . ,EXn)T .

2 Variance matrix varX with elements

cov(Xi ,Xj) = E(Xi − EXi )(Xj − EXj), 1 ≤ i , j ≤ n.

3 Correlation matrix corrX with elements

corr(Xi ,Xj) =
cov(Xi ,Xj)√
varXi

√
varXj

, 1 ≤ i , j ≤ n.

Remark

For the correlation, it holds that

−1 ≤ corr(X ,Y ) ≤ 1.
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Definition

The random variables X1, X2 . . . , Xn are called mutually independent if

P(∩rj=1{ω : Xij (ω) < xij}) = Πr
j=1P({ω : Xij (ω) < xij})

∀{i1, i2, . . . , ir} ⊂ {1, 2, . . . , n}, 1 ≤ r ≤ n,∀xij ∈ R.
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Verifying of independency of random variables 68

Theorem

1 Let X = (X1,X2 . . . ,Xn)T be a discrete random vector. The random
variables X1,X2 . . . ,Xn are mutually independent if and only if it
holds that

P(X1 = x
(i)
1 , . . . ,Xn = x (i)

n ) = Πn
j=1P(Xj = x

(i)
j )

for all x(i) = (x
(i)
1 , x

(i)
2 , . . . , x

(i)
n ), i = 1, 2, . . ., which X can take.

2 Let X = (X1,X2 . . . ,Xn)T be a continuous random vector. The
random variables X1,X2 . . . ,Xn are mutually independent if and only
if it holds that

fX(x1, x2 . . . , xn) = fX1 (x1) · fX2 (x2) . . . fXn(xn), ∀(x1, x2 . . . , xn) ∈ Rn.
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Theorem

Let X and Y be independent random variables with finite expected
values, then

1 EXY = (EX )(EY ).

2 Moreover, if EX 2 <∞ and EY 2 <∞, then cov(X ,Y ) = 0.

Remark
If cov(X ,Y ) = 0, then we say that the random variables are
non-correlated. However, it does not imply the independency!
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Convergence of random variables 70

Definition

Consider a sequence of random variables X1, X2, X3, . . . and a random
variable X. Let these random variables be defined on the same probability
space (Ω,A,P).
We say that Xn converges to X almost surely, if

P{ω : lim
n→∞

Xn(ω) = X (ω)} = 1.

If for all ε > 0 it holds that

lim
n→∞

P{ω : |Xn(ω)− X (ω)| > ε} = 0,

then we say that Xn converges to X in probability.

Theorem

Convergence almost surely ⇒ convergence in probability.
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Laws of large numbers 71

Theorem

Weak law of large numbers:
Let {Xn}∞n=1 be a sequence of independent random variables with the
same expected values µ and the same variances σ2 <∞. Then for
n→∞ it holds that

1

n
(X1 + X2 + . . .+ Xn)→ µ

in probability.

Theorem

Strong law of large numbers:
Let {Xn}∞n=1 be a sequence of independent identically distributed random
variables with finite expected value EX1 = µ. Then for n→∞ it holds
that

1

n
(X1 + X2 + . . .+ Xn)→ µ

both in probability and almost surely.
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Theorem

Let X1, X2, . . . be independent identically distributed random variables
with expected value µ and finite variance σ2. Denote

Zn =

∑n
k=1 Xk − nµ√

nσ2
n = 1, 2, . . .

and Fn(x) the distribution function of Zn. Then limn→∞ Fn(x) = Φ(x)
for all −∞ < x <∞, where Φ(x) is the distribution function of N(0, 1).

Remark
Central limit theorem (CLT) has many versions. The introduced one is
called Lévy-Lindeberg CLT.
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