Random processes

Random processes

< ≣⇒

3 N

< 🗇 🕨

æ

Let (Ω, \mathcal{A}, P) be a probability space and $T \subset \mathbb{R}$. The system of real random variables $\{X_t, t \in T\}$ defined on (Ω, \mathcal{A}, P) is called the random (or stochastic) process.

If $T = \mathbb{Z}$ or $T = \mathbb{N}$, we talk about the random process with discrete time. If T = [a, b], where $-\infty \le a < b \le \infty$, we talk about the random process with continuous time.

Definition

Double (S, \mathcal{E}) is called the state space, if S is a set of values of the random variable X_t and \mathcal{E} is σ -algebra on the S.

Definition

If the random variables X_t take only discrete values, we talk about the random process with discrete states. If the random variables X_t take continuous values, we talk about the random process with continuous states.

Random process $\{X_t, t \in T\}$ can be considered as a function of two variables ω and t. For fixed t, this function is a random variable, for fixed ω it is a function of one real variable t.

Definition

Consider a fixed $\omega \in \Omega$. Then the function $t \to X_t$ is called the trajectory of the process $\{X_t, t \in T\}$.

Definition

The proces is called continuous, if all its trajectories are continuous.

Let $\{X_t, t \in T\}$ be a random process such that for all $t \in T$ there exists $\mathbb{E}X_t$. Then the function $\mu_t = \mathbb{E}X_t$ defined on T is called expected value of the process $\{X_t\}$. If $\mathbb{E}|X_t|^2 < \infty$ for all $t \in T$, then the function defined on $T \times T$ as $R(s, t) = \mathbb{E}(X_s - \mu_s)(X_t - \mu_t)$ is called autocovariance function of the process $\{X_t\}$. The value R(t, t) is called the variance of the process $\{X_t\}$ in time t.

Definition

The random process $\{X_t, t \in T\}$ is called to be weakly stationary if R(s, t) is the function of the difference s - t, i.e.

$$R(s,t) = \tilde{R}(s-t).$$

Corollary:

$$R(s,t)=R(s+h,t+h)$$

for all $h \in \mathbb{R}$ such that $s + h \in T$ and $t + h \in T$.

Denote

$$F_{t_1,\ldots,t_n}(x_1,\ldots,x_n)=P(X_{t_1}\leq x_1,\ldots,X_{t_n}\leq x_n).$$

Definition

The random process $\{X_t, t \in T\}$ is called to be strictly stationary if for arbitrary $n \in \mathbb{N}$, arbitrary real x_1, \ldots, x_n and arbitrary real t_1, \ldots, t_n and h such that $t_k \in T$, $t_k + h \in T$, $1 \le k \le n$, it holds that

$$F_{t_1,...,t_n}(x_1,...,x_n) = F_{t_1+h,...,t_n+h}(x_1,...,x_n).$$
(1)

Remark

For processes with discrete states, the relation (1) is equivalent to the relation

$$P(X_{t_1} = x_1, \ldots, X_{t_n} = x_n) = P(X_{t_1+h} = x_1, \ldots, X_{t_n+h} = x_n).$$

Consider

- a probability space (Ω, \mathcal{A}, P) ,
- a sequence of random variables $\{X_n, n \in \mathbb{N}\}$ defined on that space,
- state space (S, E), where the set S is finite or countably infinite, so without loss of generality suppose S = {0, 1, ..., N}, resp. S = {0, 1, ...}.

Definition

The sequence of the random variables $\{X_n, n \in \mathbb{N}\}$ is called Markov chain with discrete time, if

$$P(X_{n+1} = j | X_n = i, X_{n-1} = i_{n-1}, \dots, X_0 = i_0) = P(X_{n+1} = j | X_n = i)$$

for all n = 0, 1, ... and all $i, j, i_{n-1}, ..., i_0 \in S$ such that $P(X_n = i, X_{n-1} = i_{n-1}, ..., X_0 = i_0) > 0.$

Let Y_1, Y_2, \ldots be independent, identically distributed random variables taking values ± 1 with probabilities 1/2.

Define

$$X_0 = 0$$
$$X_n = \sum_{i=1}^n Y_i.$$

Then the sequence (process, chains) $\{X_n, n \in \mathbb{N}\}$ is called *the random walk*.

Conditional probabilities

- P(X_{n+1} = j | X_n = i) = p_{ij}(n, n + 1) are called the transit probabilities from the state i in time n to the state j in time n + 1 or the transit probabilities of the first order;
- P(X_{n+m} = j | X_n = i) = p_{ij}(n, n + m) are called the transit probabilities from the state i in time n to the state j in time n + m or the transit probabilities of the m-th order.

Definition

If the transit probabilities $p_{ij}(n, n + m)$ do not depend on the times n and n + m, but only on the difference m, the Markov chains is called to be homogeneous.

イロン イ団と イヨン イヨン

- Consider a homogeneous chain and denote $p_{ij} := p_{ij}(n, n+1)$.
- These elements can be ordered into a matrix P = {p_{ij}, i, j ∈ S}, where it holds that

$$p_{ij} \geq 0, \forall i, j \in S \text{ and } \sum_{j \in S} p_{ij} = 1, \forall i \in S.$$

The matrix $\mathbf{P} = \{p_{ij}, i, j \in S\}$ is called the matrix of the transit probabilities.

Random processes

Denote

$$p_i = P(X_0 = i), \quad \forall i \in S.$$

Obviously, it holds that

$$p_i \geq 0, \forall i \in S \quad ext{and} \quad \sum_{i \in S} p_i = 1.$$

Definition

The vector $\mathbf{p} = \{p_i, i \in S\}$ is called initial distribution of the Markov chain.

It follows from the Chain rule that

$$P(X_0 = i_0, X_1 = i_1, \dots, X_n = i_n) = p_{i_0} p_{i_0 i_1} \dots p_{i_{n-1} i_n}.$$

э

Matrix of the transit probabilities of higher order

Denote $p_{ij}^{(1)} = p_{ij}$ and for positive integers $n \ge 1$, define subsequently

$$p_{ij}^{(n+1)} = \sum_{k \in S} p_{ik}^{(n)} p_{kj}.$$
 (2)

It can be shown that $p_{ij}^{(n)} \leq 1$ and moreover for the matrix of the transit probabilities it holds that

$$\mathbf{P}^{(2)} = \mathbf{P} \cdot \mathbf{P} = \mathbf{P}^2$$
 and generally $\mathbf{P}^{(n+1)} = \mathbf{P}^{(n)} \cdot \mathbf{P} = \mathbf{P} \cdot \mathbf{P}^{(n)} = \mathbf{P}^{n+1}$

Theorem

Let $\{X_n, n \in \mathbb{N}\}\$ be a homogeneous Markov chain with matrix of the transit probabilities **P**. Then for the transit probabilities of the n-th order, it holds that

$$P(X_{m+n}=j|X_m=i)=p_{ij}^{(n)}, \quad \forall i,j \in S$$

for all positive integer m and n and for $P(X_m = i) > 0$.

The relation (2) can be generalised to

$$p_{ij}^{(m+n)} = \sum_{k \in S} p_{ik}^{(m)} p_{kj}^{(n)},$$

i.e.

$$\mathbf{P}^{(m+n)} = \mathbf{P}^{(m)} \cdot \mathbf{P}^{(n)}.$$

This generalisation is called Chapman-Kolmogorov equality.

.⊒...>

• If the chain $\{X_n, n \in \mathbb{N}\}$ starts from the state j, i.e. $P(X_0 = j) = 1$, then we denote

$$P(.|X_0=j)=P_j(.).$$

• Define the random variable

$$\tau_j(1) = \inf\{n > 0 : X_n = j\}$$

as the time of the first return of the chain to the state j.

- Denote $\mu_j = \mathbb{E}[\tau_j(1)|X_0 = j]$ the expected value of the time of the first return of the chain to the state j.
- Denote d_j the highest divisor of the times $n \ge 1$ such that $p_{ii}^{(n)} > 0$.

The state j of the Markov chain is called recurrent if

$$P_j(\tau_j(1) < \infty) = 1.$$

The state j of the Markov chain is called transient if

$$P_j(\tau_j(1)=\infty)>0.$$

Definition

The recurrent state j of the Markov chain is called nonnull recurrent, if $\mu_j < \infty$ and null recurrent, if $\mu_j = \infty$.

Definition

If $d_j > 1$, the state j of the Markov chain is called periodic with period d_j , if $d_j = 1$, the state j of the Markov chain is called aperiodic.

・ロン ・四 と ・ ヨン ・ ヨン …

э

Theorem

- a) Let j be the transient state. Then $\lim_{n\to\infty} p_{ij}^{(n)} = 0, \forall i \in S$.
- b) Let j be the null recurrent state. Then $\lim_{n\to\infty} p_{ij}^{(n)} = 0, \forall i \in S$.
- c) Let j be the nonnull recurrent and aperiodic the state. Then $\lim_{n\to\infty} p_{jj}^{(n)} = \frac{1}{\mu_j}$.
- d) Let j be the nonnull recurrent state with the period d_j . Then $\lim_{n\to\infty} p_{jj}^{(nd_j)} = \frac{d_j}{\mu_j}$.

Theorem

The recurrent state *j* is null if and only if $\lim_{n\to\infty} p_{jj}^{(n)} = 0$.

The state j is reachable (or accesible) from the state i, if there exists $n \in \mathbb{N}$ such that $p_{ij}^{(n)} > 0$.

Definition

A set C of the states is called to be closed, if none of the state lying outside the set C is reachable from any state included inside the set C.

Theorem

The set C of the states is closed if and only if $p_{ij} = 0$ for all $i \in C, j \notin C$.

Markov chain is called to be irreducible, if each of its states is reachable from each of the remaining states. Otherwise, it is called to be reducible.

Definition

If one-element set of the states $\{j\}$ is closed, i.e. $p_{jj} = 1$, then the state j is called the absorption state.

Let $\{X_n, n \in \mathbb{N}\}$ be a homogeneous chain with the set of the states S and matrix of the transit probabilities **P**. Let $\pi = \{\pi_j, j \in S\}$ be a probability distribution on S, i.e. $\pi_j \ge 0, j \in S, \sum_{j \in S} \pi_j = 1$. Then π is called the stationary distribution of the chain, if it holds

$$\pi^T = \pi^T \mathbf{P},$$

i.e.

$$\pi_j=\sum_{k\in S}\pi_kp_{kj}, j\in S.$$

Theorem

Let the initial distribution of a homogeneous Markov chains be stationary. Then this chain is stationary and moreover for all $n \in \mathbb{N}$, it holds that

$$p_j(n) = P(X_n = j) = \pi_j, \quad j \in S,$$

where π_i are the initial probabilities.

Theorem

For an irreducible Markov chain, it holds that:

- If all its states are transient or null recurrent, the stationary distribution does not exist.
- If all its states are nonnull recurrent, the stationary distribution exists and it is unique.
 - If all its states are aperiodic, then for all $i, j \in S$, it holds that

$$\pi_j = \lim_{n \to \infty} p_{ij}^{(n)} > 0$$
 and $\pi_j = \lim_{n \to \infty} p_j(n) > 0.$

2 If all its states are periodic, then for all $i, j \in S$, it holds that

$$\pi_j = \lim_{n \to \infty} rac{1}{n} \sum_{k=1}^n p_{ij}^{(k)} > 0 \quad \textit{and} \quad \pi_j = \lim_{n \to \infty} rac{1}{n} \sum_{k=1}^n p_j(k) > 0.$$

In irreducible chain with finite number of states, there always exists the stationary distribution.