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The main aims of statistics 1

1 Choosing a model
2 Estimating its parameter(s)

1 point estimates
2 interval estimates

3 Testing hypotheses
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Distributions used in statistics: χ2
n-distribution 2

Let X1,X2 . . . ,Xn be independent identically distributed random variables
with distribution N(0, 1). Then the random variable

Y =
n∑

i=1

X 2
i

has so called χ2
n-distribution (”χ-square distribution with n degrees of

freedom”).
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Distributions used in statistics: Student t-distribution 3

Let X be a random variable with distribution N(0, 1) and Y be a random
variable with distribution χ2

n. Then the random variable

Z =
X√
Y

√
n

has so called tn-distribution (called also Student t-distribution with n
degrees of freedom).
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Náhodný sample 4

Definition

Random vector X = (X1,X2 . . . ,Xn)T of independent identically
distributed random variables with distribution function Fθ dependent on a
parameter θ is called the random sample.

Statistics



Výběrový mean and sample variance 5

Definition

The function

X̄n =
1

n

n∑
i=1

Xi

of the random sample X = (X1,X2 . . . ,Xn)T is called the sample mean
and the function

S2
n =

1

n − 1

n∑
i=1

(Xi − X̄n)2

is called the sample variance. Sn =
√

S2
n is then called the sample

standard deviation.
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Sample mean and sample variance for normal distribution 6

Theorem

Let X = (X1,X2 . . . ,Xn)T be a random sample from distribution
N(µ, σ2), µ ∈ R, σ2 > 0. Then

1 the sample mean X̄n and the sample variance S2
n are independent

random variables,

2 the distribution of the sample mean X̄n is N(µ, σ2/n),

3 the random variable (n − 1)S2
n/σ

2 has χ2
(n−1)-distribution,

4 random variable T = X̄n−µ
Sn

√
n has t(n−1)-distribution.
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Qantiles 7

Definition

Let the distribution function F be continuous, monotone and let
0 < β < 1. Then the number zβ so that F (zβ) = β is called β-quantile of
this distribution.

Basic quantiles

uβ ... β-quantile of the standard normal distribution,

tβ,n ... β-quantile of the tn−distribution,

χ2
β,n ... β-quantile of the χ2

n distribution.

Remark

If the random variable X has the distribution function F and the
quantiles zβ , then

P(zα/2 < X < z1−α/2) = F (z1−α/2)− F (zα/2) = 1− α.
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Empirical distribution function and quartiles 8

Definition

Let (x1, x2 . . . , xn)T be a realisation of the random sample
X = (X1,X2 . . . ,Xn)T . Then

Femp(x) =
#{xi : xi ≤ x}

n
,

where # denotes the number of elements, is called the empirical
distribution function.

Definition

Let (x1, x2 . . . , xn)T be a realisation of the random sample
X = (X1,X2 . . . ,Xn)T . Then

z = min(xi : Femp(xi ) ≥ 1/4) is called the first quartile,

z = min(xi : Femp(xi ) ≥ 3/4) is called the third quartile,

z = min(xi : Femp(xi ) ≥ 1/2) is called median (the second quartile),

the most occurring element is called the modus.
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Example 9

Durations till the breakdown of an instrument were observed 21×. The
values are:
4.9, 6.2, 2.6, 0.6, 0.3, 2.3, 3.2, 1.4, 6.4, 4.8, 1.2
2.5, 0.2, 0.2, 0.8, 0.1, 0.1, 1.4, 7.8, 0.2, 4.7.

For better summary, order the data from the smallest value to the largest
one. We get:
0.1, 0.1, 0.2, 0.2, 0.2, 0.3, 0.6, 0.8, 1.2, 1.4, 1.4,
2.3, 2.5, 2.6, 3.2, 4.7, 4.8, 4.9, 6.2, 6.4, 7.8.

We have:
sample mean X̄21 = 2.471,
sample variance S2

21 = 5.81,
sample standard deviation S21 =

√
5.81 = 2.21,

1st quartile = 0.3, median (i.e. 2nd quartile) = 1.4 and 3rd quartile =
4.7,
minimum = 0.1, maximum = 7.8, modus = 0.2.
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Empirical distribution function 10
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Histogram and boxplot 11
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Porovnáńı estimate̊u and skutečných function 12
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Point estimate 13

Definition

Consider a random sample X = (X1,X2 . . . ,Xn)T , where the distribution
(i.e. the distribution function etc.) of the random variables X1, . . . ,Xn

depends on a parameter θ. Point estimate of the parameter θ is an
arbitrary function θ∗(X) of the random sample X, whose formula does
not depend on θ. If Eθ∗(X) = θ, then the estimate is called unbiased.

Remark

For simplicity, we can imagine the estimate θ̂ as the number obtained
from the realisation (x1, x2 . . . , xn)T of the random sample
X = (X1,X2 . . . ,Xn)T , where this number corresponds to the parameter
θ as best as possible.

Statistics



Moment method 14

Consider (x1, x2 . . . , xn)T a realisation of the random sample
X = (X1,X2 . . . ,Xn)T . The distribution of the random variables
X1, . . . ,Xn depends on the parameters θ1, ..., θk ∈ Θ, where Θ is a
parameter set (e.g. positive real numbers).

Assumptions: EX i
1 <∞ ∀i = 1, ...k and EX i

1 depend on θ1, ..., θk .

Method: Set
EX i

1 = mi ,

where mi is i−th sample moment obtained as

mi =
1

n

n∑
j=1

x i
j

for all i = 1, ...k . In this way, we get system of k equations of k variables
θ1, ..., θk , whose solutions are the required estimates θ̂1, ..., θ̂k .

Alternative: If k = 2, then instead of i-th moments, i = 1, 2, we can
take EX1 = X̄n and varX1 = S2

n .

Disadvantage: This estimate has large variance.
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Maximum likelihood method 15

Consider (x1, x2 . . . , xn)T a realisation of the random sample
X = (X1,X2 . . . ,Xn)T from the distribution with probabilities Pθ(X1 = .)
or with a density fθ, respectively, and let this probabilities or density,
respectively, depend on a parameter θ ∈ Θ.

Definition

The estimate θ̂ is called the maximum likelihood estimate, if

n∏
i=1

Pθ̂(X1 = xi ) = max
θ∈Θ

n∏
i=1

Pθ(X1 = xi ),

or
n∏

i=1

fθ̂(xi ) = max
θ∈Θ

n∏
i=1

fθ(xi ), respectively.
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Maximum likelihood method for the sample from discrete
distribution 16

1 Construct the likelihood function L(θ) =
∏n

i=1 Pθ(X1 = xi ).

2 Construct the log-likelihood function
l(θ) = log L(θ) =

∑n
i=1 log Pθ(X1 = xi ).

3 Set ∂l(θ)
∂θ = 0.

4 The solution of ∂l(θ)
∂θ = 0 is the required maximum likelihood

estimate θ̂.
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Maximum likelihood method for the sample from
continuous distribution 17

1 Construct the likelihood function L(θ) =
∏n

i=1 fθ(xi ).

2 Construct the log-likelihood function
l(θ) = log L(θ) =

∑n
i=1 log fθ(xi ).

3 Set ∂l(θ)
∂θ = 0.

4 The solution of ∂l(θ)
∂θ = 0 is the required maximum likelihood

estimate θ̂.
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Confidence interval 18

Definition

Consider a random sample X = (X1,X2 . . . ,Xn)T and a number
α ∈ (0, 1).

1 The couple (θ∗L(X1, . . . ,Xn), θ∗U(X1, . . . ,Xn)) is called the (1− α)
confidence interval estimate (denoted as (1− α)-CI or
(1− α) · 100%-CI) of the parameter θ, if

P(θ∗L(X1, . . . ,Xn) < θ < θ∗U(X1, . . . ,Xn)) = 1− α.

2 (θ∗D(X1, . . . ,Xn)) is called the lower (1− α)-CI if

P(θ∗D(X1, . . . ,Xn) < θ) = 1− α.

3 (θ∗H(X1, . . . ,Xn)) is called the upper (1− α)-CI if

P(θ∗H(X1, . . . ,Xn) > θ) = 1− α.
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CI of the parameters of normal distribution with known
variance 19

Theorem

Let X = (X1,X2 . . . ,Xn)T be a random sample from the distribution
N(µ, σ2), µ ∈ R is unknown parameter, σ2 > 0 is known constant. Then

1 (X̄n − u1−α/2
σ√
n
, X̄n + u1−α/2

σ√
n

) is the (1− α)-CI of the parameter
µ,

2 X̄n − u1−α
σ√
n

is the lower (1− α)-CI of the parameter µ,

3 X̄n + u1−α
σ√
n

is the upper (1− α)-CI of the parameter µ,.
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CI of the parameters of normal distribution with known
variance 20

Theorem

Let X = (X1,X2 . . . ,Xn)T be a random sample from the distribution
N(µ, σ2), µ ∈ R, σ2 > 0, oba parameters neznámé. Then

1 (X̄n − t1−α/2,n−1
Sn√
n
, X̄n + t1−α/2,n−1

Sn√
n

) is the (1− α)-CI of the
parameter µ,

2 X̄n − t1−α,n−1
Sn√
n

is the lower (1− α)-CI of the parameter µ,

3 X̄n + t1−α,n−1
Sn√
n

is the upper (1− α)-CI of the parameter µ.

4 (
(n−1)S2

n

χ2
1−α/2,n−1

,
(n−1)S2

n

χ2
α/2,n−1

) is the (1− α)-CI of the parameter σ2,

5
(n−1)S2

n

χ2
1−α,n−1

is the lower (1− α)-CI of the parameter σ2,

6
(n−1)S2

n

χ2
α,n−1

is the upper (1− α)-CI of the parameter σ2.
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CI based on CLT 21

Theorem

Let X = (X1,X2 . . . ,Xn)T be a random sample from an arbitrary
distribution for which 0 < σ2 <∞. Then the (1− α)-CI of the parameter
µ = EX is

(X̄n − u1−α/2
Sn√

n
, X̄n + u1−α/2

Sn√
n

).
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CI based on CLT 22

Proof

Recall that for a large n it holds that Sn

σ → 1, i.e. Sn is an approximation

of σ. From CLT, we know that
∑

Xi−nµ√
nσ2

has approximately standard

normal distribution, i.e.

P(uα
2
≤

∑
Xi − nµ√

nσ2
≤ u1−α2 ) = 1− α

P(uα
2
≤

∑
Xi − nµ√

nSn
≤ u1−α2 ) = 1− α

P(

∑
Xi

n
+ u1−α2

Sn√
n
≥ µ ≥

∑
Xi

n
+ uα

2

Sn√
n

) = 1− α

P(X̄n + u1−α2
Sn√

n
≥ µ ≥ X̄n − u1−α2

Sn√
n

) = 1− α,

which is the definition of the (1− α)-CI of the parameter µ.
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CI based on CLT 23

Theorem

1 Let X = (X1,X2 . . . ,Xn)T be a random sample from alternative
distribution with parameter 0 < p < 1. Then the (1− α)-CI of the
parameter p is

(X̄n − u1−α/2

√
X̄n(1− X̄n)

n
, X̄n + u1−α/2

√
X̄n(1− X̄n)

n
).

2 Let X = (X1,X2 . . . ,Xn)T be a random sample from Poisson
distribution with parameter 0 < λ <∞. Then the (1− α)-CI of the
parameter λ is

(X̄n − u1−α/2

√
X̄n

n
, X̄n + u1−α/2

√
X̄n

n
).
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CI based on CLT 24

Proof

The proof comes from the forms of the characteristics of the introduced
distribution: for alternative distribution, we have EX = p and
varX = p(1− p) and for Poisson distribution it holds that
EX = varX = λ.
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Testing hypotheses 25

Let X = (X1,X2 . . . ,Xn)T be a random sample from distribution
depending on a parameter θ ∈ Θ.

The assumption that θ belongs to a set Θ0, is called null hypothesis
(denote H0 : θ ∈ Θ0).

Based on the sample X = (X1,X2 . . . ,Xn)T , we test the null
hypothesis again the alternative hypothesis HA : θ ∈ Θ \Θ0. In order
to test it, we establish a set W (so called rejection region) so that
we reject H0 if X ∈W , and we accept H0 otherwise.

Remark

Mostly, we test H0 : θ = θ0, where θ0 is a concrete value. Natural
alternative is then HA : θ 6= θ0. However sometimes, it is more meaningful
to consider HA : θ > θ0 (even when it is theoretically possible that
θ < θ0, it has no sense for us).
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Error of the first and the second kind, significance level 26

The following situations may occur:

H0 holds and the test accepts it
√

H0 does not hold and the test rejects it
√

H0 holds and the test rejects it → error of the first kind

H0 does not hold and the test accepts it → error of the second kind

Significance level:
Choose a number α (usually 0.05, sometimes 0.01 or 0.1). W is
constructed so that the probability of the error of the first kind is not
larger (usually equal to) α. Such α is called the significance level.
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Testing the expected value of normal distribution (t-tests):
One-sample t-test 27

Let (X1,X2 . . . ,Xn)T be a random sample from N(µ, σ2), where σ2 > 0,
and assume that both the parameters are unknown. Testing H0 : µ = µ0

against HA : µ 6= µ0 follows:

1 Calculate the value T0 = X̄n−µ0

Sn

√
n.

2 If |T0| ≥ t1−α/2,n−1, reject H0, otherwise accept H0.

Testing H0 : µ = µ0 against HA : µ > µ0 is analogous:

1 Calculate the value T0 = X̄n−µ0

Sn

√
n.

2 If T0 ≥ t1−α,n−1, reject H0, otherwise accept H0.

The null hypothesis H0 : µ = µ0 against HA : µ < µ0 is then rejected in
case of T0 ≤ tα,n−1 = −t1−α,n−1.
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Testing the expected value of normal distribution (t-tests):
Paired t-test 28

Used in the case of observing two characteristics on one object (e.g.
diopters on both eyes, yields of two branches of the same company
etc.).

Consider a random sample (Y1,Z1), (Y2,Z2) . . . , (Yn,Zn)T and test
H0 : EYi − EZi = µ0 (most often µ0 = 0, i.e. equality of two
expected values) against some of the alternative hypotheses
introduced above.

Construct the differences

X1 = Y1 − Z1, . . . ,Xn = Yn − Zn

and if X1, . . . ,Xn come from normal distribution, we use the
one-sample t-test introduced above.
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Testing the expected value of normal distribution (t-tests):
Two-sample t-test 29

Consider two independent random samples (X1,X2 . . . ,Xm)T from
N(µ1, σ

2) and (Y1,Y2 . . . ,Yn)T from N(µ2, σ
2), where σ2 > 0.

Denote X̄ the sample mean of the sample (X1,X2 . . . ,Xm)T , Ȳ the
sample mean of the sample (Y1,Y2 . . . ,Yn)T , S2

X the sample
variance of the sample (X1,X2 . . . ,Xm)T and S2

Y the sample
variance of the sample (Y1,Y2 . . . ,Yn)T .

Under the null hypothesis,

T =
X̄ − Ȳ − (µ1 − µ2)√

(m − 1)S2
X + (n − 1)S2

Y

√
mn(m + n − 2)

m + n

has tm+n−2 distribution.

Thus in order to test H0 : µ1 − µ2 = µ0 against HA : µ1 − µ2 6= µ0,
we work as follows:

1 Calculate the value T0 = X̄−Ȳ−µ0√
(m−1)S2

X
+(n−1)S2

Y

√
mn(m+n−2)

m+n
.

2 If |T0| ≥ t1−α/2,m+n−2, reject H0, otherwise accept H0.
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Pearson’s χ2 test 30

Multinomial distribution
Consider a trial. Suppose that only one of the results A1,A2 . . . ,Ak can
occur in this trial, and denote pi = P(Ai ). Repeat the trial n−times and
denote Xi the number of the result Ai in these n trials. Then

P(X1 = x1, . . . ,Xk = xk) =
n!

x1! . . . xk !
px1

1 . . . pxk
k ,

k∑
i=1

pi = 1,
k∑

i=1

xi = n

and the distribution of the vector (X1,X2 . . . ,Xk)T is called multinomial.
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Pearson’s χ2 test 31

We test H0 : marginal probabilities of the results are p1, . . . , pk , against
HA : at least one pi is different. We work as follows:

1 Calculate the value χ2 =
∑k

i=1
(Xi−npi )2

npi
.

2 If χ2 > χ2
1−α,k−1, reject H0, otherwise accept H0.
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Test of independence in a contingency table 32

Consider a sample (Y1,Z1), (Y2,Z2) . . . , (Yn,Zn), where Yk takes
the values 1, . . . , r and Zk takes the values 1, . . . , c for all
k = 1, . . . , n.

We test H0: ”Y and Z are independent”against HA: ”Y and Z are
not independent”.

Denote nij the number of couples (Yk = i ,Zk = j). Then the matrix
of dimension r × c with elements nij is called contingency table and
the elemenst nij are called joint frequencies. Marginal frequencies are

ni. =
∑
j

nij , n.j =
∑
i

nij .

Test of independency is following:
1 Calculate

χ2 =
r∑

i=1

c∑
j=1

(nij −
ni.n.j

n
)2

ni.n.j
n

.

2 If χ2 ≥ χ2
1−α,(r−1)(c−1), reject H0, otherwise accept H0.
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