Statistics

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

1

- Choosing a model
- Estimating its parameter(s)
 - point estimates
 - interval estimates
- Itesting hypotheses

< ≣ ►

Let X_1, X_2, \ldots, X_n be independent identically distributed random variables with distribution N(0, 1). Then the random variable

$$Y = \sum_{i=1}^{n} X_i^2$$

has so called χ_n^2 -distribution (" χ -square distribution with *n* degrees of freedom").

Let X be a random variable with distribution N(0,1) and Y be a random variable with distribution χ^2_n . Then the random variable

$$Z = \frac{X}{\sqrt{Y}}\sqrt{n}$$

has so called t_n -distribution (called also Student *t*-distribution with *n* degrees of freedom).

4

Definition

Random vector $\mathbb{X} = (X_1, X_2 \dots, X_n)^T$ of independent identically distributed random variables with distribution function F_{θ} dependent on a parameter θ is called the random sample.

Definition

The function

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$

of the random sample $\mathbb{X} = (X_1, X_2 \dots, X_n)^T$ is called the sample mean and the function

$$S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X}_n)^2$$

is called the sample variance. $S_n = \sqrt{S_n^2}$ is then called the sample standard deviation.

Theorem

Let $\mathbb{X} = (X_1, X_2..., X_n)^T$ be a random sample from distribution $N(\mu, \sigma^2), \mu \in \mathbb{R}, \sigma^2 > 0$. Then

- the sample mean X
 _n and the sample variance S²_n are independent random variables,
- **2** the distribution of the sample mean \bar{X}_n is $N(\mu, \sigma^2/n)$,
- **3** the random variable $(n-1)S_n^2/\sigma^2$ has $\chi^2_{(n-1)}$ -distribution,
- random variable $T = \frac{\bar{X}_n \mu}{S_n} \sqrt{n}$ has $t_{(n-1)}$ -distribution.

Definition

Let the distribution function F be continuous, monotone and let $0 < \beta < 1$. Then the number z_{β} so that $F(z_{\beta}) = \beta$ is called β -quantile of this distribution.

Basic quantiles

- $u_{\beta} \ \dots \ \beta$ -quantile of the standard normal distribution,
- $t_{\beta,n} \dots \beta$ -quantile of the t_n -distribution,
- $\chi^2_{\beta,n} \dots \beta$ -quantile of the χ^2_n distribution.

Remark

If the random variable X has the distribution function F and the quantiles $z_\beta,$ then

$$P(z_{\alpha/2} < X < z_{1-\alpha/2}) = F(z_{1-\alpha/2}) - F(z_{\alpha/2}) = 1 - \alpha.$$

Empirical distribution function and quartiles

Definition

Let $(x_1, x_2..., x_n)^T$ be a realisation of the random sample $\mathbb{X} = (X_1, X_2..., X_n)^T$. Then

$$F_{emp}(x) = \frac{\#\{x_i : x_i \leq x\}}{n},$$

where # denotes the number of elements, is called the empirical distribution function.

Definition

Let $(x_1, x_2..., x_n)^T$ be a realisation of the random sample $\mathbb{X} = (X_1, X_2..., X_n)^T$. Then

- $z = min(x_i : F_{emp}(x_i) \ge 1/4)$ is called the first quartile,
- $z = min(x_i : F_{emp}(x_i) \ge 3/4)$ is called the third quartile,
- $z = min(x_i : F_{emp}(x_i) \ge 1/2)$ is called median (the second quartile),
- the most occurring element is called the modus.

Durations till the breakdown of an instrument were observed $21 \times$. The values are:

```
4.9, 6.2, 2.6, 0.6, 0.3, 2.3, 3.2, 1.4, 6.4, 4.8, 1.2
2.5, 0.2, 0.2, 0.8, 0.1, 0.1, 1.4, 7.8, 0.2, 4.7.
```

For better summary, order the data from the smallest value to the largest one. We get: **0.1**, 0.1, 0.2, 0.2, 0.2, **0.3**, 0.6, 0.8, 1.2, 1.4, **1.4**, 2.3, 2.5, 2.6, 3.2, **4.7**, 4.8, 4.9, 6.2, 6.4, **7.8**.

We have: sample mean $\bar{X}_{21} = 2.471$, sample variance $S_{21}^2 = 5.81$, sample standard deviation $S_{21} = \sqrt{5.81} = 2.21$, 1st quartile = 0.3, median (i.e. 2nd quartile) = 1.4 and 3rd quartile = 4.7, minimum = 0.1, maximum = 7.8, modus = 0.2.

Empiricka distribucni funkce

Statistics

Histogram and boxplot

Statistics

Porovnání estimateů and skutečných function

12

Definition

Consider a random sample $\mathbb{X} = (X_1, X_2, \ldots, X_n)^T$, where the distribution (i.e. the distribution function etc.) of the random variables X_1, \ldots, X_n depends on a parameter θ . Point estimate of the parameter θ is an arbitrary function $\theta^*(\mathbb{X})$ of the random sample \mathbb{X} , whose formula does not depend on θ . If $\mathbb{E}\theta^*(\mathbb{X}) = \theta$, then the estimate is called unbiased.

Remark

For simplicity, we can imagine the estimate $\hat{\theta}$ as the number obtained from the realisation $(x_1, x_2, \ldots, x_n)^T$ of the random sample $\mathbb{X} = (X_1, X_2, \ldots, X_n)^T$, where this number corresponds to the parameter θ as best as possible.

Moment method

Consider $(x_1, x_2, ..., x_n)^T$ a realisation of the random sample $\mathbb{X} = (X_1, X_2, ..., X_n)^T$. The distribution of the random variables $X_1, ..., X_n$ depends on the parameters $\theta_1, ..., \theta_k \in \Theta$, where Θ is a parameter set (e.g. positive real numbers).

Assumptions: $EX_1^i < \infty \ \forall i = 1, ...k$ and EX_1^i depend on $\theta_1, ..., \theta_k$. Method: Set

$$\mathrm{E}X_1^i=m_i,$$

where m_i is *i*-th sample moment obtained as

$$m_i = \frac{1}{n} \sum_{j=1}^n x_j^i$$

for all i = 1, ...k. In this way, we get system of k equations of k variables $\theta_1, ..., \theta_k$, whose solutions are the required estimates $\hat{\theta_1}, ..., \hat{\theta_k}$.

Alternative: If k = 2, then instead of *i*-th moments, i = 1, 2, we can take $EX_1 = \bar{X}_n$ and $varX_1 = S_n^2$.

Disadvantage: This estimate has large variance.

★ E ► < E ► E</p>

Consider $(x_1, x_2..., x_n)^T$ a realisation of the random sample $\mathbb{X} = (X_1, X_2..., X_n)^T$ from the distribution with probabilities $P_{\theta}(X_1 = .)$ or with a density f_{θ} , respectively, and let this probabilities or density, respectively, depend on a parameter $\theta \in \Theta$.

Definition

The estimate $\hat{\theta}$ is called the maximum likelihood estimate, if

$$\prod_{i=1}^n P_{\hat{\theta}}(X_1 = x_i) = \max_{\theta \in \Theta} \prod_{i=1}^n P_{\theta}(X_1 = x_i),$$

or
$$\prod_{i=1}^n f_{\hat{\theta}}(x_i) = \max_{\theta \in \Theta} \prod_{i=1}^n f_{\theta}(x_i)$$
, respectively.

- Construct the likelihood function $L(\theta) = \prod_{i=1}^{n} P_{\theta}(X_1 = x_i)$.
- **2** Construct the log-likelihood function $I(\theta) = \log L(\theta) = \sum_{i=1}^{n} \log P_{\theta}(X_1 = x_i).$
- Set $\frac{\partial I(\theta)}{\partial \theta} = 0.$
- The solution of $\frac{\partial l(\theta)}{\partial \theta} = 0$ is the required maximum likelihood estimate $\hat{\theta}$.

Maximum likelihood method for the sample from continuous distribution

- **O** Construct the likelihood function $L(\theta) = \prod_{i=1}^{n} f_{\theta}(x_i)$.
- **2** Construct the log-likelihood function $I(\theta) = \log L(\theta) = \sum_{i=1}^{n} \log f_{\theta}(x_i).$
- Set $\frac{\partial I(\theta)}{\partial \theta} = 0.$
- The solution of $\frac{\partial l(\theta)}{\partial \theta} = 0$ is the required maximum likelihood estimate $\hat{\theta}$.

Definition

Consider a random sample $\mathbb{X} = (X_1, X_2 \dots, X_n)^T$ and a number $\alpha \in (0, 1)$.

The couple (θ^{*}_L(X₁,...,X_n), θ^{*}_U(X₁,...,X_n)) is called the (1 − α) confidence interval estimate (denoted as (1 − α)-Cl or (1 − α) · 100%-Cl) of the parameter θ, if

$$\mathsf{P}(\theta_L^*(X_1,\ldots,X_n) < \theta < \theta_U^*(X_1,\ldots,X_n)) = 1 - \alpha.$$

 $(\theta^*_D(X_1,\ldots,X_n)) \text{ is called the lower } (1-\alpha)\text{-}\mathsf{CI} \text{ if }$

$$P(\theta_D^*(X_1,\ldots,X_n) < \theta) = 1 - \alpha.$$

3 $(\theta_H^*(X_1,\ldots,X_n))$ is called the upper $(1-\alpha)$ -Cl if

$$P(\theta_H^*(X_1,\ldots,X_n)>\theta)=1-\alpha.$$

19

Theorem

Let $\mathbb{X} = (X_1, X_2, ..., X_n)^T$ be a random sample from the distribution $N(\mu, \sigma^2), \mu \in \mathbb{R}$ is unknown parameter, $\sigma^2 > 0$ is known constant. Then **a** $(\bar{X}_n - u_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}, \bar{X}_n + u_{1-\alpha/2} \frac{\sigma}{\sqrt{n}})$ is the $(1 - \alpha)$ -Cl of the parameter μ , **a** $\bar{X}_n - u_{1-\alpha} \frac{\sigma}{\sqrt{n}}$ is the lower $(1 - \alpha)$ -Cl of the parameter μ , **b** $\bar{X}_n + u_{1-\alpha} \frac{\sigma}{\sqrt{n}}$ is the upper $(1 - \alpha)$ -Cl of the parameter μ ,

CI of the parameters of normal distribution with known variance

Theorem

Let $\mathbb{X} = (X_1, X_2, \dots, X_n)^T$ be a random sample from the distribution $N(\mu, \sigma^2), \mu \in \mathbb{R}, \sigma^2 > 0$, oba parameters neznámé. Then • $(\bar{X}_n - t_{1-\alpha/2, n-1} \frac{S_n}{\sqrt{n}}, \bar{X}_n + t_{1-\alpha/2, n-1} \frac{S_n}{\sqrt{n}})$ is the $(1-\alpha)$ -Cl of the parameter μ . **2** $\bar{X}_n - t_{1-\alpha,n-1} \frac{S_n}{\sqrt{n}}$ is the lower $(1-\alpha)$ -Cl of the parameter μ , **3** $\bar{X}_n + t_{1-\alpha,n-1} \frac{S_n}{\sqrt{n}}$ is the upper $(1-\alpha)$ -Cl of the parameter μ . • $\left(\frac{(n-1)S_n^2}{\chi_{1-\alpha/2,n-1}^2}, \frac{(n-1)S_n^2}{\chi_{\alpha/2,n-1}^2}\right)$ is the $(1-\alpha)$ -Cl of the parameter σ^2 , • $\frac{(n-1)S_n^2}{\chi_{1-\alpha,n-1}^2}$ is the lower $(1-\alpha)$ -Cl of the parameter σ^2 , • $\frac{(n-1)S_n^2}{\chi^2_{\alpha,n-1}}$ is the upper $(1-\alpha)$ -Cl of the parameter σ^2 .

< 注 → < 注 → □ 注

Theorem

Let $\mathbb{X} = (X_1, X_2, ..., X_n)^T$ be a random sample from an arbitrary distribution for which $0 < \sigma^2 < \infty$. Then the $(1 - \alpha)$ -Cl of the parameter $\mu = \mathbb{E}X$ is $(\bar{X}_n - u_{1-\alpha/2}\frac{S_n}{\sqrt{n}}, \bar{X}_n + u_{1-\alpha/2}\frac{S_n}{\sqrt{n}}).$

CI based on CLT

Proof

Recall that for a large *n* it holds that $\frac{S_n}{\sigma} \to 1$, i.e. S_n is an approximation of σ . From CLT, we know that $\frac{\sum X_i - n\mu}{\sqrt{n\sigma^2}}$ has approximately standard normal distribution, i.e.

$$P\left(u_{\frac{\alpha}{2}} \leq \frac{\sum X_{i} - n\mu}{\sqrt{n\sigma^{2}}} \leq u_{1-\frac{\alpha}{2}}\right) = 1 - \alpha$$

$$P\left(u_{\frac{\alpha}{2}} \leq \frac{\sum X_{i} - n\mu}{\sqrt{n}S_{n}} \leq u_{1-\frac{\alpha}{2}}\right) = 1 - \alpha$$

$$P\left(\frac{\sum X_{i}}{n} + u_{1-\frac{\alpha}{2}}\frac{S_{n}}{\sqrt{n}} \geq \mu \geq \frac{\sum X_{i}}{n} + u_{\frac{\alpha}{2}}\frac{S_{n}}{\sqrt{n}}\right) = 1 - \alpha$$

$$P\left(\bar{X}_{n} + u_{1-\frac{\alpha}{2}}\frac{S_{n}}{\sqrt{n}} \geq \mu \geq \bar{X}_{n} - u_{1-\frac{\alpha}{2}}\frac{S_{n}}{\sqrt{n}}\right) = 1 - \alpha,$$

which is the definition of the $(1 - \alpha)$ -Cl of the parameter μ .

く置≯

Theorem

Let X = (X₁, X₂..., X_n)^T be a random sample from alternative distribution with parameter 0

$$(\bar{X}_n - u_{1-\alpha/2}\sqrt{\frac{\bar{X}_n(1-\bar{X}_n)}{n}}, \bar{X}_n + u_{1-\alpha/2}\sqrt{\frac{\bar{X}_n(1-\bar{X}_n)}{n}}).$$

Let X = (X₁, X₂..., X_n)^T be a random sample from Poisson distribution with parameter 0 < λ < ∞. Then the (1 − α)-Cl of the parameter λ is

$$(\bar{X}_n - u_{1-\alpha/2}\sqrt{\frac{\bar{X}_n}{n}}, \bar{X}_n + u_{1-\alpha/2}\sqrt{\frac{\bar{X}_n}{n}}).$$

э

Proof

The proof comes from the forms of the characteristics of the introduced distribution: for alternative distribution, we have EX = p and varX = p(1-p) and for Poisson distribution it holds that $EX = varX = \lambda$.

Testing hypotheses

- Let X = (X₁, X₂..., X_n)^T be a random sample from distribution depending on a parameter θ ∈ Θ.
- The assumption that θ belongs to a set Θ₀, is called null hypothesis (denote H₀ : θ ∈ Θ₀).
- Based on the sample X = (X₁, X₂..., X_n)^T, we test the null hypothesis again the alternative hypothesis H_A : θ ∈ Θ \ Θ₀. In order to test it, we establish a set W (so called rejection region) so that we reject H₀ if X ∈ W, and we accept H₀ otherwise.

Remark

Mostly, we test $H_0: \theta = \theta_0$, where θ_0 is a concrete value. Natural alternative is then $H_A: \theta \neq \theta_0$. However sometimes, it is more meaningful to consider $H_A: \theta > \theta_0$ (even when it is theoretically possible that $\theta < \theta_0$, it has no sense for us).

・ロト ・聞 と ・ 聞 と ・ 聞 と …

The following situations may occur:

- H_0 holds and the test accepts it $\sqrt{}$
- H_0 does not hold and the test rejects it \surd
- H_0 holds and the test rejects it \rightarrow error of the first kind
- H_0 does not hold and the test accepts it \rightarrow error of the second kind

Significance level:

Choose a number α (usually 0.05, sometimes 0.01 or 0.1). W is constructed so that the probability of the error of the first kind is not larger (usually equal to) α . Such α is called the significance level.

Testing the expected value of normal distribution (t-tests):One-sample t-test27

Let $(X_1, X_2..., X_n)^T$ be a random sample from $N(\mu, \sigma^2)$, where $\sigma^2 > 0$, and assume that both the parameters are unknown. Testing $H_0: \mu = \mu_0$ against $H_A: \mu \neq \mu_0$ follows:

- Calculate the value $T_0 = \frac{\bar{X}_n \mu_0}{S_n} \sqrt{n}$.
- 3 If $|T_0| \ge t_{1-\alpha/2,n-1}$, reject H_0 , otherwise accept H_0 .

Testing
$$H_0: \mu = \mu_0$$
 against $H_A: \mu > \mu_0$ is analogous:

The null hypothesis $H_0: \mu = \mu_0$ against $H_A: \mu < \mu_0$ is then rejected in case of $T_0 \leq t_{\alpha,n-1} = -t_{1-\alpha,n-1}$.

 H_0 .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

- Used in the case of observing two characteristics on one object (e.g. diopters on both eyes, yields of two branches of the same company etc.).
- Consider a random sample (Y₁, Z₁), (Y₂, Z₂)..., (Y_n, Z_n)^T and test H₀ : EY_i EZ_i = μ₀ (most often μ₀ = 0, i.e. equality of two expected values) against some of the alternative hypotheses introduced above.
- Construct the differences

$$X_1 = Y_1 - Z_1, \ldots, X_n = Y_n - Z_n$$

and if X_1, \ldots, X_n come from normal distribution, we use the one-sample *t*-test introduced above.

< ≣ >

Testing the expected value of normal distribution (t-tests):Two-sample t-test29

- Consider two independent random samples $(X_1, X_2..., X_m)^T$ from $N(\mu_1, \sigma^2)$ and $(Y_1, Y_2..., Y_n)^T$ from $N(\mu_2, \sigma^2)$, where $\sigma^2 > 0$.
- Denote X
 the sample mean of the sample (X₁, X₂..., X_m)^T, Y
 the sample mean of the sample (Y₁, Y₂..., Y_n)^T, S_X² the sample variance of the sample (X₁, X₂..., X_m)^T and S_Y² the sample variance of the sample (Y₁, Y₂..., Y_n)^T.
- Under the null hypothesis,

$$T = \frac{\bar{X} - \bar{Y} - (\mu_1 - \mu_2)}{\sqrt{(m-1)S_X^2 + (n-1)S_Y^2}} \sqrt{\frac{mn(m+n-2)}{m+n}}$$

has t_{m+n-2} distribution.

• Thus in order to test $H_0: \mu_1 - \mu_2 = \mu_0$ against $H_A: \mu_1 - \mu_2 \neq \mu_0$, we work as follows:

O Calculate the value
$$T_0 = \frac{\bar{X} - \bar{Y} - \mu_0}{\sqrt{(m-1)S_X^2 + (n-1)S_Y^2}} \sqrt{\frac{mn(m+n-2)}{m+n}}$$
.
O If $|T_0| \ge t_{1-\alpha/2,m+n-2}$, reject H_0 , otherwise accept H_0 .

Multinomial distribution

Consider a trial. Suppose that only one of the results A_1, A_2, \ldots, A_k can occur in this trial, and denote $p_i = P(A_i)$. Repeat the trial *n*-times and denote X_i the number of the result A_i in these *n* trials. Then

$$P(X_1 = x_1, \ldots, X_k = x_k) = \frac{n!}{x_1! \ldots x_k!} p_1^{x_1} \ldots p_k^{x_k}, \quad \sum_{i=1}^k p_i = 1, \quad \sum_{i=1}^k x_i = n$$

and the distribution of the vector $(X_1, X_2, \ldots, X_k)^T$ is called multinomial.

We test H_0 : marginal probabilities of the results are p_1, \ldots, p_k , against H_A : at least one p_i is different. We work as follows:

- Calculate the value $\chi^2 = \sum_{i=1}^k \frac{(X_i np_i)^2}{np_i}$.
- If $\chi^2 > \chi^2_{1-\alpha,k-1}$, reject H_0 , otherwise accept H_0 .

Test of independence in a contingency table

- Consider a sample $(Y_1, Z_1), (Y_2, Z_2), \dots, (Y_n, Z_n)$, where Y_k takes the values $1, \dots, r$ and Z_k takes the values $1, \dots, c$ for all $k = 1, \dots, n$.
- We test H_0 : "Y and Z are independent" against H_A : "Y and Z are not independent".
- Denote n_{ij} the number of couples $(Y_k = i, Z_k = j)$. Then the matrix of dimension $r \times c$ with elements n_{ij} is called contingency table and the elemenst n_{ij} are called joint frequencies. Marginal frequencies are

$$n_{i.} = \sum_{j} n_{ij}, \quad n_{.j} = \sum_{i} n_{ij},$$

• Test of independency is following:

Calculate

$$\chi^{2} = \sum_{i=1}^{r} \sum_{j=1}^{c} \frac{(n_{ij} - \frac{n_{i,n,j}}{n})^{2}}{\frac{n_{i,n,j}}{n}}.$$

3 If $\chi^2 \ge \chi^2_{1-\alpha,(r-1)(c-1)}$, reject H_0 , otherwise accept H_0 .

- 米田 ト 三臣