Statistics

(1) Choosing a model
(2) Estimating its parameter(s)

- point estimates
(3) interval estimates
(3) Testing hypotheses

Distributions used in statistics: χ_{n}^{2}-distribution

Let $X_{1}, X_{2} \ldots, X_{n}$ be independent identically distributed random variables with distribution $N(0,1)$. Then the random variable

$$
Y=\sum_{i=1}^{n} X_{i}^{2}
$$

has so called χ_{n}^{2}-distribution (" χ-square distribution with n degrees of freedom").

Distributions used in statistics: Student t-distribution

Let X be a random variable with distribution $N(0,1)$ and Y be a random variable with distribution χ_{n}^{2}. Then the random variable

$$
Z=\frac{X}{\sqrt{Y}} \sqrt{n}
$$

has so called t_{n}-distribution (called also Student t-distribution with n degrees of freedom).

Náhodný sample

Definition

Random vector $\mathbb{X}=\left(X_{1}, X_{2} \ldots, X_{n}\right)^{T}$ of independent identically distributed random variables with distribution function F_{θ} dependent on a parameter θ is called the random sample.

Definition

The function

$$
\bar{X}_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}
$$

of the random sample $\mathbb{X}=\left(X_{1}, X_{2} \ldots, X_{n}\right)^{T}$ is called the sample mean and the function

$$
S_{n}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2}
$$

is called the sample variance. $S_{n}=\sqrt{S_{n}^{2}}$ is then called the sample standard deviation.

Theorem

Let $\mathbb{X}=\left(X_{1}, X_{2} \ldots, X_{n}\right)^{T}$ be a random sample from distribution $N\left(\mu, \sigma^{2}\right), \mu \in \mathbb{R}, \sigma^{2}>0$. Then
(1) the sample mean \bar{X}_{n} and the sample variance S_{n}^{2} are independent random variables,
(2) the distribution of the sample mean \bar{X}_{n} is $N\left(\mu, \sigma^{2} / n\right)$,
(3) the random variable $(n-1) S_{n}^{2} / \sigma^{2}$ has $\chi_{(n-1)}^{2}$-distribution,
(9) random variable $T=\frac{\bar{X}_{n}-\mu}{S_{n}} \sqrt{n}$ has $t_{(n-1)}$-distribution.

Qantiles

Definition

Let the distribution function F be continuous, monotone and let $0<\beta<1$. Then the number z_{β} so that $F\left(z_{\beta}\right)=\beta$ is called β-quantile of this distribution.

Basic quantiles

- $u_{\beta} \ldots \beta$-quantile of the standard normal distribution,
- $t_{\beta, n} \ldots \beta$-quantile of the t_{n}-distribution,
- $\chi_{\beta, n}^{2} \ldots \beta$-quantile of the χ_{n}^{2} distribution.

Remark

If the random variable X has the distribution function F and the quantiles z_{β}, then

$$
P\left(z_{\alpha / 2}<X<z_{1-\alpha / 2}\right)=F\left(z_{1-\alpha / 2}\right)-F\left(z_{\alpha / 2}\right)=1-\alpha .
$$

Empirical distribution function and quartiles

Definition

Let $\left(x_{1}, x_{2} \ldots, x_{n}\right)^{T}$ be a realisation of the random sample $\mathbb{X}=\left(X_{1}, X_{2} \ldots, X_{n}\right)^{T}$. Then

$$
F_{e m p}(x)=\frac{\#\left\{x_{i}: x_{i} \leq x\right\}}{n}
$$

where \# denotes the number of elements, is called the empirical distribution function.

Definition

Let $\left(x_{1}, x_{2} \ldots, x_{n}\right)^{T}$ be a realisation of the random sample $\mathbb{X}=\left(X_{1}, X_{2} \ldots, X_{n}\right)^{T}$. Then

- $z=\min \left(x_{i}: F_{\text {emp }}\left(x_{i}\right) \geq 1 / 4\right)$ is called the first quartile,
- $z=\min \left(x_{i}: F_{\text {emp }}\left(x_{i}\right) \geq 3 / 4\right)$ is called the third quartile,
- $z=\min \left(x_{i}: F_{\text {emp }}\left(x_{i}\right) \geq 1 / 2\right)$ is called median (the second quartile),
- the most occurring element is called the modus.

Durations till the breakdown of an instrument were observed $21 \times$. The values are:
$4.9,6.2,2.6,0.6,0.3,2.3,3.2,1.4,6.4,4.8,1.2$
$2.5,0.2,0.2,0.8,0.1,0.1,1.4,7.8,0.2,4.7$.
For better summary, order the data from the smallest value to the largest one. We get:
$\mathbf{0 . 1}, 0.1,0.2,0.2,0.2, \mathbf{0 . 3}, 0.6,0.8,1.2,1.4, \mathbf{1 . 4}$, 2.3, 2.5, 2.6, 3.2, 4.7, 4.8, 4.9, 6.2, 6.4, 7.8 .

We have:
sample mean $\bar{X}_{21}=2.471$,
sample variance $S_{21}^{2}=5.81$,
sample standard deviation $S_{21}=\sqrt{5.81}=2.21$,
1 st quartile $=0.3$, median (i.e. 2 nd quartile) $=1.4$ and 3 rd quartile $=$ 4.7,
minimum $=0.1$, maximum $=7.8$, modus $=0.2$.

Empiricka distribucni funkce

Boxplot

Definition

Consider a random sample $\mathbb{X}=\left(X_{1}, X_{2} \ldots, X_{n}\right)^{T}$, where the distribution (i.e. the distribution function etc.) of the random variables X_{1}, \ldots, X_{n} depends on a parameter θ. Point estimate of the parameter θ is an arbitrary function $\theta^{*}(\mathbb{X})$ of the random sample \mathbb{X}, whose formula does not depend on θ. If $\mathrm{E} \theta^{*}(\mathbb{X})=\theta$, then the estimate is called unbiased.

Remark

For simplicity, we can imagine the estimate $\hat{\theta}$ as the number obtained from the realisation $\left(x_{1}, x_{2} \ldots, x_{n}\right)^{T}$ of the random sample $\mathbb{X}=\left(X_{1}, X_{2} \ldots, X_{n}\right)^{T}$, where this number corresponds to the parameter θ as best as possible.

Consider $\left(x_{1}, x_{2} \ldots, x_{n}\right)^{T}$ a realisation of the random sample $\mathbb{X}=\left(X_{1}, X_{2} \ldots, X_{n}\right)^{T}$. The distribution of the random variables X_{1}, \ldots, X_{n} depends on the parameters $\theta_{1}, \ldots, \theta_{k} \in \Theta$, where Θ is a parameter set (e.g. positive real numbers).
Assumptions: $\mathrm{E} X_{1}^{i}<\infty \forall i=1, \ldots k$ and $\mathrm{E} X_{1}^{i}$ depend on $\theta_{1}, \ldots, \theta_{k}$. Method: Set

$$
\mathrm{E} X_{1}^{i}=m_{i},
$$

where m_{i} is i-th sample moment obtained as

$$
m_{i}=\frac{1}{n} \sum_{j=1}^{n} x_{j}^{i}
$$

for all $i=1, \ldots k$. In this way, we get system of k equations of k variables $\theta_{1}, \ldots, \theta_{k}$, whose solutions are the required estimates $\hat{\theta_{1}}, \ldots, \hat{\theta_{k}}$.
Alternative: If $k=2$, then instead of i-th moments, $i=1,2$, we can take $\mathrm{E} X_{1}=\bar{X}_{n}$ and $\operatorname{var} X_{1}=S_{n}^{2}$.
Disadvantage: This estimate has large variance.

Consider $\left(x_{1}, x_{2} \ldots, x_{n}\right)^{T}$ a realisation of the random sample $\mathbb{X}=\left(X_{1}, X_{2} \ldots, X_{n}\right)^{T}$ from the distribution with probabilities $P_{\theta}\left(X_{1}=.\right)$ or with a density f_{θ}, respectively, and let this probabilities or density, respectively, depend on a parameter $\theta \in \Theta$.

Definition

The estimate $\hat{\theta}$ is called the maximum likelihood estimate, if

$$
\begin{aligned}
& \quad \prod_{i=1}^{n} P_{\hat{\theta}}\left(X_{1}=x_{i}\right)=\max _{\theta \in \Theta} \prod_{i=1}^{n} P_{\theta}\left(X_{1}=x_{i}\right) \\
& \text { or } \quad \prod_{i=1}^{n} f_{\hat{\theta}}\left(x_{i}\right)=\max _{\theta \in \Theta} \prod_{i=1}^{n} f_{\theta}\left(x_{i}\right), \quad \text { respectively. }
\end{aligned}
$$

Maximum likelihood method for the sample from discrete distribution

(1) Construct the likelihood function $L(\theta)=\prod_{i=1}^{n} P_{\theta}\left(X_{1}=x_{i}\right)$.
(2) Construct the log-likelihood function
$I(\theta)=\log L(\theta)=\sum_{i=1}^{n} \log P_{\theta}\left(X_{1}=x_{i}\right)$.
(3) Set $\frac{\partial I(\theta)}{\partial \theta}=0$.
(-) The solution of $\frac{\partial I(\theta)}{\partial \theta}=0$ is the required maximum likelihood estimate $\hat{\theta}$.

Maximum likelihood method for the sample from continuous distribution

(1) Construct the likelihood function $L(\theta)=\prod_{i=1}^{n} f_{\theta}\left(x_{i}\right)$.
(2) Construct the log-likelihood function
$I(\theta)=\log L(\theta)=\sum_{i=1}^{n} \log f_{\theta}\left(x_{i}\right)$.
(3) Set $\frac{\partial I(\theta)}{\partial \theta}=0$.
(-) The solution of $\frac{\partial I(\theta)}{\partial \theta}=0$ is the required maximum likelihood estimate $\hat{\theta}$.

Definition

Consider a random sample $\mathbb{X}=\left(X_{1}, X_{2} \ldots, X_{n}\right)^{T}$ and a number $\alpha \in(0,1)$.
(1) The couple $\left(\theta_{L}^{*}\left(X_{1}, \ldots, X_{n}\right), \theta_{U}^{*}\left(X_{1}, \ldots, X_{n}\right)\right)$ is called the $(1-\alpha)$ confidence interval estimate (denoted as $(1-\alpha)$-Cl or $(1-\alpha) \cdot 100 \%-\mathrm{Cl})$ of the parameter θ, if

$$
P\left(\theta_{L}^{*}\left(X_{1}, \ldots, X_{n}\right)<\theta<\theta_{U}^{*}\left(X_{1}, \ldots, X_{n}\right)\right)=1-\alpha .
$$

(2) $\left(\theta_{D}^{*}\left(X_{1}, \ldots, X_{n}\right)\right)$ is called the lower $(1-\alpha)$ - Cl if

$$
P\left(\theta_{D}^{*}\left(X_{1}, \ldots, X_{n}\right)<\theta\right)=1-\alpha .
$$

(3) $\left(\theta_{H}^{*}\left(X_{1}, \ldots, X_{n}\right)\right)$ is called the upper $(1-\alpha)$ - Cl if

$$
P\left(\theta_{H}^{*}\left(X_{1}, \ldots, X_{n}\right)>\theta\right)=1-\alpha .
$$

Cl of the parameters of normal distribution with known variance

Theorem

Let $\mathbb{X}=\left(X_{1}, X_{2} \ldots, X_{n}\right)^{T}$ be a random sample from the distribution $N\left(\mu, \sigma^{2}\right), \mu \in \mathbb{R}$ is unknown parameter, $\sigma^{2}>0$ is known constant. Then
(1) $\left(\bar{X}_{n}-u_{1-\alpha / 2} \frac{\sigma}{\sqrt{n}}, \bar{X}_{n}+u_{1-\alpha / 2} \frac{\sigma}{\sqrt{n}}\right)$ is the $(1-\alpha)$-Cl of the parameter μ,
(2) $\bar{X}_{n}-u_{1-\alpha} \frac{\sigma}{\sqrt{n}}$ is the lower $(1-\alpha)$-Cl of the parameter μ,
(3) $\bar{X}_{n}+u_{1-\alpha} \frac{\sigma}{\sqrt{n}}$ is the upper $(1-\alpha)$-Cl of the parameter μ,.

CI of the parameters of normal distribution with known

 variance
Theorem

Let $\mathbb{X}=\left(X_{1}, X_{2} \ldots, X_{n}\right)^{T}$ be a random sample from the distribution $N\left(\mu, \sigma^{2}\right), \mu \in \mathbb{R}, \sigma^{2}>0$, oba parameters neznámé. Then
(1) $\left(\bar{X}_{n}-t_{1-\alpha / 2, n-1} \frac{S_{n}}{\sqrt{n}}, \bar{X}_{n}+t_{1-\alpha / 2, n-1} \frac{S_{n}}{\sqrt{n}}\right)$ is the $(1-\alpha)$-Cl of the parameter μ,
(2) $\bar{X}_{n}-t_{1-\alpha, n-1} \frac{S_{n}}{\sqrt{n}}$ is the lower $(1-\alpha)$-Cl of the parameter μ,
(3) $\bar{X}_{n}+t_{1-\alpha, n-1} \frac{S_{n}}{\sqrt{n}}$ is the upper $(1-\alpha)$-Cl of the parameter μ.

- $\left(\frac{(n-1) S_{n}^{2}}{\chi_{1-\alpha / 2, n-1}^{2}}, \frac{(n-1) S_{n}^{2}}{\chi_{\alpha / 2, n-1}^{2}}\right)$ is the $(1-\alpha)$-Cl of the parameter σ^{2},
- $\frac{(n-1) S_{n}^{2}}{\chi_{1-\alpha, n-1}^{2}}$ is the lower $(1-\alpha)$-Cl of the parameter σ^{2},
- $\frac{(n-1) S_{n}^{2}}{\chi_{\alpha, n-1}^{2}}$ is the upper $(1-\alpha)$-Cl of the parameter σ^{2}.

Theorem

Let $\mathbb{X}=\left(X_{1}, X_{2} \ldots, X_{n}\right)^{T}$ be a random sample from an arbitrary distribution for which $0<\sigma^{2}<\infty$. Then the $(1-\alpha)$-Cl of the parameter $\mu=\mathrm{E} X$ is

$$
\left(\bar{X}_{n}-u_{1-\alpha / 2} \frac{S_{n}}{\sqrt{n}}, \bar{X}_{n}+u_{1-\alpha / 2} \frac{S_{n}}{\sqrt{n}}\right) .
$$

Proof

Recall that for a large n it holds that $\frac{S_{n}}{\sigma} \rightarrow 1$, i.e. S_{n} is an approximation of σ. From CLT, we know that $\frac{\sum X_{i}-n \mu}{\sqrt{n \sigma^{2}}}$ has approximately standard normal distribution, i.e.

$$
\begin{array}{r}
P\left(u_{\frac{\alpha}{2}} \leq \frac{\sum X_{i}-n \mu}{\sqrt{n \sigma^{2}}} \leq u_{1-\frac{\alpha}{2}}\right)=1-\alpha \\
P\left(u_{\frac{\alpha}{2}} \leq \frac{\sum X_{i}-n \mu}{\sqrt{n} S_{n}} \leq u_{1-\frac{\alpha}{2}}\right)=1-\alpha \\
P\left(\frac{\sum X_{i}}{n}+u_{1-\frac{\alpha}{2}} \frac{S_{n}}{\sqrt{n}} \geq \mu \geq \frac{\sum X_{i}}{n}+u_{\frac{\alpha}{2}} \frac{S_{n}}{\sqrt{n}}\right)=1-\alpha \\
P\left(\bar{X}_{n}+u_{1-\frac{\alpha}{2}} \frac{S_{n}}{\sqrt{n}} \geq \mu \geq \bar{X}_{n}-u_{1-\frac{\alpha}{2}} \frac{S_{n}}{\sqrt{n}}\right)=1-\alpha,
\end{array}
$$

which is the definition of the $(1-\alpha)-\mathrm{Cl}$ of the parameter μ.

Theorem

(1) Let $\mathbb{X}=\left(X_{1}, X_{2} \ldots, X_{n}\right)^{T}$ be a random sample from alternative distribution with parameter $0<p<1$. Then the $(1-\alpha)$-Cl of the parameter p is

$$
\left(\bar{X}_{n}-u_{1-\alpha / 2} \sqrt{\frac{\bar{X}_{n}\left(1-\bar{X}_{n}\right)}{n}}, \bar{X}_{n}+u_{1-\alpha / 2} \sqrt{\left.\frac{\bar{X}_{n}\left(1-\bar{X}_{n}\right)}{n}\right)} .\right.
$$

(2) Let $\mathbb{X}=\left(X_{1}, X_{2} \ldots, X_{n}\right)^{T}$ be a random sample from Poisson distribution with parameter $0<\lambda<\infty$. Then the $(1-\alpha)$-Cl of the parameter λ is

$$
\left(\bar{X}_{n}-u_{1-\alpha / 2} \sqrt{\frac{\bar{X}_{n}}{n}}, \bar{X}_{n}+u_{1-\alpha / 2} \sqrt{\frac{\bar{X}_{n}}{n}}\right) .
$$

Proof

The proof comes from the forms of the characteristics of the introduced distribution: for alternative distribution, we have $\mathrm{EX}=p$ and var $X=p(1-p)$ and for Poisson distribution it holds that $\mathrm{E} X=\operatorname{var} X=\lambda$.

- Let $\mathbb{X}=\left(X_{1}, X_{2} \ldots, X_{n}\right)^{T}$ be a random sample from distribution depending on a parameter $\theta \in \Theta$.
- The assumption that θ belongs to a set Θ_{0}, is called null hypothesis (denote $H_{0}: \theta \in \Theta_{0}$).
- Based on the sample $\mathbb{X}=\left(X_{1}, X_{2} \ldots, X_{n}\right)^{T}$, we test the null hypothesis again the alternative hypothesis $H_{A}: \theta \in \Theta \backslash \Theta_{0}$. In order to test it, we establish a set W (so called rejection region) so that we reject H_{0} if $\mathbb{X} \in W$, and we accept H_{0} otherwise.

Remark

Mostly, we test $H_{0}: \theta=\theta_{0}$, where θ_{0} is a concrete value. Natural alternative is then $H_{A}: \theta \neq \theta_{0}$. However sometimes, it is more meaningful to consider $H_{A}: \theta>\theta_{0}$ (even when it is theoretically possible that $\theta<\theta_{0}$, it has no sense for us).

The following situations may occur:

- H_{0} holds and the test accepts it $\sqrt{ }$
- H_{0} does not hold and the test rejects it $\sqrt{ }$
- H_{0} holds and the test rejects it \rightarrow error of the first kind
- H_{0} does not hold and the test accepts it \rightarrow error of the second kind

Significance level:
Choose a number α (usually 0.05 , sometimes 0.01 or 0.1). W is constructed so that the probability of the error of the first kind is not larger (usually equal to) α. Such α is called the significance level.

Testing the expected value of normal distribution (t-tests): One-sample t-test

Let $\left(X_{1}, X_{2} \ldots, X_{n}\right)^{T}$ be a random sample from $N\left(\mu, \sigma^{2}\right)$, where $\sigma^{2}>0$, and assume that both the parameters are unknown. Testing $H_{0}: \mu=\mu_{0}$ against $H_{A}: \mu \neq \mu_{0}$ follows:
(1) Calculate the value $T_{0}=\frac{\bar{X}_{n}-\mu_{0}}{S_{n}} \sqrt{n}$.
(2) If $\left|T_{0}\right| \geq t_{1-\alpha / 2, n-1}$, reject H_{0}, otherwise accept H_{0}.

Testing $H_{0}: \mu=\mu_{0}$ against $H_{A}: \mu>\mu_{0}$ is analogous:
(1) Calculate the value $T_{0}=\frac{\bar{X}_{n}-\mu_{0}}{S_{n}} \sqrt{n}$.
(2) If $T_{0} \geq t_{1-\alpha, n-1}$, reject H_{0}, otherwise accept H_{0}.

The null hypothesis $H_{0}: \mu=\mu_{0}$ against $H_{A}: \mu<\mu_{0}$ is then rejected in case of $T_{0} \leq t_{\alpha, n-1}=-t_{1-\alpha, n-1}$.

Testing the expected value of normal distribution (t-tests): Paired t-test

- Used in the case of observing two characteristics on one object (e.g. diopters on both eyes, yields of two branches of the same company etc.).
- Consider a random sample $\left(Y_{1}, Z_{1}\right),\left(Y_{2}, Z_{2}\right) \ldots,\left(Y_{n}, Z_{n}\right)^{T}$ and test $H_{0}: \mathrm{E} Y_{i}-\mathrm{E} Z_{i}=\mu_{0}$ (most often $\mu_{0}=0$, i.e. equality of two expected values) against some of the alternative hypotheses introduced above.
- Construct the differences

$$
X_{1}=Y_{1}-Z_{1}, \ldots, X_{n}=Y_{n}-Z_{n}
$$

and if X_{1}, \ldots, X_{n} come from normal distribution, we use the one-sample t-test introduced above.

Testing the expected value of normal distribution (t-tests): Two-sample t-test

- Consider two independent random samples $\left(X_{1}, X_{2} \ldots, X_{m}\right)^{T}$ from $N\left(\mu_{1}, \sigma^{2}\right)$ and $\left(Y_{1}, Y_{2} \ldots, Y_{n}\right)^{T}$ from $N\left(\mu_{2}, \sigma^{2}\right)$, where $\sigma^{2}>0$.
- Denote \bar{X} the sample mean of the sample $\left(X_{1}, X_{2} \ldots, X_{m}\right)^{T}, \bar{Y}$ the sample mean of the sample $\left(Y_{1}, Y_{2} \ldots, Y_{n}\right)^{T}, S_{X}^{2}$ the sample variance of the sample $\left(X_{1}, X_{2} \ldots, X_{m}\right)^{T}$ and S_{Y}^{2} the sample variance of the sample $\left(Y_{1}, Y_{2} \ldots, Y_{n}\right)^{T}$.
- Under the null hypothesis,

$$
T=\frac{\bar{X}-\bar{Y}-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{(m-1) S_{X}^{2}+(n-1) S_{Y}^{2}}} \sqrt{\frac{m n(m+n-2)}{m+n}}
$$

has t_{m+n-2} distribution.

- Thus in order to test $H_{0}: \mu_{1}-\mu_{2}=\mu_{0}$ against $H_{A}: \mu_{1}-\mu_{2} \neq \mu_{0}$, we work as follows:
(1) Calculate the value $T_{0}=\frac{\bar{X}-\bar{Y}-\mu_{0}}{\sqrt{(m-1) S_{X}^{2}+(n-1) S_{Y}^{2}}} \sqrt{\frac{m n(m+n-2)}{m+n}}$.
(2) If $\left|T_{0}\right| \geq t_{1-\alpha / 2, m+n-2}$, reject H_{0}, otherwise accept H_{0}.

Multinomial distribution

Consider a trial. Suppose that only one of the results $A_{1}, A_{2} \ldots, A_{k}$ can occur in this trial, and denote $p_{i}=P\left(A_{i}\right)$. Repeat the trial n-times and denote X_{i} the number of the result A_{i} in these n trials. Then

$$
P\left(X_{1}=x_{1}, \ldots, X_{k}=x_{k}\right)=\frac{n!}{x_{1}!\ldots x_{k}!} p_{1}^{x_{1}} \ldots p_{k}^{x_{k}}, \quad \sum_{i=1}^{k} p_{i}=1, \quad \sum_{i=1}^{k} x_{i}=n
$$

and the distribution of the vector $\left(X_{1}, X_{2} \ldots, X_{k}\right)^{T}$ is called multinomial.

We test H_{0} : marginal probabilities of the results are p_{1}, \ldots, p_{k}, against H_{A} : at least one p_{i} is different. We work as follows:
(1) Calculate the value $\chi^{2}=\sum_{i=1}^{k} \frac{\left(X_{i}-n p_{i}\right)^{2}}{n p_{i}}$.
(2) If $\chi^{2}>\chi_{1-\alpha, k-1}^{2}$, reject H_{0}, otherwise accept H_{0}.

- Consider a sample $\left(Y_{1}, Z_{1}\right),\left(Y_{2}, Z_{2}\right) \ldots,\left(Y_{n}, Z_{n}\right)$, where Y_{k} takes the values $1, \ldots, r$ and Z_{k} takes the values $1, \ldots, c$ for all $k=1, \ldots, n$.
- We test H_{0} : " Y and Z are independent"against H_{A} : " Y and Z are not independent".
- Denote $n_{i j}$ the number of couples ($Y_{k}=i, Z_{k}=j$). Then the matrix of dimension $r \times c$ with elements $n_{i j}$ is called contingency table and the elemenst $n_{i j}$ are called joint frequencies. Marginal frequencies are

$$
n_{i .}=\sum_{j} n_{i j}, \quad n_{. j}=\sum_{i} n_{i j}
$$

- Test of independency is following:
(1) Calculate

$$
\chi^{2}=\sum_{i=1}^{r} \sum_{j=1}^{c} \frac{\left(n_{i j}-\frac{n_{i . n_{j}}}{n}\right)^{2}}{\frac{n_{i . n}, j}{n}}
$$

(2) If $\chi^{2} \geq \chi_{1-\alpha,(r-1)(c-1)}^{2}$, reject H_{0}, otherwise accept H_{0}.

