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Abstract

In the thesis, the field of Lipschitz mappings in Banach spaces is studied. Lips-
chitz mappings play an important role in contemporary nonlinear functional anal-
ysis. They are a reasonable relaxation of bounded linear mappings and therefore
can be found in many theoretical as well as practical applications. A structure of
a great interest in the field of Lipschitz mappings is the Lipschitz-free space over
a metric space.

Lipschitz-free space is a Banach space which carries the complexity of the
underlying metric space. Every Lipschitz mapping between two metric spaces
induces a linear mapping between corresponding Lipschitz-free spaces. An intro-
duction to the topic is presented within the chapter two of the thesis.

The structure of Lipschitz-free spaces over uniformly discrete spaces is studied
in two of the attached articles. Most interest is given to the study of Schauder
bases in Lipschitz-free spaces. In the first article there is shown how uniformly
bounded, commuting Lipschitz retractions on the metric space are connected to
the existence of Schauder basis on the Free space. A Schauder basis for the Free
space of an integer lattice in any space with an unconditional basis is constructed,
which applies particularly for the space ¢y, where such a lattice represents a net.
Also, it is shown that for fixed n, although nets in R™ do not need to be Lipschitz-
equivalent, their Free spaces are always isomorphic.

In the third article, the topic of Schauder bases in Lipschitz-free spaces is
further investigated. It introduces the classification extensional and retractional
for some Schauder bases on the Free space. It is shown that even for a simple
infinite uniformly discrete space the retractional basis does not need to exist.
For the same space, an extensional Schauder basis was constructed. Lastly, a
condition is set on a sequence of retractions, under which the resulting Schauder
basis is conditional. With the use of basic topological facts it is proven that every
retractional Schauder basis in Lipschitz-free space of a net in R” is conditional.

There is also a contribution to the theory of Lipschitz mappings in nonsep-
arable Banach spaces. In the second attached article there is proved that the
nonseparable analogue of Gowers’ theorem does not hold. Gowers proved that
every real Lipschitz mappping from the sphere of ¢y stabilizes on the sphere of
some infinite dimensional subspace. The presented result shows that if we con-
sider a Lipschitz mapping from the sphere of ¢o(I"), it does not need to stabilize
on the sphere of some nonseparable subspace. Actually a counterexample is pre-
sented - a nonexpansive function, which varies more than }L on a sphere of any
nonseparable subspace of ¢y(I).

Keywords: Lipschitz mapping, Lipschitz-free space, Banach space, Schauder
basis.



Abstrakt

V praci je studovano téma Lipschitzovskych funkcei v Banachovych prostorech.
Lipschitzovské zobrazeni hraji dilezitou roli v soucasné nelinearni funkciondlni
analyze. Jsou rozumnou relaxaci linearnich spojitych operatoru, a tak nachazeji
celou skélu teoretickych i praktickych aplikaci. Strukturou spadajici do oblasti
Lipschitzovskych funkci, ktera se dnes tési velkému védeckému zdjmu, jsou Lips-
chitzovsky volné prostory nad metrickym prostorem.

Lipschitzovsky volny prostor (zkrécené LV prostor) je Banachuv prostor, ktery
nese komplexitu metrického prostoru, nad kterym je definovan. Kazdé lips-
chitzovské zobrazeni mezi metrickymi prostory indukuje linearni zobrazeni mezi
prislusnymi LV prostory. V druhé kapitole prace je prezentovan struény uvod do
teorie LV prostoru.

Ve dvou z prilozenych c¢lanku je studovana struktura LV prostoru nad ste-
jnomérné diskrétnimi prostory. Nejvice pozornosti je vénovano studiu Schaud-
erovych bazi v LV prostorech. V prvnim ¢lanku je ukézano, jak souvisi ste-
jnomérné omezené, komutujici Lipschitzovské retrakce na metrickém prostoru s
existenci Schauderovy baze v LV prostoru. Je sestrojen konkrétni priklad Schaud-
erovy baze na LV prostoru celo¢iselné mtizky v prostorech s bezpodmineénou bazi;
konkrétnim ptikladem muze byt miizka v ¢y, ktera je zde zaroven siti. Pro libo-
volné pevné n € R je ukazéano, ze ackoliv dvé sité v R™ nemusi byt Lipschitzovsky
ekvivalentni, jejich prislusné LV prostory jsou linearné isomorfni.

V tietim ¢lanku je téma Schauderovych bazi na LV prostorech dale rozvin-
uto. Jsou definovany pojmy retrakéni baze a rozsitend baze na LV prostorech.
Je zde dokézano, ze dokonce pro pomérné jednoduchy stejnomérné diskrétni
prostor retrakéni baze na piislusném LV prostoru nemusi existovat. Pro stejny
prostor je vSak nalezena monoténni rozsitend baze. V posledni fadé je for-
mulovana podminka na posloupnost retrakci, za které je vyslednd retrakéni baze
podminecnd. Vyuzitim zékladnich poznatku z topologie je dokazano, ze vSechny
retrakcni baze na LV prostorech siti v R" jsou podminecné.

V praci je také prispévek k teorii Lipschitzovskych funkci v neseparabilnich
Banachovych prostorech. V druhém prilozeném c¢lanku je dokazano, ze nesepara-
bilni analogie Gowersovy véty neplati. Gowers dokazal, ze kazda Lipschitzovska
funkce z jednotkové sféry ¢y se stabilizuje na sfére néjakého nekonecné rozmérného
podprostoru. Predlozeny vysledek ukazuje, ze uvazime-li Lipschitzovskou funkci
ze sféry neseparabilniho ¢o(I"), nemusi se stabilizovat na sfére zadného nesepara-
bilntho podprostoru. Je zde predlozen protiptiklad: Kontrakce, jejiz hodnoty se
na sféfe libovolného neseparabilniho podprostoru cy(I') ruzni o vice nez }1.
Klicova slova: Lipschitzovské zobrazeni, Lipschitzovsky volny prostor, Ba-
nachuv prostor, Schauderova baze.
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Introduction

In functional analysis, nonlinear analysis plays a central role in contemporary
research. While most of the linear theory seems to be well-understood, there are
many open questions in nonlinear setting. For example, if we have a Banach
space X with a property P and a Banach space Y which is isomorphic to X in
some nonlinear sense - for instance Lipschitz, uniform or coarse - does Y have to
posses the property P as well? We can pose even a more ambitious question: Do
Y and X have to be linearly isomorphic? In our work we are going to concentrate
on Lipschitz mappings and isomorphisms. In such a perspective one finds useful
to define a so-called Lipschitz-free space over a metric space.

Lipschitz-free space is a Banach space canonically containing the underlying
metric space. It reflects the metric structure of the underlying space, transferring
it into linear setting. Lipschitz mappings between metric spaces naturally appear
as linear maps between corresponding Free spaces. When transferring to linear
mappings, the complexity of Lipschitz mappings cannot be dropped. It is carried
over to the structure of Lipschitz-free spaces instead. That is also the reason why
their structure is still so poorly understood. Lipschitz-free spaces have been used
in solutions to several major problems to which definitions there was no need to
introduce this intriguing structure. Their wide application pleads for an extensive
study of the topic.

There are two chapters followed by three articles of the author in the thesis.
The chapters play an introductory role to the results presented in the enclosed
articles. Their aim is to recall some basic knowledge in the field and provide
a little context to the presented articles. The chapters were meant to comprise
neither all known results in the field nor bring new results and should therefore
be read with this in mind.

The first chapter is more introductory and comprises more general results in
nonlinear theory. Concretely, the concept of uniform continuity is defined and
the famous theorem of Ribe is stated. Further, an introduction to the theory of
Lipschitz mappings in Banach spaces and an introduction to the second enclosed
article is provided.

In the second chapter, we introduce Lipschitz-free spaces, explore some of
their basic properties and bring some of their practical as well as theoretical
applications. We introduce the transport mass problem and we show the usage of
Earth mover’s distance as a dissimilarity measure between pictures in computer
science. Some theoretical application is also mentioned - linearising Lipschitz
mappings, existence of a linear lifting to a linear quotient in separable setting,
stability of A-bounded approximation property under Lipschitz homeomorphisms
of Banach spaces.

The first and the third enclosed article are devoted to study some properties



of Lipschitz-free spaces. Concretely we study Lipschitz-free spaces over some
uniformly discrete spaces, often over nets in Banach spaces. One of the most
important results is that Lipschitz-free spaces over nets in C(K') spaces for K
metrizable compactum have Schauder bases. Moreover, we show how to construct
such a basis in the case of a grid net in ¢y. Further, it is shown that there exists
a uniformly discrete subset of R? which Lipschitz-free space does not admit a
retractional Schauder basis (Schauder basis arising from the Lipschitz retraction
technique, used in the first article). However, this Free space admits a monotone
Schauder basis. Last but not least, it is shown that a retractional Schauder basis
on a Lipschitz-free space over a net in R™ has to be conditional.

The second article refers about existence of a real Lipschitz function from the
sphere of ¢o(I"), which does not stabilize on any nonseparable subspace of ¢o(I').
It answers an open problem from a book by Guirao, Montesinos and Zizler [1].



Chapter 1

Uniform and Lipschitz mappings
in Banach spaces

In nonlinear functional analysis one often studies linear (Banach) spaces and
nonlinear mappings between or into them. In full generality, one cannot expect
much from a continuous mapping between two Banach spaces - very little is
preserved with no further assumptions. Indeed, it is known [2] that that two
Banach spaces are homeomorphic if and only if their topological density is the
same. Recall that the density of a topological space is the least cardinality of
a dense subset. That means the class of homeomorphisms is not sufficient for
studying Banach spaces. If we assume a little bit more about the mappings, we
will see that already some properties are preserved. More concretely, uniform
homeomorphism between two Banach spaces delivers a nice similarity between
them:

Definition 1.1. Let (M,d), (N,p) be metric spaces and f: M — N a mapping.
The mapping w¢(t) : [0,00) — [0,00) defined by

wr(t) =sup{p(f(x),f(y)), z,y € M, d(zy) <t}

is called modulus of continuity (of f). We say that f is uniformly continuous if
lim; ,owy(t) = 0. We say f is an uniform embedding, if it is injective, uniformly
continuous and the map f~': N D f(M) — M is also uniformly continuous. If
f is moreover onto N, we say it is an uniform homemorphism between M and N
and these two spaces are uniformly homeomorphic.

Definition 1.2. A Banach space X is said to be crudely finitely representable
in a Banach space Y if there exists K > 0, such that for every finite-dimensional
subspace F C X there exists a linear embedding T : F — Y with distortion less
than K (i.e. |T] - [|T7Y| < K).

We can now state what we meant by that similarity between Banach spaces.
It is captured in the theorem of Ribe from 1976.

Theorem 1.1 (Ribe, [3]). Let XY be Banach spaces. If X andY are uniformly
homeomorphic, then X is crudely finitely representable in'Y and Y is crudely
finitely representable in X .



It means that local properties of Banach spaces (properties which involve
only finitely many vectors in their definition) are preserved by uniform homeo-
morphism. Another immediate corollary of the theorem is that ¢, is not uniformly
homeomorphic to ¢, or ¢ if p # q.

In this direction, there are even stronger results: We have that ¢, spaces
with 1 < p < oo have a unique uniform structure, i.e. if a Banach space is
uniformly homeomorphic to £,, 1 < p < oo, then it is linearly isomorphic to it. A
comprehensive list of Banach spaces with unique uniform structure is presented in
[4]. Despite being useful, uniform homeomorphisms are not sufficient to describe
completely Banach spaces, not even the class of separable ones (see [5], [6]). Let
us therefore focus on a stronger class of mappings, namely the class of Lipschitz
mappings.

Definition 1.3. Let (M.,d), (N,p) be metric spaces. A mapping f : M — N is
called Lipschitz whenever there exists K > 0 such that for all x,y € M holds

p(f(2),f(y)) < Kd(z,y).

Smallest K > 0 satisfying the above inequality is called Lipschitz constant of
f and denoted Lip f. If f is injective and f~! is also Lipschitz, we say f is a
bi-Lipschitz mapping or a Lipschitz embedding from M to N. If f is moreover
onto N, we say f is a Lipschitz isomorphism between M and N and that the two
spaces are Lipschitz isomorphic or Lipschitz equivalent. We say such isomophism
f has distortion at most K > 1if Lip f - Lip f ! < K.

Lipschitz isomorphisms carry more information about the structure of the
spaces than uniform homeomorphisms. Straight examples can be the properties
reflexivity, RNP or Asplund, which are stable under Lipschitz isomorphisms but
not under uniform one [4]. Actually a lot of linear properties is preserved by
Lipschitz isomorphisms of Banach spaces. For some of them there were even
purely metric characterisations found. One can therefore define such properties
in metric spaces. Such examples are e.g. superreflexivity [7], Rademacher type
[8] and cotype [9], RNP [10] or reflexivity [11].

Important question concerning Lipschitz mappings is whether two Banach
spaces which are Lipschitz isomorphic to each other are linearly isomorphic. Aha-
roni and Lindenstrauss [12] proved this does not need to be the case if the spaces
are nonseparable. They presented a Banach space which is Lipschitz-equivalent to
co(I") with ' of continuum cardinality which is not linearly isomorphic to ¢q(I).
Since then many similar examples were derived from this original one. All of
these examples share similar properties: the spaces are nonseparable and their
Lipschitz equivalence to some other spaces is based on existence of a Lipschitz
lifting to a certain linear quotient. In separable setting, the problem is still open
and moreover, due to [13], the same technique using Lipschitz lifting cannot work.
More specifically, Godefroy and Kalton showed that if a linear quotient map to a
separable Banach space X has a Lipschitz right inverse, then it has a linear right
inverse.

In one of the attached articles, we are studying the problem of distorting
Lipschitz mappings on the sphere of a Banach space. In this article, the term
distortion is used in a different meaning than in definition [I.3] We say a function
f + Sx — R from a sphere of an infinite-dimensional Banach space X is a



distortion whenever there exists ¢ > 0 such that for any infinite-dimensional
subspace Y C X there exist points x,y € Sy, such that |f(x) — f(y)| > €. In
this direction, James proved that there is no equivalent norm on X which can
be a distortion for X = ¢y or X = ¢;. For reflexive ¢, spaces it is not true,
as Odell and Schlumprecht show in [I4]. If we look at the results for Lipschitz
functions, we need to mention a famous result by Gowers [15], who showed that
every real Lipschitz function from the unit sphere of ¢q stabilizes on a sphere of
some infinite dimensional subspace. Precisely, for every € > 0 and every Lipschitz
function f : S., — R, there exists an infinite dimensional subspace Y C ¢y, such
that for any =,y € Sy we have |f(z) — f(y)| < e. Clearly, the same would hold for
any space containing cy. When generalizing the Lipschitz distortion problem to
nonseparable setting, it comes natural to allow the ”stabilizing subspace” to be
only of the same metric density as the original space. We studied this question
on the space ¢o(I') for any uncountable cardinal I' and we have constructed an
example of a Lipschitz function on the sphere of ¢y(I"), which is a distortion on
any nonseparable subspace of ¢y(I"). Formally, for any uncountable cardinal ", we
constructed a symmetric 1-Lipschitz function F': S, ) — R, such that for any
nonseparable subspace Y C ¢o(I') and any z,y € Sy we have |F(z) — F(y)| > 1.



Chapter 2

Lipschitz-Free Spaces

In this chapter we will define Lipschitz-free spaces and show some of their
applications in mathematics and computer science. Let (M,d) be a metric space
with a distinguished point (denoted 0 € M for convenience). We call the triple
(M,d,0) a pointed metric space. On the set

Lipy(M) ={f: M — R, f(0) =0, f Lipschitz}

we define a real-valued mapping

flx) = fly
7= sp = JWL
z,yeEM, x#y d(x,y)
It is not difficult to check || - || is a norm and that (Lipy,(M),|| - ||) is a Banach

space.

Definition 2.1. Let (M,d) be a metric space. A molecule on M is a function
m : M — R with finite support and such that ) _, m(z) = 0. For distinct
points p,q € M, we set my,, = X{p1 — X{q} and on the space of molecules on M we
define the seminorm

=t {3 ) =S |
i=1 i=1
The completion of the space of all molecules on M modulo null vectors we call
the Lipschitz-free space over M and denote it F(M).

We have this important dual characterization.

Theorem 2.1 ([16]). Let (M,d,0) be a pointed metric space. Then F(M)* is
linearly isometric to Lipy(M).

Proof. Define T': F(M)* — Lipy(M) as Ta'(p) = z'(myo), 2" € F(M)*, p € M.
Clearly T is linear and for every p,g € M we have

T2 (p) = T'(q)| = |2 (mp0) — 2" (mgp)| = |2 (mpg)] <[] d(p.q),

as ||myql| < d(p,g). So T is a non-expansive linear operator. Define now P :
Lipy(M) — F(M)* as Pf(m) = ZpeMm(p)f(p) for f € Lipy(M) and m €



F (M) a molecule. Pick an arbitrary molecule m € F(M) and suppose it can be
expressed as m = Y., a;my, , for some eligible a; € R,p;,¢; € M,n € N. Then

n

> ai(f(pi) — fa:)

=1

[Prm)| =D m(p)f(p)

peEM

<A1 laild(pias).
i=1

If we take infimum over all possible expressions of m, we get that |Pf(m)| <
| £Illlm]|. Hence we can extend Pf to entire F (M) and we get that Pf € F(M)*
for any f € Lipy(M) and that P is nonexpansive. A routine computation shows
that PT'=TP = 1d and the proof is finished. m

If M is a pointed metric space and 0 € S C M a subset containing the origin,
we see that the restriction operator R : Lipy(M) — Lip,y(S) is a linear quotient.
One could ask if Lip,(S) is not actually a (complemented) subspace of Lip,(M).
In general we can say only that Lip,(S) is isometric to a subset of Lip,(M):

Lemma 2.2. [T7] Suppose (M,d) is a metric space and g : S — R a K-Lipschitz
function on some S C M. Then the following formula defines a K-Lipschitz
function g : M — R such that §ls = g.

g(z) = ;gg {9(y) + Kd(z,y)}. (2.1)

It is clear that the mapping g — ¢ is in general not linear in g. Later in this
section we will see that F(S) is actually a linear subspace of F(M) and obvi-
ously if it is complemented, then Lip,(S) can be seen as a linear (complemented)
subspace of Lip,(M).

In the definition of a Lipschitz-free space we needed to factor out null vectors
to obtain a normed linear space. From Theorem [2.1] follows that || - || is actually
a norm, wherefore there was nothing to factor out. Indeed, using the extension
formula we can find for any nonzero molecule m a 1-Lipschitz function f €
Lipy (M) such that 0 < >\, m(p)f(p) < [[m]|.

Another immediate consequence of Theorem and the fact that F (M) was
defined regardless of the choice of 0 is that changing the base point in the space
M does not change the Banach space structure of Lip,(M).

Finally, it follows that for any two points z,y € M holds ||m,,| = d(z,y),
since the function d(-,0) belongs to Lip,(M) and is of norm one.

In many articles including those attached here, one uses an ”external” defini-
tion of Lipschitz-free space: For a pointed metric space (M,d,0) and §, denoting
the Dirac evaluation functional at x € M, Lipschitz-free space is the closure
of span{d,, z € M} C Lipj(M) in the norm of Lipj(M). It is not difficult to
prove that the two definitions coincide. First, any molecule m can be identified
with the linear combination > ,, m(p)d, and any linear combination of Diracs
> 1 a0y, T # 0 can be viewed as a molecule

a; Z =T,
m(z)=<¢ =" a; z=0,
0 else .

Using Theorem we get that the norms on both spaces coincide, also, both
definitions of Lipschitz-free space agree. We include two examples of finite-
dimensional Lipschitz-free spaces, which are used in computer science.
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FEzample 2.2 (Transport mass problem). Suppose we have factories with loca-
tions x1,...,x, producing vi,...,v, units of some product and stores with loca-
tions ¥1,...,4,, Where we want to deliver wy,...,w,, units of that product. Suppose
> i Vi = 5 w; and that distance metric function d on M = {z1,...,z,} U
{Y1,--,ym} is given. The task is to minimize the total cost of transport of goods
from factories to stores given by >, > h(i,j)d(xi,y;), where h(i,j) > 0
denotes the amount of units transported from z; to y;, under the conditions
> iy Pi,g) = wj and 3770 h(i,j) = v; for all possible i,j (meaning all units have
to be transported from factories to stores in a way that every store’s demand
is met). Then the minimal transport cost equals ||m||, where m is a molecule

defined on (M,d) by
m(z) = {Ui z=ux; 1€ {l,..,n},

—w; z=vy; j€{l,..m},

and the values of the optimal transport plan h : {z1,...,2,} X {y1,....ym} — R are
exactly the constants a; from the definition [2.1] where the infimum is attained.

Clearly, the Lipschitz-free space F(M) in this example is representing the
space of all possible assignments of amounts vy,....Vp4m € R over M (hence the
numbers and positions of factories and stores within points of M), such that the
amount of manufactured goods is equal to the one stored.

The important practical question is, how to find the minimal transport cost,
resp. some minimal transport plan. In some special cases, for example when all
points of M lie on the same line, the solution is easy to find and its asymptotical
complexity is low. Concretely we have:

Proposition 2.3. Let M = {zy,x9,...,x,} be an n-point subset of the real line.
Then F(M) is linearly isometric to £7~" and for every m € F(M), |m|| can be
computed in linear time (with respect to n).

Proof. Without loss of generality we can assume that z; < 29 < ... < x,. Let
us define a mapping T : /17" — F(M) as Te; = Mg,z Lhen for every

1 _
=" ae; € (}7" we have

E mx T4
d I“ 1+154L47

xz—l—l

1
d(zi,xit1)

[T =

< Z Jail = =]

On the other hand, every element m € F(M) can be uniquely represented as a
sum m = Z?:_ll /My, 2, Which yields that the mapping T : F(M) — (771,
T 'm = 37 aid(ws,wis)e; is well-defined. Clearly 7T = T-'T = 1d. Fix
now m € F(M) and define a function f = f,, : M — R inductively by f(z1) =0
and f(zi1) — f(x;) = d(xip1,2;) sgna;, © € {1,...,n — 1}. Then

n—1
Z a;d(w;,Tit1)€;

=1

n—2
= —ay f(z1) + Z — @is1) [ (@it1) + an-1f(n)
i=1

21
—Z fw) = mll

n—1

- Z |a;d(zi,xit1)]

=1

177 m|| =




since f € Lipy(M,d,z1) and || f|| = 1. We get that T is a linear isometry.
From the previous follows that one can compute the norm of m € F(M) in

linear time. Indeed, we have ||m| = 3207 |a;|d(xiy1,7;), where the constants a;
are the uniquely given constants satisfying m = > """ a;my,,, »,. But one can
find these constants easily in linear time as a; = —m(z1), a; = a;_1 — m(x;),
i€ {2,..n—1} O

In general, Godard [I8] gives a nice characterization of metric spaces, which
Lipschitz-free spaces are isomorphic to a subspace of L;. We have the following:

Example 2.3 ([18]). The Lipschitz-free space F(R) is linearly isometric to L;. For
any discrete infinite set M C R, the Lipschitz-free space F (M) is linarly isometric
to /1. A graph tree T" with weighted edges endowed with the shortest path metric
is isometric to £}, where n = card(7T') — 1.

To assume that points of M lie on a line or that their distances correspond
to a tree metric is often not possible. However, one can still get some estimates
on the minimal transport cost in low time complexity. The following theorems
show more about the structure of Lipschitz-free spaces, from which the estimates
follow. We state them in the terms of the "external” definition of Lipschitz-free
spaces. Recall that we denote ¢ the isometry which sends every point of M to
the Dirac evaluation functional 6, € F(M) C Lip,(M)* at = (or equivalently, to
the molecule m, ). The following theorem is known as the universal property of
Lipschitz free spaces.

Theorem 2.4. Let (M,d,0) be a pointed metric space, X a Banach space and
¢ M — X a Lipschitz mapping satisfying ¢(0) = 0. Then there is a unique
linear mapping F : F(M) — X with |F|| = ||¢|lLp such that the following
diagram commutes.

Fory £ x

M

Proof. Define F' on span{J,, € M} as a linear extension of ¢. For every a €
span {0,, x € M}, there is a linear functional f € Bx« such that ||F(a)||x =
f(F(a)). But fop € Lipy(M), which implies ||f o ¢||Lip < ||¢||Lip and therefore
|F(a)|| < |lall - ll¢llp.- So F' is bounded on span{d,, z € M} and so we can
extend it to the closure span {0,, € M} = F(M). O

Corollary 2.5. Let M,N be pointed metric spaces and p : M — N a Lipschitz
mapping with p(0) = 0. Then there exists a unique linear mapping F : F(M) —
F(N) with ||F|| = Lip ¢ such that the following diagram commutes.

My L F vy

F(
M———N

'a
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Proof. Tt suffices to apply the previous lemma to the mapping oy o : M —
F(N). O

If N C M, we can view the space F(N) as a linear subspace of F(M). If
is moreover N a Lipschitz retract of M, then F(N) is complemented in F(M).
Analogously, if M,N are Lipschitz isomorphic with distortion at most K, then
F(M) and F(N) are linearly isomorphic with distortion at most K.

The last assertion indeed gives an estimate for the minimal transport cost of
some transport mass problem. Namely, if (M,d) and (NNV,p) are metric spaces and
w: M — N is a Lipschitz isomorphism with distortion at most K > 1, then for
any transport mass problem assignment m € F (M) one knows that the minimal
transport cost of m, i.e. ||m]|, is at least 1/K-times the cost of F'm and at most
K-times the cost of F'm, where F' is the linear isomorphism from Corollary
corresponding to the mapping .

Lipschitz-free spaces are often used for linearizing Lipschitz maps between
metric spaces. This is particularly interesting in the case when the underlying
metric spaces are Banach spaces. Firstly, it means that whenever two Banach
spaces X,Y are Lipschitz isomorphic, then their corresponding Free spaces are
linearly isomorphic. This can be used in answering to the following questions:

1. Suppose X,Y are Banach spaces which are Lipschitz isomorphic to each
other. Suppose X has some property P. Does it follow that Y has also
property P?

2. Suppose XY are Banach spaces which are Lipschitz isomorphic to each
other. Are X and Y linearly isomorphic?

Whenever we have that a Banach space X has property P if and only if its Free
space F(X) has P we get immediately that property P is stable under Lips-
chitz isomorphism. An example of such a property is A-bounded approximation
property [13]:

Definition 2.4. Let A\ > 1. We say that a Banach space X has A-bounded
approximation property, if for every ¢ > 0 and every compact set K C X, there

exists a finite rank linear operator 1" : X — X such that for each x € K we have
|Tx — z|| < eand ||T] < A

There is a well-known open question whether every Banach space that is
Lipschitz isomorphic to ¢; is linearly isomorphic to it. To this side it is known
that if the Free space F (1) is complemented in its bidual, then the answer to
the previous question is yes.

The next example is a simplified version of a process of measuring dissimilarity
between images. Usually, the image is compressed for the sake of efficiency of
used methods. The easiest way to do it is to quarter the image into bins and
then describe the image as a sequence of brightness values (grey-scaled images)
or as a sequence of RGB valued vectors.

Ezxample 2.5 (Image retrieval). Suppose we have a set of images, each represented
as a sequence of brightness intensity values on a bin-grid M = {z,xs,...,x,} for
some given n € N. Let d;; be the distance between bins x; and z;. For two
images S,T" with brightness values sy,...,s, and ty,...,t,,, one defines the so-called

11



Earth mover’s distance between them in the following way: First, we need to find
values f;; > 0, such that the following value is minimized

WORK(S,T,f) = ZZf” "

=1 j5=1

while the following constraints are satisfied:
Zfij S tj, j € {1,...,71}, (22)
i=1

ifij S Si, Z - {1,...,n}, (23)

D) SUEITR) o A 24)

=1 j5=1
Once {fj;};,_, is found, then the Earth mover’s distance between S and T is

defined as " "

Zi:l Zj:l Jijdis
Z?:l Z?:l f ij
For a specific example, when each picture has total brightness intensity equal to
1 and d is a metric on M, then EMD becomes a metric [19]. Namely EMD is a
metric on X = {S: Y ", s; = 1}. In this example, Lipschitz-free space over M
would consist of all pairs of pictures (5,7") such that the total brightness intensity
of S is the same as of T" modulo all pairs in which the two pictures coincide.
Here we assume the linear structure on {(S,T): > I ,s; =Y .t} given by
considering every picture S as a brightness function on M, ie. S : M — R,
S([L’l) = §;. Hence Oé(Sl,Tl) + B(SQ,TQ) = (OéSl + 5S2705T1 + BTQ) The norm is
given here by ||(S,1)|lw = minyf WORK(S,Tf), where f satisfies the constraints
- . Analogously, the set F(M) can be thought of as all pairs of pictures
(S,T'), such that the total brightness intensity is the same among S and 7', modulo
all || - [[w-null vectors.

EMD(S,T) =

In the aforementioned example, one often needs to compute the EMD measure
between two pictures. There are approximative methods [20] to compute EMD
in linear time using embeddings into L;. However, in [21] was shown for the
grid M = {O,l,...,n}2 in R? that embedding of F(M) into L; incurs distortion
Q(y/logn).

The last result has also theoretical implications. It follows that F(R?) does
not embed into Li. Since by [22] for every set M C R™ with nonempty interior
the space F (M) is isomorphic to F(R™), we have also that F (M) does not embed
into L for any such set when n > 2.

It is still an open question whether F(R?) is linearly isomorphic to F(R?).

12
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Some remarks on the structure of Lipschitz-free
spaces®

Petr Hajek Matéj Novotny

Abstract

We give several structural results concerning the Lipschitz-free spaces
F(M), where M is a metric space. We show that (M) contains a com-
plemented copy of ¢1(I'), where I' = dens(M). If A/ is a net in a finite di-
mensional Banach space X, we show that F(/N) is isomorphic to its square.
If X contains a complemented copy of £,, cg then F(N) is isomorphic to its
¢1-sum. Finally, we prove that for all X = C(K) spaces, where K is a metriz-
able compact, F(N') are mutually isomorphic spaces with a Schauder basis.

1 Introduction

Let (M,d) be a metric space and 0 € M be a distinguished point. The triple
(M, d,0) is called pointed metric space. By Lip,(M) we denote the Banach space
of all Lipschitz real valued functions f : M — R, such that f(0) = 0. The norm
of f € Lip,(M) is defined as the smallest Lipschitz constant L = Lip(f) of f, i.e.

Lip(f) = sup{lf—(fz)(%;)(y)—l, x,yEM, x #y}.

The Dirac map § : M — Lipy(M)* defined by (f,é(p)) = f(p) for
f € Lipy(M) and p € M is an isometric embedding from M into Lipy(M)*.

*The work was supported in part by GACR 16-073785, RVO: 67985840 and by grant
SGS15/194/0OHK3/3T/13 of CTU in Prague.
Received by the editors in April 2016 - In revised form in November 2016.
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284 P. Hdjek — M. Novotny

Note that 6(0) = 0. The closed linear span of {é(p), p € M} is denoted F (M)
and called the Lipschitz-free space over M (or just free space, for short). Clearly,

Il oy = sup {(m, ) : f € Lipy(M), [£] <1}

It follows from the compactness of the unit ball of Lip,(M) with respect to
the topology of pointwise convergence, that (M) can be seen as the canonical
predual of Lip,(M), i.e. F(M)* = Lipy(M) holds isometrically ([33] Chapter 2
for details).

Lipschitz free spaces have gained importance in the non-linear structural the-
ory of Banach spaces after the appearance of the seminal paper [13] of Godefroy
and Kalton, and the subsequent work of these and many other authors e.g. [19],
[20], [21], [22], [14], [24], [16], [17], [31], [23], [5], [4], [10], [6], [29] [7], [8], [9]. Free
spaces can be used efficiently for constructions of various examples of Lipschitz-
isomorphic Banach spaces X,Y which are not linearly isomorphic. To this end,
structural properties of their free spaces F(X), as well as free spaces of their sub-
sets, enter the game. For example, in the separable setting, /(X) contains a com-
plemented copy of X [13], and it is isomorphic to its /1-sum. On the other hand,
if N is a net in X then F (M) is a Schur space [20] and it has the approximation
property.

A comprehensive background on free spaces of metric spaces can be found in
the book of Weaver [33]. There are several surveys exposing the applications of

this notion to the nonlinear structural theory of Banach spaces, in particular [19],
[15].

Our first observation in this note is that 7 (M) contains a complemented copy
of £1(I'), where I' is the density character of an arbitrary infinite metric space M.
Our proof could be adjusted also to the case I' = wyp, which is one of the main
results in [5].

The main purpose of this note is to prove several structural results, focusing
mainly on the case when M is a uniformly discrete metric space, in particular a
net AV in a Banach space X. Our results run parallel (as we have realized during
the preparation of this note) to those of Kaufmann [23], resp. Dutrieux and Fer-
enczi [10] which are concerned with the bigger (in a sense) space F (X). However,
the space F(N) is only the linear quotient of F(X), so the results are certainly
not formally transferable. In particular, the discrete setting prohibits the use of
the “scaling towards zero” arguments (used e.g. in [23]), which leads to compli-
cations in proving that our free spaces are linearly isomorphic to their squares,
or even ¢1-sums. We are able to show these facts at least for nets in finite dimen-
sional Banach spaces and all classical Banach spaces. Surprisingly, the proofs for
the finite dimensional case and the infinite dimensional case are rather different.

Our main technical result is that 7 (N') has a Schauder basis for all nets in
C(K) spaces, K metrizable compact. The constructive proof is obtained in ¢y, and
the result is then transferred into the C(K) situation by using the abstract theory
developed in the first part of our note.
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Some remarks on the structure of Lipschitz-free spaces 285

Let us start with some definitions and preliminary results. Let N C M be
metric spaces, and assume that the distinguished point 0 € M serves as a dis-
tinguished point in N as well. Then the identity mapping leads to the canonical
isometric embedding F(N) < F (M) ([33] p.42). In order to study the comple-
mentability properties of this subspace, one can rely on the theory of quotients of
metric space, as outlined in [33] p.11 or [23]. For our purposes we will outline an
alternative (but equivalent) description of the situation.

Definition 1. Let N C M be metric spaces, 0 € N. We denote by

Lipn(M) = {f € Lipo(M) : f|n = 0}.

It is clear that Lipn (M) is a closed linear subspace of Lipo(M), which is more-
over w*-closed. Indeed, by the general perpendicularity principles ([11] p.56) we
obtain

Lipy(M) = F(N)*, F(N) = Lipy(M)

Hence there is a canonical isometric isomorphism
Lipy(M) = (F(M)/F(N))*

Since the space of all finite linear combinations of Dirac functionals is linearly
dense in F (M), resp. also in F(N), it is clear that the image of finite linear com-
binations of Dirac functionals supported outside the set N, under the quotient
mapping F(M) — F(M)/F(N) is linearly dense. Moreover, it is nonzero for
nontrivial combinations.

Definition 2. If y = }.! 1 a;6;; : t; € M\ N then we let

1l 7yaey = sup(, ), f € Lipn(M), |IfIl < 1.

1

p -7y vy
fN(M):{y:Zajéf},:t\jeM\N} .
=

i.e. we complete the space of finite sums of Dirac functionals with respect to the duality
(Fn(M), Lipn (M)).
Clearly, our definition gives an isometric isomorphism
Fn(M) = F(M)/F(N)

Proposition 1. Let N C M be metric spaces. If there exists a Lipschitz retraction
r: M — N then

F(M) = F(N) @ Fn(M).
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This follows readily from the alternative description using metric quotients
(e.g. in [23] Lemma 2.2) using the fact that Fy(M) = F(M/N).

We say that the metric space (M, d) is J-uniformly discrete if there exists § > 0
such that d(x,y) > 6,x,y € M. The metric space is uniformly discrete if it is
d-uniformly discrete for some 4 > 0.

If o, > 0 we say that a subset N C M is a («, B)-net in M provided it is
a-uniformly discrete and d(x, N) < B, x € M.

It is easy to see that every maximal J-separated subset N C M, which exists
due to the Zorn maximal principle, is automatically a (9, § + ¢)-net, for any € > 0.

Proposition 2. Let (M, d,0) be a pointed metric space, K > 0, { My}, <1 be a system of
pairwise disjoint subsets of M, and 0 € N C M\ UperM,. Suppose that forall B € T
and all x € Mg holds

d(x,UgerazpMa) = Kd{x,N).

Then
Fn(N UUserMa) = (BaerFn(N U Ma))s, 1)-

In particular, if N = {0} then
-7:({0} U chel‘er) = (@(xerf({o} U M«x))el(r)-

Proof. The result is immediate as any collection of 1-Lipschitz functions f, €
Lip (N U M,) is the restriction of a %-Lipschitz function f € Lipy (N UUgerMy)
]

Recall that the density character dens(M), or just density, of a metric space M
is the smallest cardinal I" such that there exists dense subset of M of cardinality I'.

Let I" be a cardinal (which is identified with the smallest ordinal of the same
cardinality). By the cofinality cof(I') we denote the smallest ordinal « (in fact a
cardinal) such that I' = limg., I'5, where I'g is an increasing ordinal sequence
([18] p.26).

2 Structural properties

Proposition 3. Let M be a metric space of density dens(M) = T. Then F (M) contains
a complemented copy of £1(T).

Proof. For convenience we may assume that I' > wy, because this case has been
already proved in [5] (Our proof can be adjusted to this case as well). By ([32]
Corollary 1.2) if ¢y(I') < X* then ¢1(I") is complemented in X. So it suffices to
prove that Lip,(M) contains a copy of ¢y(I'). For every n € N let M, be some
maximal 5;-separated set in M. Denote I'; = |My|. It is clear that dens(M) =
limy 00 I'y, in the cardinal sense. In case when the cofinality cof(I") > wy, it is
clear that T, = T, for some n € IN. In this case, let {f,:a € I';} be a trans-
finite sequence of 1-Lipschitz functions such that f,(x,) = 5,,% and supp(fa) C
B(xq, 5%72) Since the supports of f, are pairwise disjoint it is clear that { fu} 1, is
equivalent to the unit basis of cy(I") and the result follows. In the remaining case,
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o0 . . . . .
we may assume that {I'; } ", is a strictly increasing sequence of cardinals. De-
note M, = {x} wer, - Let Ly = My. By induction we will construct sets L, C M,

as follows. Inductive step towards n + 1. Consider the sets
i 1 :
Aj,o( = M1 N B(x4, W), j<nuac l—'kj

If there is some j, & so that |A; ;| = Ty, , then we let L1 = Aj,. Otherwise
we let

Lyt1 = My \ Ujgn,:xel“kr.Aj,a

In either case we have |L, 1| = Ty, .
sets of these sets L, we can assume that

By discarding suitable countable sub-

. 1 1
dlSt(Ln, Lm) 2 max {W’ W}
To finish, let { /' : x € L,,n € IN} be a transfinite sequence of 1-Lipschitz dis-
jointly supported functions such that fJ (x}) = 5 and supp(fl!) C B(x}, 572)-
This sequence is equivalent to the basis of ¢o(I'), which finishes the proof. n

Theorem 4. Let N, M be uniformly discrete infinite sets of the same cardinality such
that N C M is a net. Then F(N) = F(M).

Proof. Let K > 0 be such that max,,epmdist(m,N) < KLetr : M — N be a
retraction such that d(x,r(x)) < K. As M is uniformly discrete, r is Lipschitz. By
Proposition 1

F(M) = F(N) & Fn(M).
It is clear that Fy(M) = ¢1(M \ N). By Proposition 3

F(N) = F(N) @ £ (M) = F(M). -

Recall that all nets in a given infinite dimensional Banach space are Lipschitz
equivalent ([26], or [1] p.239), hence their free spaces are linearly isomorphic. On
the other hand, there are examples of non-equivalent nets in R? ([28], [3] or [1]
p-242), hence the next result is not immediately obvious.

Proposition 5. Let N, M be nets of the same cardinality dens(M) in a metric space
(M,d). Then F(N) = F(M).

Proof. Suppose N is a (a,b)-net and M is a (c,d)netin M, a < c. LetK =
MUWN, and let K C K be maximal subset such that from each pair of points
x € M,y € N for which d(x,y) < § we choose only one x € K. It is now clear
that both A/ and M are bi-Lipschitz equivalent to a respective subset of K. By

Theorem 4, F(K) & F(M) =2 F(N). n

Of course, the above proposition applies to any pair of nets in a given Banach
space X, or its subset S C X which contains arbitrarily large balls.
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Lemma 6. Let Y = X & R be Banach spaces, N be a net in X and M be the extension
of N into the natural net in Y. Denote MT = MNX®RT, M~ =MNXBR".

IfFN)=FN)® FWN)and FIMT) = FIM')® F(MT) then F(M) =
F(MT)=FM)d F(M).

Proof. Thanks to Proposition 5 we are allowed to make additional assumptions
on the form of the nets. Let us assume that M = N x Z, which immediately im-
plies that N U M ™ is bi-Lipschitz equivalent with M™ (and M ™) by translation.
Denoting P : Y — X the canonical projection P(x, t) = x, we see that P : M — N
is a Lipschitz retraction, so

FMT) = FINUM™T) = FN) @ Fa(NUMT)
and using Proposition 2
FM)ZFN)®FyM)=ZFN)& FayNUMT) @ Fy(NUMT)
Since For(NUM™T) = Fyr(NUM™) and F(N) = F(N) & F(N) the result

follows.
n

Theorem 7. Let N be a net in R™. Then F(N) = F(N) @ F(N).

Proof. For n = 1 it is well known [12] that F(N) = FNt) = ¢ =
FN) @ FN).
Inductive step towards n + 1. We may assume that N' = Z"! is the in-

teger grid. Let us use the following notation (our convention is that Zt =
{1,2,3,...},Z2= ={-1,-2,...}).

L=27"1x{0} x {0}, £y =2Z"txZ% x {0},
Lry=Z"1x {0} xZ", L3=2""1xZ x {0}
MY =Z" 1w ZxZY, M =Z" 1 xZt xZ", My=Z""'xZ xZ7

With this notation, we have the following bi-Lipschitz equivalence

LiULULy =2 L1 ULULs.

By inductive assumption this implies

F(ﬁUﬁlUﬁz)gf(£U£1U£2)€B]:(£U£1U[,2). (1)

On the other hand, using Proposition 2 in various settings

FLULULy) = F(L)DFr(LU L) S F(LULy),

FLULIULy) = F(LUL)® Frug,(LULULy) =
FLUL) ®Fe(LULy), (2)
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.7:(£U[,1 U[QU[,;;) = .F(EU[& U»C?,) @-FLULXU£3(£U£1 UﬁzUﬁg) =
F(LULLULs)® Fr(LULy). (3)

Hence, using the inductive assumption F(L U £ U L3) = F(L U L)

FLULLULULs) = F(LULY) B Fr(LUL) (4)
Comparing (2), (4) and using (1) we obtain

F(LULIULyULs) 2 F(LULULY) = F(LULLULY) B F(LULLIULY) (5)

By Lemma 6, in order to complete the inductive step, it suffices to prove that
F(MP)=F(M*)o F(M™).

Denote R : Rt x R" — R x R* the mapping R(z) = TZ%, where z is the
complex number represented as z = x +iy. It is clear that R is bi-Lipschitz.
Indeed, if zp = a +ib and z; = x + iy are two complex numbers from the first
quadrant with a < x, then

‘R(Zo) w R(Zl)l _ |ea+2ib _ ex+21'y| < |ea+2ib _ ea+2iy' + {ea+2iy _ ex+2iy, —
— ealeib _eiyl . !eib+eiy| 4+ Iea __exl
< 2|6a+ib _ ea—f—iyl + lea-!—ib _ ex+iy|

< zlea+ib _ ex-f—iy' + |ea+ib _ ex+z‘y’ = 3|z — z1].

On the other hand, for any zg = a 4 ib and z; = x + iy from the upper half plane
with a < x we have

|R*1(Zo) _ le(zl)l _ |ea+% . ex+iz'1| < Iea-f—%f _ ea+-%’! + |ea+’3IZ . €x+%! _

ib _ iy

— of Ieib ewl + Je? — &%

EFe]

< £|ea+ib _ ea+iy! + |er1+z‘b _ ex+iy
- 2

S 2|ZO - Zl’l

which we wanted to prove.
The mapping

T:M;— R, T(u,x,y) = (4,R(x,y))
takes the net M from the set R"~! x R* x R* in a bi-Lipschitz way to the net

T(M;) in the set R"~! x R x RT. Hence F(M;) & F(T(M)). Since M+ =
My U Ly UM, is another net in the second set, by Proposition 5 we obtain

F(My) = F(MT)
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Now thanks to the bi-Lipschitz equivalence M; = My U LU L1 U Ly,

./—"(Mﬂ gF(M1U[,U£1U£2) =
f(ﬁUElLJCz)@fguﬁluﬁz(M] U£U£1U£2>

Since M is bi-Lipschitz equivalent to M+ U LU £; U £, we get

]:(M+) = F(LULU LU L) @fﬁuﬁ]uﬁZ(M'l ULUL U Ly)d
Frugues(M2ULU LU L) (6)

Using (5) and the obvious
Frocuc,(M1ULULIULy) S Frusuc,(MaULU LU L3)

we finally obtain

F(My)® F(My) = F(MT) = F(My)

which ends the inductive step and the proof. ]

Theorem 8. Let X be a Banach space such that X = Y @& X, where Y is an infinite
dimensional Banach space with a Schauder basis. Let N be a net in X. Then

FN) = (7L F(N))e,-

Proof. We may assume without loss of generality that the norm of the direct
sum Y @ X is in fact equal to the maximum norm Y @®e X. Using Proposition
5 it suffices to prove the result for just one particular net . Let My C kSx,
k € N bea (1,2)net. Then NV = U2 M is a (1,3)net in X. Let {e;} be a
bi-monotone normalized Schauder basis of Y. Set Z = (@72, F (N))e,. Ttis clear
that
Z = (&5242)1, |

We will use Pelczynski’s decomposition technique to prove the theorem. Since
F(N) is complemented in Z it only remains to prove that 7 (N') contains a com-
plemented subspace isomorphic to Z. Let

Vi=A{ken®x:x e Mp,ke N} CY®X

The sets V},, as subsets of the pointed metric space (Y @ X, || - ||, 0), satisfy the
assumptions of Proposition 2 and so

F(M) = (@5, F (Vi) = (@5, F (), = Z.

We extend the set M into a (1,3)-net M in Y & X. Because F(M) = F(N)
it suffices to show that F (M) contains a complemented copy of F(M). To this
end it is enough to find a Lipschitz retraction R : M — M. Denote by [a] the
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integer part of 2 € R. First let r : X — A be a (non-continuous) retraction such
that [|jx|[] < [[r(x)]| < [|], [r(x) = x|| < 4 and [[r(x)]| = ||| provided ||x|| € N.
Lets:Y — Y be a (non-continuous) retraction defined for x = Y72 ; x;e; by

- dep if xp > max {x;:i # k} U {0}, d = min;[x; — ]
s (E xie,) = (7)
i—1

0 otherwise

It is easy to see that [[r(x) — r(y)[| < 9x —yll, [Is(x) =s(y)| < 6]lx —y]
provided ||x — y|| = 1 (i.e. they are Lipschitz for large distances). Indeed,

() = < llr(x) = x|+ llr(y) =yl + llx = yll < 8+ [lx =yl <9llx -yl

Assuming 1 < |lx —y|| < A, we get |x; —y;| < A,i € N. Suppose that s(x) =
dey, s(y) = te;. We claim that d < 3A. Indeed, assuming by contradiction
that x, > d+ max{x;:1#k} > 3A+ max{x;:i # k} we obtain that y;, >
A+ max{y;:i#k}. Hence k = l and |d —t| < 2A + 2. The same argument
yields t < 3A, so finally we obtain ||s(x) — s(y)|| < 6A.

Let R : M — M is now defined as

sty) or (Blx) it [x] > [s() >0

Rly®x) = | firs(y) @r(x) i s(y)]| > Jlx]| >0 ®)

0 otherwise

We claim that R is a retraction onto M. If y @ x € M then clearly
s(y) = y,r(x) = x, |ls(y)]| = ||Ir(x)]| and so R(y @ x) = y @ x. Next, observe
that R(y & x) € M holds for every y @ x € M. Indeed, regardless of the case in
the definition of R, we see that the first summand of R(y & x) is a non-negative
integer multiple of some basis vector e, in Y. In the first (and third) case it is

obvious, in the second case it follows as the norm of H’sgg “ s(y) is an integer ||r(x)]|.

The second summand is the result of an application of the retraction r, and its
norm equals the norm of the first summand, hence the value of R(y & x) indeed
lies in M.

Next, we claim that R is Lipschitz. Recall that M is a (1,3)-net in a Banach
space, so it suffices to prove that there exists a K > 0 such that ||R(y; & x1) —
R(y @ x)|| < K whenever |ly1 ®x; —y @ x|| < D, forsay D = 8. This is well-
known and easy to see, as every pair of distinct points p, g € M can be connected
by a straight segment of length ||p — ¢||, and a sequence of [||p — g]|] + 1 points
on this segment of distance (of consecutive elements) at most one. Each of these
points has an approximant from M of distance at most 3, so it clear that there
exists a sequence of [||p — g||] + 1 points in M of (consecutive) distance at most
D —1 =7, “connecting” the points p, 4, and the result follows by a simple sum-
mation of the increments of R along the mentioned sequence.

Let us start the proof of Lipschitzness of R by partitioning M into three
disjoint subsets

Di={y@x:|x] > ls(y)| = 20D},
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Dy={y®x:|s(y)| = ||x|| > 20D},
D3 = {y ® x : min {||s(y)]|, [|x||} <20D}.

The set Dy (resp. D;) corresponds to the case 1 (resp. 2) in the definition of R.

Observe that |[R(y @ x)|] < min{|ly|l,||x]|} so it suffices to prove the
Lipschitzness of R on the set D1 U D;. Moreover, the sets D1 and D; have in a
sense a common “boundary” (in the intuitive sense, which is not contained in
Dy} consisting of those elements for which ||x|| = ||s(y)||. It is easy to see that
for such elements the first two cases in definition of R may be applied with the
same result (although formally we are forced to apply the second case). Suppose
now that p € Dy,q € Dj. A similar argument as above using the straight segment
connecting p, g (and a short finite sequence from M which approximates this seg-
ment) we see that the segment essentially has to “cross the boundary” between
D1, Dy, and so the proof of the Lipschitzness of R will follow provided we can do
it for each of the sets Dy, D, separately.

Suppose y1 = y + ¥, x1 = x + ¥ are such that ||7||, ||¥|| < D.

Case 1. We consider first the case i1 & x1,¥ @ x € D;. Then

IsGll, I, _ IsyL DI, o I,
il . e I gwln<>u Isw + )l
s(y+7 Yy s(y + )il
(s~ ol ) el ©
Now
s+l sty

< max{HS(y)H +9D _ls@Il sl _ lls)ll —9D}

)l
1+ %] HxH ) lxl - D el " 1l x| +D

s +9D  lstll _ (sl +9D) x|l — lls(y) i (Ix[l = D)

x| = D ET (lxll = DYl
_ 9D|x| +Dls()ll _ _ 10D|x] 10D _ 100D _ 12D
B EERE G wllxll = o]l =)

Similarly, we obtain

sl _ sl —9D _ 10D
x| lxlf+D =«

Hence we obtain
s+ DI _ s} . 12D
[l + %] il | = [l

The last term is also estimated similarly:

oty £l < I 9D, ] +9D
Taral FE T op P S a—p 0 =3P
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So combining the above computations we get

Iswll . sl
all T ]

So the mapping y & x — ”s“(x H) lx from Dy to M takes vectors of distance at

most D to vectors of distance at most 15D. It is now clear that R is Lipschitz on
D;.

Case 2. We consider now y; @ x1,y P x € D, and denote z = s(y + 7) — 5(y)
(recall that ||z]| < 9D):

LGl

< 15D

s(yy) — Il S(y) = [r{x + %)

el FerY = ser oY P T mwrY
Therefore r(x—}—;?)H )l
B AR HS(””
|l 9D
< {nsmn_w(s( us ”
u()n
)T 9D )+ 2) - Hs(y [ (”H}

The first term could be rewritten and estimated as follows:

()] +9D) s Z_(Hs( —9D)|r(x)
TFOT=9D) s Y T2 = Qs =9D) s ()] )H

Ur@ L +9D) sl (sl = 9D) ()l Ir(x)]| +9D
< H(u!s(y)n D))~ (5w —9D)[s (y>||)s( )” T Isi—op

(UGl +9D) sl - (s(w))] — 9D) 7)1
H( 5@ —9D) s )s®)

< | U@l +9D) sl — (sl = 9D) I (x)]]
ls()il —9D

9DIs)ll +9DIrC | | ooy o BPISWI L oopy < g3p.

Is(y)ll —9D ~ ls(y)ll = 9D
The second term we estimate analogously

7] — 9D @)
EOI RS RA er )HS(”H

IA

+27D

+27D

(r@l = 9D)s@ll (sl +9D) ()l Ir(x)]| - 9D
= “(un ATToDI sl ~ sGTTDlseI )H““ ls() =90
9D s(y)] + 9D |r(x)] 18D|s(v)|
< Hs( )“ ) +9D < —-—-———Hs(y)” +9D <27D.

We conclude that R is Lipschitz on the whole domain M. Hence F(M) is
isomorphic to a complemented subspace of F (M) = F(N). N
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A simple situation which fits the above assumptions is when X contains a
complemented subspace with a symmetric basis (e.g. £,, co or an Orlicz sequence
space). By the standard structural theorems for classical Banach spaces ([27]) we
obtain.

Corollary 9. Let X be a Banach space isomorphic to any of the (classical) spaces £,, Ly,
1 < p < o0, C(K), or an Orlicz space hp;, N be a net in X. Then

FN) = (82 F(N))g,-

Recall that a metric space M is an absolute Lipschitz retract if, for some K > 0,
M is a K-Lipschitz retract of every metric superspace M C N ([1] p.13). We are
going to use the discretized form of this condition. This concept is almost explicit
in the work of Kalton [21], where it would probably be called absolute coarse
retract.

Definition 3. Let M be a 5-uniformly discrete space, 6 > 0. We say that M is an absolute
uniformly discrete Lipschitz retract if, for some K > 0, the space M is a
K-Lipschitz retract of every é-uniformly discrete superspace M C N.

Lemma 10. Let X be Banach space which is an absolute Lipschitz retract, N be a net in
X. Then N is absolute uniformly discrete Lipschitz retract. Conversely, if N is absolute
uniformly discrete Lipschitz vetract and X is a Lipschitz retract of X** then X is an
absolute Lipschitz retract.

Proof. The first implication is obvious. To prove the second one, suppose that
X C £o(T) = Y is a linear embedding. Since ¢« (T') is an injective space, it suf-
fices to prove that there is a Lipschitz retraction from £ (I") onto X. Since X is
a Lipschitz retract of X**, it suffices to follow verbatim the proof of Theorem 1
in [25]. Indeed, consider a net A/ in X with extension into a net M in Y. By as-
sumption, there exists a Lipschitz retraction ¥ : M — N. This retraction r can
be easily extended to a coarsely continuous retraction R from Y onto X (using
the terminology of [21]), which is of course Lipschitz for large distances. It is this
condition on R that is used in the proof of Theorem 1 in [25]. =

Remark. It is an open problem if the retraction from X** to X exists for every
separable Banach space (see [21]).

Important examples of absolute uniformly discrete Lipschitz retract are the
nets in C(K) spaces, K metrizable compact, [1] p.15.

Corollary 11. Let M be a countable absolute uniformly discrete Lipschitz retract which
contains a bi-Lipschitz copy of the net N in cg. Then F (M) = F(N).

Proof. There is a Lipschitz retraction from M onto N, and on the other hand
using Aharoni’s theorem ([11] p. 546) M is bi-Lipschitz embedded into A (and
hence also a retract). Thus F(M) is complemented in F(N) and vice versa.
To finish, apply Theorem 8 for ¢y together with the Pelczynski decomposition
principle. =
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To give concrete applications of the above corollary, we obtain the following
result. The case of ¢ follows from the Pelant ¢j -version of Aharoni’s result [30].

Theorem 12. Let N be a net in co and M be a net in any of the following metric spaces:
C(K), K infinite metrizable compact, or c¢§ (the subset of ¢y consisting of elements with
non-negative coordinates). Then F(M) = F(N).

3 Schauder basis

Theorem 13. Let X be a metric space. Suppose there exist a set M C X and a sequence
of distinct points {un},._, C M, together with a sequence of retractions {@n}, 1,
¢n : M — M, n € IN, which satisfy the following conditions:

(D) pu(M) = My := U};] {}tj}for everyn € IN,
v T T X
(1) U2, {ni} =M,
(iii) There exists K > 0 such that ¢, is K-Lipschitz for every n € N,

(iV) QmPn = PnPm = @y foreverym,n € N, n < m.
Then the space F (M) has a Schauder basis with the basis constant at most K.

Proof. 1t is a well-known fact that every Lipschitz mapping L : A — B between
pointed metric spaces A, B, such that L(0) = 0 extends uniquely to a linear map-
ping

L: F(A) = F(B) in a way that that the following diagram commutes:

Moreover, the norm of L is at most Lip(L). Therefore for every n € IN there
is a linear mapping Py, = ¢, : F(M) — F(M) extending ¢, : M — M with
IP,]] < K. We want to prove that {P,} is a sequence of canonical projections
associated with some Schauder basis of F (M), namely that

a) dim P, (F(M)) =n—1foreveryn € N,
b) P,Py, = PyPy, = Py forallm,n e N, m <mn,
¢) limy, P,(x) = x forall x € F(M).
The first condition is easy: as ¢, (M) = M, = {u;};.; we have P,(F(M)) =

1
F(M,), which is a (n — 1)-dimensional space. Let us check the commutativity.

Note first that for n,n € IN the diagram

FM) 2 Fmy L F(M)

Su TﬁM Tém

M 2 oM I M
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commutes, which means that ¢, 0 ¢, = P,P,. But then from the condition iv
follows P, Py, = P, Py, = Py, form < n.

The validity of the limit equation is proved easily. Note that elements of the
form Y7, 0y, where m € IN, x; € {pn}y, 0; € Rforalli € {1,---,m}, are
norm dense in F(M). Indeed, it is a well-known fact that elements y € F(M) of
the same form Y ; a;0y, with x; € M are norm dense in 7 (M) and the condition
ii gives the more general result. By uniform boundedness of the family {P,}, _,,
it suffices to check the limit for elements mentioned above. Thus pick a measure
u=ymn 106(5;([ melN,s eR, x; € {y]} foralli € {1,..,m}. Find k € N such

that {x1,- -+ , 2} € M. Then for all n 2 k we have

m
[Pupt = pll = supy <1 [¢F, ) (B, 0y — 5951‘))‘
i=1

[\’}s

= Sup”f”_<_1 (a zf(@n(xz)) if(xi))'

i
[y

Ms

= SuPnfng

(aif (xi) — i f(x z))i—o

u
[y

This was to prove. n

Definition 4. Let X be a Banach space with a Schauder basis E = {e;};o,. The set
M(E) = {x € X|{x = Y2 xie;, x; € Z,i € N} we call the integer-grid to the basis
E. If it is clear what basis we are working with, we will denote the set M and speak
simply about a grid.

It is not difficult to see that if a basis E is normalized, then the grid M(E)
is a Ec-l(—E—)—separated set, where bc(E) denotes the basis constant of E. For E an
unconditional basis we will denote uc(E) the unconditional constant of E. We
will now show that for a normalized, unconditional basis E the space F{M) has

a Schauder basis.

Lemma 14. Let X be a Banach space with a normalized, unconditional Schauder
basis E = {e;};cpy and a grid M(E) = M. Then there exists a sequence of retractions
¢n © M — M together with a sequence of distinct points u, € M, n € IN satisfying the
conditions from the Theorem 13 with the constant at most K = uc(E) + 2bc(E).

Proof. Before we define the retractions {¢n},_; and the points {y,};. ; rigor-
ously, let us give the reader some geometric idea of how will the retractions look
like. We will add points from M so that first the set C% = {xeq] |x1] <1} is
created, then the set C% = {x1e1+xpep] |x;| <1,i=1,2}, then the set
C% = {x161 + x082| |x;] < 2,i = 1,2}, then C3 = {Zi—l xiei] x| <2,i= 1,2,3}
and so on. Note that coordinates of each y € C{ are entire numbers.

The retractions will cut coordinates of the argument so that if x = Y7, x;e; €
Mand {;}_; = My, = ¢,(M),n € N, then ¢,(x) is obtained by following algo-
rithm: Choose all y; € M, minimizing the value |x; — (3;)1], out of them choose
those y;; minimizing |xz — (#4;;)2| and so on. Note the process will stop eventually
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because x = Z’le x;e; for some k € IN as x € M and the basis E is normalized. It
will be a matter of choosing (ordering) the points {;};~ so that the process ends
with only one point y; = @, (x).

We are now going to describe the construction of the sequence ¢, in the fol-
lowing way. We will build the sequence of points y, and to each n € IN, we
associate the sets ¢, 1(y;),i € {1,--- ,n}. As we want the image ¢,(M) = M,, =
UiLq {pi}, the only things needed for the mapping ¢, to be well-defined is to
check Uiy {1 (1)} = Mand @, (1;) 0 @' (1) = @ for i # j. For simplicity,
we denote the set-valued mapping ¢,! = F, and we will define the mappings
@n,n € N through defining F, : M,, — 2M Note that if for everyi € {1,..,n}
holds y; € F,(p;), then the mapping ¢, is a retraction.

In the sequel, by the n-tuple (a3, ay, ...a,), 4; € R we will mean the linear com-
bination Y} ; a;e; and for a point x € X, x = } ;2 ; x;e; we will always identify x
with (X],x2, X3, )

Set
u1=0 F(m) =M,
H2 = (1,0) BE(p) = {x € M| x; > 1}
B(p1) = M\ B(p2),

s = (—1,0)  F(ps) ={xc M|x; < -1}
F3(pu1) = F2(p1) \ F3(pa)
F3(2) = Fa(pa)-

It is not difficult to see @1, @2, @3 are retractions satisfying the conditions i,iii,iv
from the Theorem 13 with Lipschitz constant which equals to uc(E) < K. Indeed,
for ¢ it is clear as its image is only {0}. For ¢, x,y € M and i € N we have

0 i>1V(X121\/y121)V(X] SO\/}/]SO),

lp2(x)i — @2(y)il = {1 1A (2 1Ay <0V (1 > 1A% <0)), )

and similarily forn = 3, x € M and i € N we have

0 i>1Vx; =0,
p3(x)i= <1 i=1Ax; 21,
-1 i=1Ax < -1

and therefore for x,y € M

0 i>1\/x1y121\/x1:y1:0,
|p3(x)i = @a(y)il = {1 i=1A((Ix] Z1Ap =0)V(nl21Ax=0), (10)
2 i=1/\x1y1§—1.

Due to the unconditionality of E, it is true that forevery x € Xandz € R, |z| < x;
holds ||(z, x3, x3, X4, ... }|| < uc(E)||x]]. But for every i € IN the expression in (10) is
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less or equal to |x; — y;|, which gives us Lipschitz condition on ¢, with constant
uc(E).

Moreover, the last retraction @3 maps M onto the set C{ C M containing all
points x &€ M with x = (x1) and |x1| < 1. Let us denote
C! = {x € M| x = (x1,x2,..., x4), |x;| <r, i <d}. From now on, we will proceed
inductively. Suppose we have a sequence of retractlons {¢:}[L together with the
points p;, such that ¢,,(M) = C! and that {(pl ", satisfy the conditions i,ii,iv
from the Theorem 13. Note that m = (2r + 1)”

We proceed by induction which we divide into two steps. First we find points
11, - Hs together with retractions @41, ..., @s, where s = (2r +1)"*1, such that
M; = CJ*! and such that {¢;}}_, satisfy the conditions i,iii,iv from theorem 13.
Then we find points ys41, ..., ¥+ and retractions @1, ..., ¢, where t = (2r + 3)' 1,
QM — C;ﬂ which satisfy i,iii,iv. As U;—; Cr = M, the condition ii from theo-
rem 13 is obtained as well, which will conclude the proof.

On the bounded set C; we define an ordering by the formula

(X1, %2, s Xr) < (Y1, Y2, r) & (21 > 11)V
di € {1,...,}’— 1}V] = {1,..., } : ( Xj = ]) A (xi+1 > yi+1)-
There exists a bijection w : {1, ..., (2r + 1)"} — C, which preserves order.
Let us shorten the notation by introducing indexing functions a,b.
Ifje {l,.,rfandi € {1,.,(2r4+1)}, let a(ji) = j2r+ 1) +i and
b(j,f') = (r +7)(2r +1)" +i. Weset pp(;5y = (w(i), j) = w(i) + je,1 and py(j 5 =
(w(i), —j) = w(i) — jer+1. Moreover, we formally put pa) = Hp = w(i)-
Then we define sets
Faiiy(Maiy) = {x € Fa(iy—1(Ha(i=1,i)), Xr41 = f},
Pa(j,i)(,ua(j—l,i)) (]1) 1(.”:1] 1,i) ) \F (Va ]1))
Fa(j,i)(ﬂq) = Faj,)- (pg), g €{L . a(ii) — 1}, ug # Ha(j-1,i)

(11)

and
Fy(,i) (Hagiiy) = {x € Fy(jiy—1(#p(j—-1,i)), Xr+1 < “f} ,
Fyin(Ho-1.0) = Foiiy-1{ts-1.0)) \ ooy (Magi i)
Fy(iiy(He) = Fy(iy—1(pq), 9 € {1, b(j,0) = 1}, pg # Mpj-1,i)-

It is easy to see that the formulae above define mappings ¢, ;) and @y ; ;). Sup-

posed it holds for the mappings {¢;};_, it is clear that F,(jp) N Fy(yq) = @ for
p #qand alln € {1,..,s}, and that y, € Fy(jtn) and U 4 Fo(pt;) = M, which
means each mapping ¢, is well-defined and is a retraction onto M,,.

Let us check the uniform Lipschitz boundedness. Fix n € {m +1,...,s}. Note
first that

Vi =) xie; € X,Vz € U
i=1

Vie N:0 < |z < |xi| = < ||x|| - uc(E)
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From this we deduce the Lipschitz boundedness.

If x,y € M, then fori > r + 1 we have |¢,(x); — @(y);| = [0 -0] =0 < |x; — y;|.
If i < r+ 1 then we distinguish three cases:

a) |xil, lyil <r. Then ¢u(x); = xi, ¢n(y)i = y; and therefore | ¢, (x); — @u(y)i| =
[xi — yil.

b) x| < 7, |yi] > r. Then ¢,(x); = x; and @,(y); = rsgn(y;). Therefore
|@n(x)i = @u(y)il = |xi — rsgn(yi)| < {x; —yil-

o) |xi|,lyi| > r. Then @n(x); = rsgn(x;), ¢u(y); = rsgn(y;) and therefore

0<ix;—yl, xy;>0,
0u(x) — puly)i] = Irsgn(x) — rsgn(yy)| = {Z;S' el
Finally, let i = r+ 1. If now x;y; < 0, then either 0 < ¢,(x); < x; and
¥i < @n(y); < 0 or vice versa. Both options give |@,(x); — @n(y)i| < % — vi|,
which is what we need.

Let x;,y; > 0. Suppose n = a(j, k) for eligible j k. Then ¢,(x); = j or
¢n(x); = j—1or ¢,(x); = x;, which occurs whenever 0 < x; < j—1. Of
course the same holds for y. From this we have either |, (x); — @(y)i| < |[x; — v
or |ga(x)i — @(y)il < 1. If n = b(j,k) for some j,k, then ¢,(x); = r when-
ever x; > r and ¢,(x); = x; whenever x; < r, the same for y. It is clear that
|pn(x)i — @(y)il < |xi —yil.

Let x;,y; < 0. If n = a(j, k) for some j,k, then |@,(x); — ¢(y);] = [0—0| =
0 < |x; —yil- If n = b(j, k) for some j, k, then ¢n(x); = —jor ¢u(x); = —j+1
or ¢u(x); = x;, which holds whenever 0 > x; > —j + 1. Again, we get either
|pn(x)i — @(¥)i| < |xi —yil or |@u(x)i — @(y)i| < L.

To sum up all cases, if x,y € M, then either x,41 = y,4+1 or not. In the first case
we have

r+1 r
[ @n(x) — Z((Pn — @u(y)i) e ~on(y)i) el +1

- (12)

< uC(E)Hx — |l +2bc(E)||x — U
= [lx = yl{(uc(E) + 2be(E)),
as Misa 5 ( ) -separated set, while in the x,41 # y,1 case we have
r+1
lgn(x) = (W)l = Z(an(l = @n(y)i) e < ue(E)|x -yl (13)

Considering both cases we get the mapping ¢, is Lipschitz with constant
K = uc(E) + 2bc(E).

It remains to prove that the mappings {¢,};_; satisfy the commutativity con-
dition iv, provided the mappings {¢n},..; do. Note that forany m,n € N, m < n
holds

Ea(pn) O By (ptm) € {D, Faptn) } - (14)
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Out of this fact the commutativity follows easily: Consider i < j € {1,..,s}.
First, because ¢; is a retraction onto M; and the same holds for @ and M]-, from
M; C M; follows ¢;¢; = @;. It remains to prove @;¢;(x) = ¢;(x) forevery x € M.

Take x € M. There exists a maximal finite sequence of indices 1 = kg < ... <
k; < s such that

x € F(uy,) © -+ C Feo(pig)-
Clearly if c(i) is the biggest index such that k.¢;) < i, then ¢;(Fy, (p,)) = pe(y) for

alld, c(i) < d < [. This applies analogously for @; with c(j). From the fact that
both x, i, € Fx,, ( ) C F, (yk )we get simply

Q‘)zqo](X) = (Pi(l’lkc(j)) = iukc(,-) = (Pi(‘x)/

which finishes the proof of commutativity.

To finish the proof, it remains to show the construction of retractions @s.1, ..., ¢s,

where t = (2r + 3)"*1, Pt M — C:ill which satisfy i,iii,iv.

Fori € IN let us define an i-predecessor function p; : M — M by

Pi (Z xnen) Z Xnen — sgn(x;)e;.
n=1

Now for every j € {1, ...,r + 1} we introduce sets

Aj,l = {(x1, v Xj—1,T +1, Xj1seens Xr_|_1) :
xi € ZAN|xi| <r+1fori<jA|x;| <rfori>j},
Aj,—l = {(xl,..., x]‘_l, -t — 1,x}-+1,...,xr+1) :
Xi € ZN|xi| <r+1fori <jA|x] <rfori>j}.
Clearly, A; 1, Aj1 C C/fiand |A; 1] = |A;1| = (2r + 1)1 (2r 4 3)/~1. More-
over,
U A;z — Cr+1 \C;’+1

r+1
je{l,..r+1}
ie{-1,1}

and it is a disjoint union. For each j, choose any bijection w; : {1,..,|A;1|} —
Ajy and fix it. Define @; : {1,..,|Aj1|} = Aj_1, by W;(i) = (wj(i)1, wj(i)2,
;= W;j(i)j, .., wj(i)p41). For simplicity, for j € {1,..,r +1},i € {1,..,]4;1]} put

j-1 ji—1
w(ji) =s+2) Al +i B(ji) =s+2) [Awal +|Aja] +i
k=1 k=1

Then we finally set p,(;; = w;(i), pg(ji = W;(i). Now we define mappings
{P”}:z:erl via

Foiiiy(a(iiy) = {x € Fojiy-1(pi(Haii)), xj 2 7 + 1} ,

Fatiiy(Pi(Ma(iny)) = Faiiy—1(Pi(Ha(iin)) \ Fagiiy(Maiiiy)

Faiiy(iq) = Fugiy-1(te)s 9 € {1, a(f, i) = 1}, 4g # pj(baii))s
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and

Fo(jiiy (Hpiay) = {x € Faiy-1(pj(ppgi)) % < =1 = 1},

Fati.iy (Pi(kp(i.0)) = Faiiiy-1 (P (i) \ Ep(iy (Baii)-

Fgiiy(ma) = Fgjay-1(mq), 9 € {1, B(j, 1) — 1}, 1g # pj(Hp(is))-
Obviously, the upper equations define mappings Pu(ji) and Pp(j,0) for all
je{l,.,r+1}andi € {1,..,|A;1|}, hence the mappings {¢,},_,.; are well-
defined and it is an easy check that each such ¢, is a retraction onto the set M.

Note that the sets {F,(jn)},_; still satisfy the condition (14) so the commu-
tativity condition iv from theorem 13 is obtained similarly as it was done for
retractions { ¢, };,_;.

It remains to show the mappings are Lipschitz-bounded. Let us for simplicity
denote By = B(k —1,|Ax_11|) for 1 < k < r+1 and By = s, the index of first
retraction @g, such that Ay_y 1 € Mg,. Fixn € {s+1,...,t}. We will prove that
there exists at mostone j = j(n) € N such thatforalll € N, # jandallx,y € M

we have |, (x); — @n(y)1] < |x1 — y1] out of which the Lipschitz boundedness of
@n follows. If n = «(j, i) for some eligible j, i, then for every x € M holds

(0 I>r+1,
X; I<r+1 |0 <nV(I<j|xl=r+1),
rsgn(x;) G<l<r+Llxl>nV(i=Lx<-rV
on(x) = (]' =Lx >rVueM,: q)ﬁj(x)j +* pj(y)) ,
(r+1)sgn(x;)) (I <j, x| >r+1)Vv
(l =jx>r+1,3u e My: (pﬁj(x)j = pj(;t)) ,

\

while if n = B(j, i) for some j, i, then for every x € M we have

’

0 I>7r+1,
. I<r+Llgl<n)v{i<jlul=r+1)v
(I=jx=r+1),
¢n(x); = { T580(x1) (j<l<r+1,|x>rV

TN

j=Lx < —rVu e My: gp(x); # Pj(ﬂ)) ,
(r+1)sgn(x;) (U<jlxl>r+)v({I=jx>r+1)Vv
(l =jx<—r=1,dueM,: goﬁj(x)j = P](}t)) .

If x,y € M, it is not difficult to see that if |¢,(x); — @a(y)i| > |x1 — yi|, then
[ = jand @ (x); = (r+1) sgn(x), gu(y); = rsgn(y;) or vice versa and 7y > 0.
Particularly |@x(x); — ¢(y);| = 1and |x; — y;| = 0. Forallotherl,ie. | # j,l € N
holds ¢, (x); — @n(y)i| < |x; — y;|, which is what we need.

Therefore we get by computation similar to those done in (12) and (13) that ¢,
is a Lipschitz mapping with constant K = uc(E) + 2bc(E), which concludes the
induction.

As |21 C; = M the condition ii from theorem 13 is also satisfied and hence
our proof is finished. [

\
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Remark. In (11) it was not necessary for our construction to choose exactly this
order. In fact, any bijectionw : {1, ..., (2r +1)"} — C} would suit our purpose. We
chose the order (11) for simplicity. In this case we have p,(;_15) = pj(Ha(j,)) and
Mp(j-1,i) = Pjltp(;,) for p; the j-predecessor function and i € {1,.., (2r +1)"},
je{l,..,r}

Corollary 15. If E = {e;};>, denotes the canonical basis in co and M = M(E) C cp
the integer grid, then the Free-space F (M) has a monotone Schauder basis.

Proof. applying the construction of the retractions from the lemma 14 to (co, E),
we get Lipschitz constant K = 1, (see estimates (12) and (13)). Therefore, 7 (M)
has a monotone Schauder basis. N

Corollary 16. Let N C cq be a net. Then the Free-space F (N') has a Schauder basis.

Proof. If we use the notation from previous corollary, M is a (1,1)-net in cp. But
as all nets in an infinite-dimensional space are Lipschitz equivalent ([1], p.239,
Proposition 10.22), N is Lipschitz equivalent to the grid M and therefore F(N)
is isomorphic to F (M), which concludes the proof. n

Corollary 17. Let N be a net in any of the following metric spaces: C(K), K metrizable
compact, or ¢ (the subset of co consisting of elements with non-negative coordinates).
Then F (N') has a Schauder basis.

Proof. Follows immediately from Theorem 12. [
Corollary 18. Let N C R" be a net. Then F(N') has a Schauder basis.

Proof. Tt follows from the proof of lemma 14 that F(Z") has a Schauder basis and
F(Z?) = F(N) by Proposition 5, which gives the result. ]
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DISTORTION OF LIPSCHITZ FUNCTIONS ON ¢y (I

PETR HAJEK AND MATEJ NOVOTNY

(Communicated by Thomas Schlumprecht)

ABSTRACT. Let I' be an uncountable cardinal. We construct a real symmet-
ric 1-Lipschitz function on the unit sphere of ¢o(I') whose restriction to any
nonseparable subspace is a distortion.

1. INTRODUCTION

Let us start by recalling the classical definitions of oscillation stability and dis-
tortion. Let X be a real infinite dimensional Banach space, and let f : Sx — R be
a real valued function. The function f is said to be oscillation stable if for every
infinite dimensional subspace Z C X and € > 0 there exists a further subspace
Y C Z such that the oscillation of f on Sy is at most ¢, i.e., |f(z) — f(y)| < e,
x,y € Sy.

The function f is said to be a distortion if there exists an € > 0 such that
for every infinite dimensional subspace Y of X there exist x,y € Sy such that
|f(z) = fy)| = e

It is clear that oscillation stability and distortion are in a sense opposite prop-
erties. More precisely, any function f on Sx is either oscillation stable, or it is a
distortion on Sx NY for some subspace Y C X. On the other hand, the distortion
passes to subspaces and so a distorting function is not oscillation stable on any
subspace of X.

It is a classical result of James [7] that every equivalent norm on the Banach space
co, resp. {1, is oscillation stable. On the other hand, the spaces £,,1 < p < oo, admit
a distorting renorming by the results of Odell and Schlumprecht [11]. It turns out,
by combining the result of [11] with the work of Milman [10] that every equivalent
norm on a Banach space is oscillation stable if and only if the space in question is
saturated by copies of ¢g, or £1.

The supply of Lipschitz functions on a Banach space is much larger than that
of renormings, so one would expect that distorting Lipschitz functions are more
abundant. Using the concepts of asymptotic set ([15], [4], [11]) and the Mazur map,
one can transfer the distorting norm from the unit sphere of /5 into a distorting
Lipschitz function on the unit sphere of /1. So while all equivalent norms on the
space {1 are oscillation stable, Lipschitz functions may be distorting. The details
of this procedure are described, e.g., in the article of Odell-Schlumprecht in [12].
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It is important to note that the transfer preserves the symmetry of the mappings
involved.
As regards the remaining relevant space cg, there is the following result by Gowers

[3]-
Theorem 1 (Gowers). Every Lipschitz function f : S., — R is oscillation stable.

Putting the above-mentioned results together, one can conclude that every Lip-
schitz function on a Banach space is oscillation stable if and only if the space in
question is saturated by copies of cg.

Our interest in the present note lies in the nonseparable oscillation stabilization
(resp. distortion) of Lipschitz functions. More precisely, let X be a nonseparable real
Banach space with density character I', and f : Sx — R be a Lipschitz function.
Given a nonseparable subspace Y of X (say of the same density character I'), and
e > 0 is there a further infinite dimensional subspace Z (of the density character
I') of Y such that f on Sz has oscillation at most €7 In the special case of £,(I")
spaces this problem can be resolved by using the separable results combined with
their symmetry. Indeed, let (X, ||-||) be a Banach space with a symmetric (possibly
uncountable) Schauder basis {ey},cr, where I' is any nonempty set. We say that
a function f : X — R is symmetric if the value f(x) is preserved under any
permutation of the coordinates of x. It is clear that a symmetric function on X is
uniquely determined by its values on the span of any countably infinite set {e, }52;.
Thanks to the construction of Maurey [9] of a distorting and symmetric norm on
every £,,1 < p < 00, it is easy to formally extend the distorting (and symmetric)
norms onto £,(I'),1 < p < oo, for every infinite set I'. It is immediate to check that
the extensions will preserve the distortion.

Similarly, one can extend the distorting Lipschitz and symmetric function from
¢1 (constructed using the symmetric distorting norm on ¢3), onto arbitrary ¢1(T").
The distortion property will again be preserved.

It is natural to ask if there exists any nonseparable Banach space X such that
all norms (resp. Lipschitz functions) on X are oscillation stable (resp. distorted)
in the nonseparable sense. The obvious remaining test space is of course the space
Co(F).

Our main result, solving the Problem 199 in the recent book of Guirao, Mon-
tesinos and Zizler [5], is that there exists a nonseparably distorting Lipschitz func-
tion on ¢o(I'). More precisely, we have the next result.

Theorem 2. There is a 1-Lipschitz symmetric function F : S. ry — R, such that
for every nonseparable subspace Y C co(I') there are points x,y € Sy such that
|F(z) = F(y)| > 3

On the other hand, the nonseparable oscillation stability of equivalent norms
on co(T"), resp. ¢1(T) still holds. This folklore result is apparently well-known to
experts in the field. We would like to thank Tomasz Kania for bringing this fact
to our attention. The case of ¢1(I') was dealt with in the paper of Giesy [2]. The
case of ¢o(I") seems not to have been published in the refereed journal, although
there exists a short note of Granero containing the proof. For the convenience of
the reader, we have included in this note the formal statement and the proof, which
goes along the lines of the classical James theorem.
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Theorem 3. Let I' be an uncountable cardinal, X = co(I") (resp. £1(I")). For every
equivalent norm ||| - ||| on X, € > 0 and a subspace Z C X there exist a constant
¢ >0 and a subspace Y C Z with densY = dens Z such that ¢ — e < |||z]|| < ¢ for
every point x € Y, ||z|| = 1.

In the sequel we will need the following well-known fact [1, p. 12]. Suppose (M, d)
is a metric space and g : S — R a K-Lipschitz function on some S C M. Then the
following formula defines a K-Lipschitz function g : M — R such that g|s = g:

(1) g(r) = ;gg{g(y) + Kd(z,y)}-

In the construction of F, we will use a simple modification of the formula (1),
which will ensure that the range of F' is contained in [0, 1]. We omit the completely
straightforward proof.

Lemma 4 (Modified extension formula). Suppose (M,d) is a metric space and
g: S — R a K-Lipschitz function on some S C M, taking values only in the interval
[0,1]. Then the following formula defines a K-Lipschitz functiong: M — R, taking
values only in [0,1] such that gls = g:

(2) g(z) = min{;gfs{g(y) + Kd(z,y)},1}.

2. PROOFS OF THE RESULTS

Proof of Theorem 2. To prove the theorem, it suffices to construct (as we will do)
the symmetric 1-Lipschitz function F : ¢o(w;) — R and show it does not stabilize
on the sphere of any subspace Y C ¢g(wy) with densY = wy. Indeed, in the general
case we use the symmetric extension of F' to ¢o(T"), and we check easily that any
nonseparable space Y C ¢y(I") contains a further nonseparable subspace of density
w1, which is contained in some ¢o(A), A C T, |A| = w;.

The meaning of symmetry is that the function value F(z) does not depend on
the particular distribution of the coordinates of the vector z in the domain, but
only on the set of the coordinate values of . We define an equivalence relation ~ on
coo(w1) in the following way: x ~ y whenever |supp x| = | supp y| and there exists a
bijection f from supp x to supp y (both understood as finite sets of ordinal numbers)
such that z(y) = y(f()). We will call every equivalence class [z] € X := coo(wy)/ ~
a shape.

Note that if z ~ y, z,y € coo(w1), then [|z]| = |ly||. Next, let us denote by
L = {S;}32, the sequence of all shapes of norm one with finite support and rational
coordinates.

Lemma 5. Let z,y,€ S;,j € N. Then for any shape S € L, d(z,S) = d(y,S)
holds.

Proof. The statement of the lemma follows readily from the fact that for every
w € S there exists a z € S such that ||z — w|| = ||y — z||. To prove the latter
statement, if x ~ y, then there is a bijection ¢ : suppx — suppy such that for
every v € wy we have z(v) = y(p(7)). Set s, = inf{a| V8 € suppy : 8 < a}. Define
a mapping v : suppw — wy by

_Je(v), Y €EsupprNsuppw,
Y(v) =
a+7y, v Esuppw \suppx.
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Clearly % is a bijection onto its image. If we define z as z(1(y)) = w(y) for v €
suppw and 0 elsewhere, then z € [w] = S. It follows from the definition of z that
|z —wl|| = ||y — z||. Therefore d(z,S) = d(y, S) for any shape S € L. O

We define inductively a function 7 : L — L, which is going to “clone” every shape
to an identical shape repeated several times in a row. Suppose z € S7 with supp x =
{1,...,k} for some k € N. Define 7(S1) = [y], where y(i) = y(k + 1) = y(2k + i) =
o=y(k?+i) = (i) fori € {1,....,k} and y(y) =0 for v € wy \ {1,...,k(k +1)}.

Suppose 7 has been defined for all S;, ¢ < 7, and

k = max{max | supp S;|, max | supp 7(S;)|}.
i<y i<y

If x € S; is such that suppz = {1,...,l} for some [ € N, then we set 7(S;) = [y],
where y(i) = y(l+1) =yl +1i) = --- = y(kl +1i) = z(i) for i € {1,...,l} and
y(v) =0for y e w \ {1,...,(k+ 1)}

Note that for all ¢ < j € N the distance between any z € w(S;) and y €
S; Um(S;) U S, is equal to 1. Indeed, every element x with S; has some coordinate
which equals 1 or —1 and therefore w(S;) has at least k+1 such coordinates, where k
is the maximum “length” of a support of previously treated shapes (.S; or 7(.5;) for
i < jori < jrespectively). Therefore, there exists a point v € wy where |z(vy)| =1
and y(v) = 0.

We construct our function F on the set S = (J{z : = € [z],[x] € L} by an
inductive repetition of the extension operation. The extension onto the unit sphere
Seo(wy) is then unique and 1-Lipschitz as the set S is dense in S (.,). Moreover,
as the values of F' will depend only on the shape [z] € L, it follows that F' is
symmetric.

Set F(x) = 0 for all x € S; and F(y) = 1 for all y € m(S1). Such a function
is clearly 1-Lipschitz. After having defined F' on the set S; U 7(S1), we extend F
to the set Sy U m(S7) U Ss via the extension formula (2). Of course, if 7(S7) = Sa,
the extension is trivial (as the domain has not increased) and we move to the
definition of F(m(S2)) described below. Note that F(S2) C [0,1]. We will check
below in the general inductive step that F' is constant on the set Ss. Furthermore,
we set F(m(S2)) = 1if F(S2) < 1 and F(n(S2)) = 0 if F(S2) > 3. Thus F is still
1-Lipschitz, as m(S2) has distance one from each of the sets Sy, 7(S1) and Ss.

Let us describe the general inductive step. Suppose F' has been defined on the
sets S1,...,59;—-1, m(S1),...,m(S;_1) and it is constant on every such a set. We use
the formula (2) to extend F' to the set S; if it hasn’t been defined there yet. Note
that again F'(S;) C [0,1]. Let us check that F is constant on S; (or S;). Pick two
points z,y, € S;. Using (1)

(3) F(y)=  inf {F(w) + [ly — wll}-
welJIZ; Sium(S;)

Since by our inductive assumption F' is constant on every set S;, w(S;), i €
{1,...,j — 1}, replacing y with = in the formula (3) and using Lemma 5 gives the
same value. As the formula gives the same values for all z € S}, so does the formula
(2). We conclude F' is constant on Sj.

Finally, having defined F' on the sets Si,...,.S; and 7(S1),...,7(Sj_1), we set
F(m(S;)) = 1if F(S;) < 5 and F(x(S;)) = 0 if F(S;) > 4. We finish the defini-
tion of F' by extending it continuously onto Sc(w,). Clearly, F' is 1-Lipschitz and
symmetric.
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Next we are going to show that for every subspace Y C ¢o(w;) with densY = w;
there exist two points z,y € Sy with |F(z) — F(y)| > 1.

Our next lemma, which is probably a folklore result, is a variant to some results
of Rodriquez-Salinas [13].

Lemma 6. Let Y C co(wy) be a subspace with densY = wy. Then there erists
a transfinite sequence {x~ ‘7”1:1 of norm one vectors from Y with pairwise disjoint
supports, i.e.,

supp(xq) Nsupp(zg) =0, a # 5.
In particular, Y contains a subspace isomorphic to co(w).

Proof. We proceed by transfinite induction. Choose a norm one vector x; € Sy.
After having chosen {z, : 1 < < 2}, for some < w;, we consider the countable
set A = (J,_qsupp(z,) C [l,wi). Since Y C c¢o(w) is a nonseparable Weakly
Compactly Generated (WCG) space ([6, p. 211]), it is also a Weakly Lindeloff
Determined (WLD) space, and so w* — densY* = w;y ([6, p. 181]). Hence V =

{6y :v€ A} is the proper w*-closed subspace of Y*. Hence Z = {y € Y : y(y) =
0, v € A} =V, is a nontrivial subspace of Y, and we may find the next element
of the sequence z € Sz. This procedure yields the desired long sequence {z., : 1 <
v < wy }, which is equivalent to the long Schauder basis of cy(wy). O

Choose a sequence {y. }~ew, of norm one vectors in ¢y(w ) with finite support and
rational coordinates such that suppy, C suppz, and ||z, — y|| < %. As {yy }yew
is an uncountable sequence and L is countable, it follows that there exists a shape
S € L which corresponds to infinitely many y,. So there is an infinite sequence of
distinct indices {v;}$2; from the set w; such that y,, € S for each i € N. Let d be
the number of times S is cloned in 7(.S). Then set

d d
xZE :x’YHyZE :y%
i=1 i=1

and observe z € Y, ||z — y| < 1. Indeed,

d d
HJ} - yH = Sup E .’17%.(04) - E Yrys (Oé) = max SupaESUpva, ‘x%‘ (Oé) — Y, (Od)|
acwr (75 Pt i€{l,...,d} i
[ <
= max L. — . —
iell,.dy i 8

as all the z.,, have disjoint supports and supp y,, C supp z,, i € {1, ..., d}. Therefore
we get

F(@) = F()] 2 F () = Fly)| = 1F@) = FO = oy, ~v 2 5 5 -5 = 1
O

The strategy of the proof of Theorem 3 is similar to that of the classical James
proof in the separable case. Namely, we are constructing a (long) sequence of dis-
jointly supported vectors in Z (equivalent to the canonical basis of X) so that
the one-sided estimate of the norm on their linear span nearly satisfies either the
supremum (resp. the summable) norm. To this end we need to find a biorthogonal
system of functionals such that their supports are disjoint with those of the orthog-
onal vectors, thus guaranteeing the desired one-sided estimates. This is the main
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technical step in the proof. The estimates going in the opposite direction are then
satisfied automatically thanks to the extremal properties of the canonical norms on
X.

Proof of Theorem 3. Let Z C X be a closed subspace of density character A.

By Lemma 6 (for ¢o(I")), resp. a result of Rosenthal [14] (for ¢;(T")) there exist
a subspace Y7 C Z which is isomorphic to ¢o(A), resp. £1(A). So we may assume
without loss of generality that Z = X.

We start with the case X = ¢y(I'). Let I' be an uncountable cardinal, and let
| - ||| be an equivalent norm on ¢o(T"). For A C T, denote

Sp = sup{|||z||| : z € co(T"),supp(z) C A, ||z| < 1}.

Let S = infycp |aj=r| Sa, € > 0. Choose A C T such that Sy < S + . For
simplicity of notation, we may assume without loss of generality that A = I'. This
means, in particular, that S < Sy < S+¢, for every A C I'. By a simple transfinite
induction, choose a transfinite sequence {u, }.,_, of disjointly and finitely supported
vectors from c¢o(I'), |lual| < 1, such that S < |||ua]|| < S + €. Indeed, once the
initial segment {u, : 1 < a < A} has been constructed for some A < T, set
A =T\ Uj<qen supp(uq), and use the property S < Sy < S + ¢ to find ua.

Choose a sequence {f,}L_, C B¢, )11 finitely supported and such that

fa(ug) > S —e.
For the rest of the proof we distinguish two cases.

Case 1. Suppose that cof(I') > wy (i.e., the cofinality of I" is an uncountable car-
dinal). Then, by passing to a suitable subset and reindexing, we may assume in
addition that | supp(fa)| = n for some fixed n € N. So we have

{ua : ua # ug, supp(fg) Nsupp(uq) # 0} <n, whenever § <T.

Our next objective is to pass to a biorthogonal system {(uq, fo)}aca indexed by
a set A C I of cardinality I'.

To this end, we first partition the set {u,}._; using transfinite induction as
follows. Let

Ur = {u1} U{uq : supp(fa) Nsupp(u1) # 0}.

Having found the sets U,,a < Q < T, we let Uy = ) provided uq € U’Y<Q U,,
and otherwise we let

Ug ={uatU{us:a €T\ {f:us e U Uy}, supp(fa) Nsupp(un) # 0}.

<

If the set = = {f : |Ug| = 1} has cardinality |I'|, then it is clear that supp(uq) N
supp(fz) = 0 for every distinct o, 8 € Z. In this case we are done choosing A = E.
Otherwise, we discard the elements u,,, « € = from future consideration by assuming
for simplicity of notation that = = (). Consider now the set

r

Wi = J (Ua\ {ua}).

a=1
It is clear that Wy C {u,},_; has cardinality |T'|. Moreover,
{ua € Wi\ {ug} : supp(fg) Nsupp(uy) # 0} <n—1, whenever ug € Wi.
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Repeating the previous argument inductively at most n-times, we arrive at the
finite sequence of sets W,, ¢ W,,_1 C --- C W so that

Hua € Wiy, \ {ug} : supp(fz) Nsupp(uy) # 0} =0, whenever ug € W,.
We have found the biorthogonal system by letting A = W,,.

Case 2. Suppose that cof(I') = wy. We partition the set I' = |J,—, I, where
I',, /T is an increasing sequence of uncountable regular cardinals [8, pp. 27, 40].
We reindex the original sequence {us}L_; as a collection {u”}4er,, n € N. Since
I',, are uncountable and regular, their cofinality cof(T',,) is larger than wy. By the
previous Case 1 we may assume without loss of generality that | supp(f2)| = k, is
constant for a € I'y, and supp(fy) N supp(uj) = () for distinct «, 8 € T',,. Clearly,
by removing a suitable subset of cardinality at most I';,_; from {u]}'}ner,, we may
also assume supp(fy) Nsupp(upy’) = 0 for a € Ty, B € Ty, m > n. It remains to
deal with the case m < n. We will proceed by induction in n, with replacing the
original index sets I'y, ..., ', with suitable subsets of the same cardinality and such
that the condition supp(fy) Nsupp(uf') =0 for all a € T'y, 8 € Ty, m < n will be
achieved.

Let us describe the general inductive step for n. We distinguish the following
cases. Either there is m < n and a some ug, B €T, such that the set

Qs = {a € 'y, : supp(ug') Nsupp(fy) # 0}
has cardinality I',,. In this case, remove 3 from I',,, and replace I';, by the set Q3.
For n still fixed, this can be repeated at most k,-times and results in the relation
supp(fy) Nsupp(u’) = 0 for all « € T',, B € I'yy, m < n. Note that in this case we
have removed at most k;, elements from the original set |J,, ., {u}3'} ger,,, and the
reduced set I',, has the same cardinality as the original one.

Alternatively, during one of the previous finitely many inductive steps, all Q3
have cardinality less than I';,. Then we replace I'), by T'), \ U BeUr T, ()3, which
is a set of cardinality I', and leads again to the relation supp(fy) N supp(uj') = 0
for all « € T'y, 8 € '), m < n. Clearly, an inductive step n affects the index sets
Iy, m < n by removing at most finitely many terms, and the cardinality of the
reduced I',, remains the same. Hence, upon completing the whole induction in n,
the final sets I',,, will have the same cardinality as the original ones. This ends the
argument in the case cof(I') = wy.

Once our system is biorthogonal the result for ¢ (I") follows easily. Indeed, when-
ever a; € R, € A,i=1,...,k,
k k
i foy (Y i) < (5 = il < 1Y o
i—

=1

| < (S+¢) max a4
i€{1,...k}
The argument for X = ¢, (I") is easier. Let I" be an uncountable cardinal, and let
|| - ||| be an equivalent norm on ¢, (I'). For A C I' denote

Sx = in{l[2]|] : & € £4(D), supp(x) C A, [l2]| < 1}.

Let S = supycr,aj=r| Sa- Choose A C T, |A| = [[| such that Sy > S — %.
For simplicity of notation, we may assume without loos of generality that A = T.
This means, in particular, that S > Sy > S — £, for every A C I'. By a simple
transfinite induction, choose a transfinite sequence {u,, }5,_; of disjointly and finitely
supported vectors from £ (T), |lua|| < 1, such that S > |||us||| > S — §. Indeed,
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once the initial segment {u, : 1 < a < A} has been constructed for some A < T',
set A =T\ U;<o<na supp(ua ), and use the property S > Sy > S — £ to find ua. It
is now easy to verify the property

€
52 1 sl 25—
whenever ) |a;| = 1. O
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SOME REMARKS ON SCHAUDER BASES IN LIPSCHITZ FREE
SPACES

MATEJ NOVOTNY

ABSTRACT. We show that the basis constant of every retractional Schauder basis on the
Free space of a graph circle increases with the radius. As a consequence, there exists a
uniformly discrete subset M C R? such that 7 (M) does not have a retractional Schauder
basis. Furthermore, we show that for any net N C R™, n > 2, there is no retractional
unconditional basis on the Free space F(N).

1. INTRODUCTION

Let (M,d) be a metric space with a distinguished point 0 € M. Denote Lip,(M) the
space of all Lipschitz functions f : M — R with the property f(0) = 0. Such a space can

be equipped with the Lipschitz norm || f|| = sup,, %, which turns it into a Banach

space. We see that each point in M can be naturally embedded into Lip,(M)* via the
Dirac mapping d: 0,(f) = f(z), f € Lipy(M), x € M. The norm-closure of the subspace
generated by functionals 0., x € M, i.e.

span-PoM)” (5 o € M}

is the Lipschitz Free space over M, denoted F(M). Lipschitz Free spaces were introduced
already by Arens and Eells in [1], although the authors did not use the name Lipschitz Free
spaces. Free spaces are called Arens-Eells spaces in [2], where a lot of results regarding the
topic is presented.

Lipschitz Free spaces gained a lot of interest in last decades, connecting nonlinear theory
with the linear one. Given two pointed metric spaces M, N, every Lipschitz mapping
¢ : M — N which fixes the point 0 extends to a bounded linear map F' : F(M) — F(N),
making the following diagram commute:

F(M) —— F(N)

o | v

M —£5 N

2010 Mathematics Subject Classification. 46B20, 46T20.
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We focus on structural properties of Lipschitz Free spaces. It is well-known that Lip,(R) =
L, which yields F(R) = L; isometrically and similarly F(N) = ¢;. In [3], the authors prove
that F (M) contains a complemented copy of ¢1(N) if M is infinite (has at least cardinality
Rg), which was further extended from N to all cardinalities in [4]. However, F(R?) cannot
be embedded in F(R) = L; (see [5]).

Certain results were obtained concerning approximation properties in Free spaces, in-
cluding [6],[7],[8],[9],[10],[11] and of course [12]. However, not much is known yet about
Schauder bases in Free spaces. Héjek and Pernecka [13] constructed a Schauder basis for
the Free spaces F(¢;) and F(R™). From [14] we have F (M) is isomorphic to F(R™) for
every M with non-empty interior, which gives existence of Schauder basis on such F(M).

This article follows up the article [4], where the authors proved existence (and in the case
of ¢y constructively) of a Schauder basis on F(N), for any net N in spaces C(K) for K
metrizable compact (hence for ¢y and R™). In section 3 we show that the same construction
as in [4] cannot be used for constructing bases in F () for arbitrary uniformly discrete
subset N. In section 4 we prove that bases constructed in [4] are not unconditional and that
for nets in R™, no Schauder basis on F(N) arising from the technique using retractions can
be unconditional.

2. PRELIMINARIES

As we mentioned, we are interested in constructing a Schauder basis on Lipschitz Free
space. However, constructing such basis directly on the Free space is rather complicated,
wherefore we prefer to work with its adjoint space and transfer the results to the Free
space. The next theorem shows a way to construct a Schauder basis through operators on
Lipy(M).

Theorem 1. Let M be a pointed metric space. Suppose there exists a sequence of linear
operators E,, : Lipy(M) — Lipy(M), which satisfies the following conditions:

(1) dim E,, (Lipy(M)) = n for every n € N,

(2) There exists K > 0 such that E,, is K-bounded for every n € N,

(8) En,E, = E,E,, = E, for everym,n € N, n <m,

(4) For every m, the operator E, is continuous with respect to topology of pointwise

convergence on Lipy(M),
(5) For every f € Lipy(M) the function sequence E, f converges pointwise to f.

Then the space F(M) has a Schauder basis with the basis constant at most K.

Proof. Note first that the topology of pointwise convergence coincides with the w*-topology
on bounded subsets of Lip, (/). Therefore, from the condition (4), the operators E,, are w*
to w* continuous on bounded subsets of Lip,(M) and hence there exist linear operators
P, : F(M) — F(M) such that P! = E, for every n € N. It is now clear that ||P,|| < K,
dim P, (F(M)) = n and that P, P, = P,P,, = P, for every m,n € N, n < m. Furthermore
(5) together with the fact that the topology of pointwise convergence coincides with the w*-
topology on bounded subsets of Lip,(M) means, that for every f € Lip,(M) the sequence
E, [ converges w* to f, and that for every p € F(M) the sequence P,u converges weakly
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to 4. But that means ||P,u — || — 0 for every p € F(M). Indeed, if there were p € F(M),
¢ > 0 and a subsequence P, , such that ||P,, p— || > ¢ for all k € N, then for every n > ny,
there exists a k € N such that n < ny, which yields

¢ < |[Bnope = pull < [[Poypr = Bupell + | Pt = pul| < (K + D[ Pop — o]

From P (F(M)) C Po(F(M)) C Py(F(M)) C ... we get E = J~, P,(F(M)) is a convex
set and as all P, are commuting projections, we have that u ¢ E. Indeed, if 4 € E, then
there is a sequence {xy},-, C E, such that x;, — p. If we choose an increasing sequence of
numbers l; € N, [, > nq, which satisfy P, x; = xj, we get that

c
[Py = pll = 1By = pll = 1P = Pl = o= — Kl — el

K+1
Limiting k — oo yields 0 > &5, which is a contradiction. Therefore u ¢ E. Hence Hahn-
Banach theorem gives us the existence of a linear functional f € Lip,(M), || f]| = 1 with

fle = 0and f(u) > 0. But that is a contradiction as P,y — p. Therefore P,u — .
O

The following corollary appears already in [4], p.12. It gives us a way to construct the
Schauder basis on F(M) only by using the metric space M.

Corollary 2. Let M be a metric space with a distinguished point 0. Suppose there exists a
sequence of distinct points {pu,}r— o € M, po = 0, together with a sequence of retractions
{entreos Pn: M — M, n € Ny which satisfy the following conditions:

(i) ¢u(M) = (Y1, for cvery n € Ny,
(ii) UiZo {ms} = M,

(iii) There exists K > 0 such that o, is K-Lipschitz for every n € Ny,

(V) PmPn = Pnm = ©n for every m,n € Ny, n < m.

Then the space F(M) has a Schauder basis with the basis constant at most K.

Proof. Tt is not difficult to see that for each n € N the formula E,,f = f o ¢,, f € Lip,(M)
defines a linear operator E,, : Lip,(M) — Lipy(M), such that the sequence E,, satisfies the
assumptions of Theorem 1.

O

The last two theorems lead us to the following definition.

Definition 1. Let M be an infinite metric space such that F(M) has a Schauder basis E
with projections P,, n € N. We say E is an extensional Schauder basis if there exist finite
sets {0} = My C My C M, C ... such that \J,—, M, is dense in M and we have that for
every n € N the adjoint P is a linear extension operator P : Lipy(M,) — Lipy(M) with
P! flu, = f (or equivalently P, is a projection onto F(M,)). We say E is a retractional
Schauder basts, if there exist retractions {¢n}o—q, ©n : M — M which satisfy the conditions
of Corollary 2 and such that they give rise to the basis E, i.e. the adjoints P} satisfy

Prf=fogn, f€Lipy(M).
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It is clear that in the definition we actually have |M,, \ M,_;| =1 for every n € N. Note
also that every retractional Schauder basis is a special case of an extensional Schauder basis.
The next lemma shows in more detail what form the basis vectors take.

Lemma 3. Let M be a metric space such that there is a sequence of distinct points
0 = po, p1s plo, ... € M such that \J,—, {pos 1, -, i} s dense in M. For every n € Ny
denote My, = {o, ... i }. Suppose F(M) has a Schauder basis B = {e,}.-,. Then the
following are equivalent:

(1) B is an extensional Schauder basis with extension operators E, : Lipy(M,) —
Lip, (M).

(2) For every n € N, there are constants 0 # c,,al € R, i € {1,...,n — 1} such that we
have cpen = 6,, — S0 ald,

Proof. (2) = (1). Note first that for every n € N, we have e,, € Im P, Nker P,_;. From that
it follows inductively for every n € N that Im P,, = span {0,,,, ..., d,, }-

(1) = (2) The fact that E,, = P} is a bounded linear extension from M, to M implies that
each P, maps F(M) onto F(M,,), which means each basis vector e,, is a linear combination
of Dirac functionals at the points of M,,, such that the coefficients at ¢, do not vanish.

Hn

a

Keeping the notation from previous lemma, we see that for each n € N we may define a
finite dimensional operator R,, : Lipy(M,,—1) — Lip,(M,,) via

f(:uj) j € {0,...,’!1— 1} )
Zz 1 a"f(uz) j=n.

The operator E,, = P can be then reconstructed through a w*-limit of operator composition
limg Ry Ry_1...R, 1. The constants ¢, were in the lemma only for scaling of the basis vectors
€n.

In case of a retractional basis, the basis vectors take form of two-point molecules: For
every n € N and i € {1,...,n — 1} exactly one of the coefficients a!" is non-zero, namely has
the value 1. If for example a7 = 1, then ¢;(u,) = j1;, which means e, = 4, — 9,

Throughout this article, given a metric space M, d will denote its metric. If M is a
countable (even finite) uniformly discrete metric space with F(M) having a retractional
Schauder basis, by symbols g, ft1, to..., T€Sp. @o, ©1, P2, ... we will always mean points
i € M, resp. retractions g; : M — M which satisfy Corollary 2. Obviously the finite
analogues of Corollary 2 and Theorem 1 also hold. We are going to look in more detail on
some properties of retractional Schauder basis.

Following the notation of Corollary 2 (or the proof of Lemma 14 in [4]) we find useful
to denote the set-valued functions F; = ¢; ' : M — 2M | Fy(z) = {y| vi(y) = 7}, i € No.
Clearly Fy(0) = M. From the commutativity of the ¢;’s further follows that for any i < j
we have

Rnf(:uj) = {

Fi(pi) 0 Fj(p5) € {0, Fy(p5)} -
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Definition 2. Let M and u;, i, i € Ny satisfy the assumptions from Corollary 2 and
M = {p;}ieo- A finite or infinite sequence of points (f,, fy, fks, ---) i called a chain
whenever ky < ky < ks < ... and g, _1(pg,) = pu,_, for every i € {2,3,...}.

Note that for every chain (pu,, ftry, fks---) We have Fi, (te,) 2 Fiy (fky) 2 Fiey (fthg) 2 ..
We can also introduce partial order on M by p; < p; if and only if there exist n € Ny points
Py s s [k, € M such that (pe;, fog, , ..., fk, - f1;) i a chain. Note also that for two chains S, T
the difference S\ T and intersection S N T are also chains, if nonempty. For a finite chain
(21, X9, ..., x,) we call the point z; its initial point and z,, its final point.

Every chain can be viewed as a path or its segment from 0 € M to a given point
x € M. Indeed, for every x € M there exists n € N such that for every ¢ > n one has
wi(x) = z. Assuming n is the least number with that property we can define the set
Ty = Ui {®i(x)} which contains exactly the points of the chain with initial point 0 and
final point . Regarding Tj as an ordered set (the order < is linear on 7}), it is clear that
given x € M, there exists exactly one chain 7§ from 0 to x.

Note also that for every chain (fn,, ..., fin, ), k > 2 there exist constants c¢,, (the constants
from Lemma 3) such that for basis vectors e, ..., e,, we have

k
E CniCn; = 5l»4nk - 6Mn,1'
=2

The following lemma says that, if the space is not too ”porous”, basis vectors can be made
only of two-point molecules in points which are not too far from each other.

Lemma 4 (Step lemma). Let M be a countable metric space, « > 0, K > 1 and @, : M —
M a system of retractions from Corollary 2. If (jiiy, ..., jt5;), 7 > 1 is a chain and there evist
distinct points 1, ..., 2, € M with d(z;, 2i41) < o, L€ {1,...,k =1}, 21 = py;, 2 = i, and
SUD;, <p<i, LiD o < K, then d(pi,, ;s pi,,) < 2Ka for all m € {2, ..., j}.

Proof. Suppose d(pti,, _,, fti,,) > 2K a for some m € {2, ..., j}. We know ¢, (us;) = pi,, and
Pip—1(ti;) = Mi,_,- We prove by induction for all I € {1,...,k} that o; (1;) = p;,, and
i, —1(z1) = w4, _,, which is a contradiction as zy = p;, and ¢;, (1s,) = pyy # p,,- For i =1
we have r; = p;; and the statement clearly holds. Suppose it holds for all [l = 1,...,s =1 < k.
From d(zs_1,xs) < « it follows that d(u;,,, i, (zs)) < Ka and d(u,, ., @i, —1(zs)) < Ka.
From commutativity of all ¢,,’s follows that either ¢; _i(zs) = ¢;,, (zs) ¢ {us,, } holds or
i (Ts) = i, and @;, _1(xs) = w4, , is true. Since Bga(pi,, )V Bra(ti,, ) = 0 we conclude
the latter is true, which completes the induction step and the contradiction is obtained.

O

In the following section, we are going to prove that there are spaces F(M) with no
retractional Schauder basis yet having Schauder basis, moreover extensional.

3. NONEXISTENCE OF RETRACTIONAL SCHAUDER BASES

Definition 3. Let zg,x1,...,7,, n € N be distinct points. The set C° = {xg, z1,x9..., T, }
with the (standard graph) metric d(xy, xo) =n, k # 0, d(xy, x;) = min{|k —|,n — |k —[|},
k,l >0 we call a circle or a circle of radius n with centre xg.
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In the following, we regard the centre xy as the base point in the pointed metric space
(CY,d, ) and denote it 0.

We are also going to use an uncentered circle, i.e. a subgraph C,, = {x1, xs, ..., z,,} with
the induced metric. On C,,, we define orientation: We say point x; lies to the left of the
point x, k,1 € {1,...,n}, if one of these situations happens:

(1) k>t and l e {kz,k— 1ok — 28 +1},
(2) k<tandle{kk—1,..,1}U{nn—1,..n— "2 +k+1}.
Analogously, we say x; lies to the right of x;, if one of the following conditions is satisfied:
() k<2Fandle{kk+1, .. k+ |22},
(2) k>2Aandle{k,k+1,..,n}U{L,2,., [ - (n—k+1)}.
We show that every retractional Schauder basis on F(C?) has a basis constant which is
increasing with n.

Theorem 5. Let n € N, n > 10 and let {p;};_, be a system of retractions on a circle Cy
satisfying the conditions of Corollary 2 . Then there is an s € {1,...,n} such that

vVén+1—-1
— =5

Proof. Let us fix n > 10 and denote K = @. We have py = 0 and py € C), with
p1(x) = py for all z € C,, and 1(0) = 0. Indeed, if ¢ (y) = 0 for some y € C,,, then the sets
F1(0) and Fi(u1) have distance 1. Since they are finite, there exist w € F(0), z € Fi(uq)
such that d(w, z) = 1 and clearly d(¢1(w), ¢1(2)) = n, which trivially yields the result, as
n > K. We prove the theorem by contradiction and assume therefore, Lip ¢; < K for all
ie{l,..,n}

For every point z € C,, there exists a k € {1,...,n} such that {z} = {u} = @x(Cy) \
¢ir-1(Cy) and therefore there exists exactly one chain S, = (g, fky, .-, [k, ), Such that
tr, = p1 and pg, = x (equivalently ky = 1 and k; = k).

Let us introduce sets

A={ylye C,\{m},d(y, 1) < 3K,y lies to the left of p}

B=A{y|lyeC,\{p},d(y, 1) < 3K,y lies to the right of p}
and a mapping f : Cu \ {m} — {4, B},
Flw) = A there is a z € S, N A such that for every y € S, 2 <y, we have y ¢ AU B,
" | B thereis a z € S, N B such that for every y € Sy, z <, we have y ¢ AU B.

Lip o, >

Note that the definitions of A, B make perfect sense, as 3K < 7. Also, the mapping f is
well-defined, as for every w € C,, \ {1} the intersection S, N (AU B) is nonempty. Indeed,
according to Step lemma 4 applied on the C,, the distance between any two adjacent
points in a chain is smaller than 2K and therefore for the second element z € S,, (meaning
Sw = (p1, 2, ..., w)) we have d(p1,2) < 2K and thus z € A or z € B.

Observe that f(w) = A for every w € A and f(w) = B for every w € B. We prove there
exist two points a,b € C,, \ ({11} U AU B) such that d(a,b) =1, f(a) = A and f(b) = B.
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Let us assume for contradiction that f(w) = A for all points w € C,, \ ({1} U AU B).
Denote z the closest point to the right of the set B, i.e. the only point with 3K < d(z, u1) <
3K + 1 and d(z, B) = 1. We have f(z) = A, which means the chain S, = (u1, ftgy, .., 2)
leaves the set A and goes to the left around (meaning omitting the set A U B) the circle to
the point z, with steps smaller than 2K . Therefore there exists a point y; € S, such that
d(py, ) > % But then we have ¢;(p1) = 1, ¢i(2) = pu, which yields

d(p, ) o n— 2K K
d(p,z) — 2BK+1) =
as n > 10, which contradicts our assumption.

Therefore, let there exist two points a,b € C,, \ ({1} U AU B) such that d(a,b) = 1,
f(a) = A and f(b) = B. Consider the two chains S, = (g1, ftgys fy--»a) and S, =
(1, py > pty---, b) and let 4 and j be such that i, € A, p; € B and we have pu, v ¢ AUBU{ 1}
for every p € Sy, px; < g and every v € Sy, juy; < v. Note that d(u, ;) > K + 1 and
d(pr, p) > K + 1.

Without loss of generality suppose k; < I;. Then ¢, (b) = pu, and d(y, (a), pu;) < K. This
implies u, := ¢y, (a) has distance at most K from the set B, which yields d(j1,u,) < 4K
and the chain S = (juy,, ..., u,) must go from the set A to the left around the circle closer to
the set B. Thus there must exist a point v = pu € S such that d(v, py) > % It follows

that

d(@s(“a)?@s(:ul)) _ d(v’ul) > n—2K
d(ug, 1t1) d(ug, p1) — 8K
which is again a contradiction. We conclude there exists an s € {1,...,n} such that
Lip g, > K = Y8t

Lipg; >

Lip o, > =K,

O

Corollary 6. There exists a uniformly discrete set N C R? such that the Free space F(N)
has no retractional Schauder basis.

Proof. Let N = J2; C9. be a union of circles with the same centre 0 and with radii 4",
n € N. Suppose d,, is the metric on C%,. Let us define a metric on N in the following way:

d(x ) _ dn(x7y) if T,y € Cz?" ’
T Y max {4, 4) ifreCuyeCuitg.

It is clear that d is indeed a metric on N and one has no difficulties to embed N into R? in
a bilipschitz way, actually with distortion not worse than 27. We show that every sequence
of retractions ¢; : N — N satisfying conditions (i) and (iv) from Corollary 2 cannot satisfy
the condition (7i7) of that corollary.

Let therefore ¢; : N — N be a commuting sequence of retractions such that ¢(0) =0
and |p;(N)| =i+ 1. We show that for every k € N, k > 4, there exists an n = ny € N
such that Lip ¢,, > k. Pick therefore k € N, & > 4, and find the smallest n such that
tn, € Cyr. Then ¢;(p,) = pn, for every ¢ > n. If there exist j > n and x € Cy such that
wj(z) ¢ Cy, we have Lip p; > 4% > k and the proof is finished. Indeed, if we take z € Cy
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such that ¢;(z) ¢ Cy and without loss of generality we assume x is such that d(x, u,,)
is minimal among all x € Cy with ¢;(z) & Cu, we have d (¢;(y), p;(x)) > 4% > k for
one of z’s neighbours y (i.e. d(x,y) = 1). This means Lip ¢; > k. If, on the contrary, we
have p;(x) € Cy for all i > n and all x € Cy, we find ourselves in the case of Theorem
5. Indeed, if we view the circle Cff,c as a set Cffk = {O, sy s fhsss ...7,us4k} (for some eligible
81, 82, ..., Sa» € N) and look only at retractions g, s, ©sy, -, s, Testricted to the circle

C’Ek, we apply 5 and conclude max {Lip ©sy 5 LP sy, --., Lip <p54k} > 7”3'4;“71 > k.
O

We see it is impossible to build a retractional Schauder basis on F(N). However, the space
F(N) has an extensional Schauder basis as we are going to show in the next proposition:

Proposition 7. Let N = |2, CJ. be the metric space from Corollary 6. Then F(N) has
an extensional monotone Schauder basis.

Proof. First, note that we have orientation of every Cy, n € N. For every i € N, define
k = k(i) as the unique integer such that MT_l <i< %. Let N = {0, 21, z2, 23, ...} be
enumerated in such way that for every ¢ € N we have x; € Cyx and that the enumeration
respects the orientation on every circle Cyr. Namely, if x;, 2,41 € Cy, we have that
d(z;,z;41) = 1 and ;44 lies to the right of z;. Denote D; = {0, z1, z2, ...7; }.

We are going to define a sequence of extension operators P; : Lipy(D;) — Lipy(N)
and prove they satisfy the assumptions of Theorem 1. In order to do that, let us define
some preparatory notions. Define the left and the right ” D;-neighbour” functions v, v :
U9 €9, — D; as follows: For each n € {1,2, ..., k(i)} and € Cyn, let v}(x) € D; be the
closest point to the left of z and let v} (x) € D; be the closest point to the right of . We
set v1(0) = /(0) = 0. Note that v/}(z) = /() = x if and only if z € D;. Further we need
to define "right-” and "left-" metric function (not proper metrics) on every circle Cyn. For
points x,y € Cyn we set the value d'(z,y) as the length of the path (in the graph Cyn)
going from x to the left up to y. Analogously, we set d"(z,y) as the length of the path going
from z to the right up to y. It is clear that for x,y € Cyn we have d'(z,y) = d"(y, z) and
d(z,y) = min {d"(z,y),d'(z,y) }.

Further we define for every ¢ € N the i-th interpolation function /; : Lipy(D;)xJ
R via

k(i

n=

)10271 —

d'(z, v} (2)) f(v)(2)) + d'(z, vi(x)) f (] ()
d'(z,v}(x)) + d’ (z, ] ()

and I;(f,z) = f(z) for x = vi(z) = v} (z). Clearly, I;(f, z) is the value of linear interpolation
of the function f between closest points of x to the left and to the right from the set D;,
given we take x itself to be the closest point to x in any direction if x € D;. Let now

f € Lipy(D;). Then we define our (extension) operators P;, i € N simply as

L(f.x) e Ch,
0 z € UpZi@y11 Cam

if z # vl(z) or x # vl (2)
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and of course, P, = 0. Clearly P, is a linear operator for every ¢ € N and the function P, f
is Lipschitz with the same constant as f. Indeed, if we take z € Cyn and y € Cym with
m < n, we see from the definition of I; that min.cc,, f(2) < P, f(z) < max,ec,, f(z) and
mingec,. f(w) < Pif(y) < maxyec,. f(w). From that and from the fact that d(z,w) =
d(x,y) = 4™ holds for all z € Cyn and w € Cym, we get

[Pif(z) = Bif(y)l < max [f(2) = f(w)] < 4" fl| = d(z, )| f]|
weCim
For z € Cyn and 0 we have clearly |P;f(z) — P,f(0)] < max,ec,. |f(2)| < d(z,0)] f]-

The only nontrivial case to prove is the case x,y € Cyki). Let therefore z,y € Cyriy. There
are three cases. If z,y € D;, then P,f(z) = f(z) and P,f(y) = f(y), which is trivial. Let
z,y & D; and v (x) = V! (y) = a, vi(x) = v} (y) = b. We can assume d"(b,z) < d"(b,y), for
the roles of x and y are symetrical. From that we have d"(y, a) < d"(x,a). lf d(z,y) = d"(z,y),
we have

f)d" (x a) + fa)d"(b,z)  f(b)d (y,a) + f(a)d"(b,y)
Pf(e) ] o - L
’f )d' (x y) fla)d" (z, y)'
dr(b,a)
Il flld(a, b)

SW "(2,y) < | flld(z,y).

If d(z,y) = d'(z,y), then d(z,y) = d"(y,a) + d"(a,b) + d"(b, ) and then from d"(b,a) —
d"(z,y) = d"(b,x) + d"(y,a) we have by triangle inequality
Pf) - Pifty)| = [T L)
f() (d(z,y) = d"(b,a)) + (f(b) = f(a))d"(b,a) + f(a) (d"(b,a) — d"(z,y))
dr(b,a)
(d'(b,z) + d"(y,a)) (f(a) = f(b)) + (f(b) — f(a))d" (b, a)
dr(b,a)

T ( <( b’) (@ (b.2) + ' (y,)) +d<a,b>) < I lld(. )

The case x € D;, y ¢ D; is proved in a similar way.

We see that the functions f; = P (X{zj})7 1 < j < i create a basis of each space
P,;(Lipy(N)), hence dim P;(Lipy(N)) = ¢ for every i € N.

To prove the commutativity it suffices to prove P, 1P, = P,P,;; = P; for every ¢ € N.
While PPy, = P, is clear, we prove for every f € Lipy(/N) we have P, P,f = P,f. Fix
f € Lipy(N). If k(i 4+ 1) > k(i), then D; = J') €9, and RHPf( ) f( ) = Pif(x)
for all z € UFY, €9, and P Pif(z) = 0 = Pif(x) for all z ¢ [J'¥) €Y. Let therefore
k(i +1) = k(3).
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Denote a = x; = v}(x;41) and b = v/ (z;11). All we need to check is Py 1 Pif(y) = Pif(y)
holds for all y € Cyre \ D;. Indeed, for all other points = we have P, f(x) = Py f(z). Take
therefore a point y # x;,; (otherwise it is trivial). Note that v{(y) = a, v/ (y) = b and that
d"(a,z;y1) = 1. Then we have

d"(ir1,y) Pif(b) + d"(y,0) P f (411)

P (Pif)(y) = (i1, 0)
@ (@i1,9)f (0) + ' (y,b) - HOEGEE)
- d"(i+1,b)
_ dr(xi+17 y)dr(a’v b) + dT(ya b) d (y7 b)
T @z, b)dr(ab) fO+ T b) fa)
_ A (@i, Y)d (@ig1,0) + d (241, y) + d7(y, b) d'(y,b)
- & (@1, D1 (a,) O G @

d'(a,y)

_ dr(l'i+17 b) (1 + d7)($i+17 Z/)) 3 f(b) + dr(a b) . f(a)

dr(CL'H_l, b)dr(a, b)
~ d'(a,y) d'(a,y)
= d(a,b) S+ dr(a,b) fle)

= P, f(y)

and the commutativity is proved.

Let i € N. If f,, — f pointwise, then for every € D; we have P;f,(x) = f,.(x) = f(z) =
P,f(x) and for every = € Ufik(i)ﬂ Cy we have P;f,(z) = 0 = P, f(z). Finally, for every
x € Cyeiy \ D; we have P, fo(2) = vafalaz) + (1 — 72) fa(bs), for some eligible v, € [0, 1],
az, b, € D; and the choice of these points depends only on z (and ¢ of course). Therefore
P, f. — P, f pointwise, which means that every operator P; is continuous with respect to
topology of pointwise convergence.

Finally the sequence P;f converges pointwise to f. Indeed, for every y € N there exists
i € Nsuch that y € D; € D;11 C D;yo..., which yields P, f(y) = P;f(y) = f(y) for all
j > 1. Hence P;f — f pointwise.

Since the operators P; meet all assumptions from Theorem 1, we get that there is a
sequence of operators T; : F(N) — F(N), i € Ny with 7 = P, which build a monotone
Schauder basis for F(N).

O

Remark. It was not necessary for the construction of P;’s to enumerate the set N with
respect to orientation on every circle Cyx. Actually any enumeration which satisfies z; € Cyx
for every ¢« € N works. Our choice only slightly simplifies the proof.

4. UNCONDITIONALITY OF RETRACTIONAL SCHAUDER BASES

As we construct a Schauder basis on F(M) via sequence of retractions, as described in
Corollary 2, properties of such a basis depend also on properties of the metric space M.
Naturally it leads us to the question: What can M be like such that there is an unconditional
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retractional Schauder basis on F(M)? The next lemma sets a condition on the chains under
which the acquired basis is conditional. It is further used in Theorem 10, which shows that
retractional bases on Free spaces of nets in finite-dimensional spaces are conditional.

Lemma 8. Let o, 8 > 0 and let N be an a-separated metric space, such that there exist
retractions @; : N — N satisfying the conditions from Corollary 2. Suppose there exists
ny € N such that for every n € N, n > ng there exist chains S = (lo, fky, -y fk,) and
T = (lo, [y s ooy fa,)s Sy € N with d(pg,, p,,) < S and |S\ T| > n. Then the retractional
Schauder basis on F(N) corresponding to the retractions p; is conditional.

Proof. Let now P, be the associated Schauder projection to the mapping ; for each i € Ny,
i.e. the projection to the subspace span {0,,,0,,, ...,d,,}. Instead of working directly with
Py, Pi, Py, ... we will use their adjoints Fy, Py, Py, ... and for every n € N, n > ng we
construct a function f,, € Lipy(/V) with || f,|| < 1 and find a sequence of signs g, €1, ..., €,
for some s > n such that the following inequality holds

ks

Y eilPiy = P fa

=0

> a(n — 1).
B
Fix n € N and chains S = (o, iy s pis)s T = (1o flay s -5 fl1,,,) for which we have

d(pg,, p,,) < B and |[S\ T| > n. Suppose now ¢ € {0,1,2,...,s — n} is such that p, € T
and ju,,, ¢ T (we set pi, = f1o). We define the function f,, on N via the formula

S T = for jodd,j>t,
fulr) = ¢ 5 © =, for j even,j >t,
0 else.

Clearly, f.(t0) =0 and || f,|| < 1. For the following choice of sings eg = 1,

—gi—1 1= k; for some j € N,
E; =
€i—1 else,

we have
Zgz P, —PY) ——P*+2Z P 4 (-1 Py = P
and then
P fu(pr,) — P fo(pu,,) ‘ 1
P|| > |Pf.| > : > 2P fa(in,) — Pla(u,)| =
IPI2 1Pg 2 [P = BB | > e )~ i

L g0 +2Z 17 ) + (<1)° fulpn,) +0

|

S

j=t+1

als—t—1) >a(n—1)
s - B

| =
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Recall that a subset S of a metric space M is called an «, S-net whenever S is a-separated
and f-dense in M, i.e. inf, ., d(z,y) > a, x,y € S and sup,¢,, d(z, S) < B.

In [4], the authors constructed a system of retractions on the integer lattice in ¢y which
satisfies the conditions of Corollary 2. Through suitable homomorphisms they further
showed the existence of a basis on any Free space of a net in a separable C'(K) space or a
net in ¢f, the positive cone in cy.

Corollary 9. Let N be a net in any of the following metric spaces: C(K), K metrizable
compact, or c¢§ (the subset of ¢y consisting of elements with non-negative coordinates). The
basis on F(N) constructed in [4] is conditional.

Proof. First we consider the case N = Z<% C ¢y, the integer lattice in ¢y. Following the proof
of Lemma 14 in [4] we see, there are chains which go parallelly along the first coordinate
axis (or any other coordinate axis). Every such two chains hence satisfy the conditions
of the previous lemma, which yields that a basis arising from these retractions cannot be
unconditional. As the existence of bases in other cases than N being the integer lattice in
co was proven only by isomorphisms, we conclude that none of them are unconditional.

O

Theorem 10. Let N be an «, 5-net in a finite-dimensional normed space X with dim X > 2.
Let E = {e;};~, be a retractional Schauder basis on F(N). Then E is conditional.

In the following, B.(x) denotes closed ball of radius ¢ > 0 and centre x € X, B2(x)

denotes its interior. In the same way B. := B.(0) and S. denotes sphere of radius ¢ and
centre 0.

Proof. Let ¢; : N — N be the corresponding retractions to the basis £. We prove the
theorem by showing that the assumptions of Lemma 8 are met. Denote sup;cy Lip ¢; =
K < o0. Pick n € N, such that n > 8K. Define annulus with radii » and w, w < r as
A(r,w) = B,4,(0) \ By_,(0). Our aim is to prove there exist chains 7', Z with final points
t,z € ABKpn+ B,8) NN with d(t, z) < 28 such that 2 € Bgg, holds for z = z,, the
final point of the chain T'N Z. Then we have d(¢,z) > 3Kfn — Kfn = 2K n and Step
lemma 4 yields |T"\ Z| > n, which by Lemma 8 concludes the proof.

For the following, for every two points z,y € N with z < y denote T the chain with
initial point z and final point y. Assume now for contradiction, for every pair of points
t,z € ABKfn+p,8)NN =: Awith d(t, z) < 2 the final point x; , of T{NT} lies outside the
ball Bgg,. That means there exists a point p,, € N for some m € N with d(0, f1,,,) > Kfin
such that @, () = p, for every t € A. To prove this, note that 0 € (., 75 and as [, 4 Ty
is a chain, it has a final point which we denote p,, and prove that d(0, ) > KfBn. We
show that for every two points ¢, z € A the final point z; . of the chain T} N T} is of greater
norm than K gn. Clearly, if d(¢, z) < 203, the statement holds as assumed. If d(¢, z) > 23, we
can find a finite sequence of points yy, ...,y € A, I € N such that d(y;, yir1) < 20 for every
i€{l,..,0 —1} and that y; =t and y; = 2. Then x;. € {2y, 4.,,| i € {1,...,l — 1}}, which
means ||z .|| > Kpn. Note that for any three points s,t, z € A the final point z,; . of the
chain 7§ N T¢ N T§ is equal to one of the points x4, T4 ., Ts .. Indeed, as x44, 1, € T, we
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have that either z,; < x;, or zsy > x;,. f ©5, < 2, then x,, = x,, = x5, , and the other
case follows symmetrically. But from that we get inductively that for any finite number
of points 4, ..., t,, there are indices 4, j € {1, ..., v}, such that the final point z;, ., of the
chain (,_, 7' equals z;,;,. Because for each two ¢,z € A we have ||z;.| > K8n and A is
finite, we have ||u,| > Kfn.

Observe further, that T), N Bg, =  holds for every chain T}, ~with initial point s,
and final point ¢t € A. Indeed, if y1, € T}, , p € N is such that ||| < Bn, we have

Lip g, > LenOemlinll — il Kfn — ¢ which is not possible,

Let us denote S = J,c, T} the set of all chains from g, to points of A. Let S =
{ukl,...,,ukq} for some ki < kg < ... < kg, ¢ € N. Note that py, = pn,,. For every chain
T = (t1,...,t;), | € N define a trajectory of the chain Tr(7") as the union of the line segments
U/ZL[ti, tisa]. Denote D = J,, Tr (T})- Define now a function F : [1,¢] x A — D via

F(t,z) = (t — 0)g,, (@) + (1= (t —0)pp(x), v € At € [i,i+1),ie{l,...,q—1}

and F(q,z) =z, x € A. We see that for each ¢ € [1, g|, the function F(¢,-) is K-Lipschitz
and that we have F(1,z) = p,, for all z € A.

Let e = 3K8n + 3 and consider B = {Bgﬁ ()N SE}:EGA as an open cover of S; and find a
partition of unity {¢,} . 4 subordinated to the cover B. Define a function R : [1,¢] xS — X
by

R(t,x) = Zwa(x)F(t,a), tell,q], x €S..

acA

We see, that R(1,z) = p,, for all x € S, and that

Supes, |R(g, ) — 2| < 26.

Of course, R is continuous on [1,¢] x S.. Our goal is to prove there is a continuous
deformation of S, into one point pu,, avoiding the origin, which is a contradiction. For
that we define a straight-line homotopy between identity and R(q,-) by W : [0,1] x S, —
A(e,28), W(t,x) = tR(q,z) + (1 — t)z. Joining mappings W and R we get a mapping
Z :10,q] x S. = X precisely defined by

2(t.2) = Wi(t,z) tel0,1),zeS,,
O\ R($e) tellgzes..

All there is left to prove is that R([1,q] x S.) N {0} = (). To see that, note that the value
R(t,z) is a convex combination of values F'(¢,a), where a € A are such that d(z,a) < 2.
Fix therefore x € S. and let pu,, ju,, ..., pu, € A be such that d(x, ;) < 2 for all 4. From
the preceding paragraphs it follows that the trajectory Tr(T}.) of each chain from pi,, to
has no intersection with Bgz. Indeed, as the chain 7 ”f,f avoids the ball Bg, and the distance
between two consecutive points in a chain is bounded by 26K and n > 2K, we get the result.

From the fact that d(p,, pu,) < 48 for all i, j, we have that || F(t, u,) — F(t, )| < 4Kp

m
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for all t € [1,¢]. But as n > 8K we get R(t,z) # 0 for any ¢ € [0, 1]. Altogether we obtain
Z([0,q] x S:) N {0} = 0, which was to prove.
O

One could ask in general what are the metric spaces M such that F(A/) has an uncondi-
tional Schauder basis. It is clear that if M contains a line segment, then L, is contained
in F(M) and therefore F(M) cannot have an unconditional Schauder basis. The only
interesting cases are then topologically discrete spaces M. Our guess is that if F(M) has
an unconditional Schauder basis, it is isomorphic to /.

Open problem 1 Suppose F (M) has an unconditional Schauder basis. Is it isomorphic to
2%

In [15], one sees that F(M) is a complemented subspace of L; if and only if M can be
bi-Lipschitzly embedded into an R-tree. A complemented subspace of L1 with unconditional
basis is isomorphic to the space ¢; due to [16]. One can therefore restate the conjecture
above into: Suppose F (M) has a Schauder basis B. If M cannot be embedded into an
R-tree, is it true that B is conditional?

Open problem 2 Is it true that for every uniformly discrete set N C R? the space
F(N) has a Schauder basis?

It follows from Corollary 6 the answer is no if we restrict ourselves only to retractional
Schauder bases. However, we don’t know if, supposed the answer is yes, we can find for
every uniformly discrete set N C R? an extensional Schauder basis on F(N).
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