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Summary
The main line of investigation of the present work is the study of some aspects in the
analysis of the structure of the unit ball of (infinite-dimensional) Banach spaces. In
particular, we analyse some questions concerning the existence of suitable renormings
that allow the new unit ball to possess a specific geometric property. The main part
of the thesis is, however, dedicated to results of isometric nature, in which the original
norm is the one under consideration.

One of the main sources for the selection of the topics of investigation has been the
recent monograph [GMZ16], entirely dedicated to collecting several open problems in
Banach space theory and formulating new lines of investigation. We take this oppor-
tunity to acknowledge the authors for their effort, that offered such useful text to the
mathematical community. The results to be discussed in our work actually succeed in
solving a few of the problems presented in the monograph and are based on the papers
[HáRu17, HKR18, HáRu19, HKR••].

Let us say now a few words on how the material is organised. The thesis is di-
vided in four chapters (some whose contents are outlined below) which are essentially
independent and can be read in whatsoever order. The unique chapter which is not
completely independent from the others is Chapter 4, where we use some results from
Chapter 2 and which is, in a sense, the non-separable prosecution of Chapter 3. How-
ever, cross-references are few (never implicit) and usually restricted to quoting some
result; it should therefore be no problem to start reading from Chapter 4.

The single chapters all share the same arrangement. A first section is dedicated to
an introduction to the subject of the chapter; occasionally, we also present the proof of
known results, in most cases as an illustration of an important technique in the area.
In these introductions we strove to be as self-contained as possible in order to help
the novel reader to enter the field; consequently, experts in the area may find them
somewhat redundant and prefer to skip most parts of them.

The first section of each chapter concludes with the statement of our most signifi-
cant results and a comparison with the literature. The proofs of these results, together
with additional results or generalisations, are presented in the remaining sections of
the chapter. These sections usually follow closely the corresponding articles (carefully
referenced) where the results were presented.

Smooth renormings

It is by now a well understood fact in Functional Analysis that the existence, on an
infinite-dimensional Banach space, of an equivalent norm with good differentiability
properties is a strong assumption that has profound structural consequences for the
space. As a sample of this phenomenon, let us recall that if a Banach space X admits a
renorming with locally uniformly continuous derivative (e.g., a C2-smooth norm) then
X is either super-reflexive, or it contains a copy of c0.
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On the other hand, once one smooth norm is present in the space, it is often the case
the space to admit a large supply of smooth renormings. This is true in full generality
for C1-smooth norms, in the case that the dual space admits a dual LUR renorming; it is
moreover true for every separable space for Ck-smooth norms (1 6 k 6 ∞).

In this chapter we proceed in the above direction and we give a sharper result for
norm approximation, in the case of (separable) Banach spaces, with a Schauder basis.
Our main result asserts that if a Banach space with a Schauder basis admits a Ck-smooth
norm, it is possible to approximate every equivalent norm with a Ck-smooth one in a
way that the approximation improves as fast as we wish on the vectors that only depend
on the tail of the Schauder basis.

We also give analogous results for the case of norms locally depending on finitely
many coordinates, or for polyhedral norms. It is to be noted that such ‘asymptotically
optimal’ approximation is not always possible, for example the analogous claim for
uniformly convex renormings is easily seen to be false.

Auerbach systems

One fundamental tool for the study of normed space is the investigation of systems of
coordinates that a given space can be furnished with. This is, of course, true already in
finite dimensions, but it is in the infinite-dimensional setting that several non-equivalent
notions of a system of coordinates are available. It is therefore an important issue to
understand which are the optimal systems of coordinates a given class of Banach spaces
can admit.

According to a celebrated result by Kunen, there exists (under the assumption of the
Continuum Hypothesis) a non-separable Banach space with virtually no (uncountable)
system of coordinates, in that it admits no uncountable biorthogonal system.

In this chapter, we shall concentrate our attention to Auerbach systems. These object
are particularly convenient, since of the one hand they are based on a rather weak notion
of coordinates, being just biorthogonal systems, but on the other hand they have very
rigid isometric properties. This allows for several construction of isometric nature, some
of which are contained in the subsequent chapters.

In particular, we shall address the existence of large Auerbach systems in Banach
spaces. Our first result is that every ‘large’ Banach space always admits a uncountable
Auerbach system, therefore implying that there are no ‘large’ analogues of Kunen’s
example. We then sharpen the previous assertion for the class of WLD Banach spaces:
we show that every WLD Banach space X with dens X > ω1 contains an Auerbach
system of the maximal possible cardinality, dens X.

The main result of the chapter and, perhaps, the most striking result of the thesis is
the fact that the above result concerning WLD spaces is sharp. To wit, we show that
(under CH) there exists a renorming of c0(ω1) that contains no uncountable Auerbach
system; this is, in a sense, analogue to Kunen’s result and solves in a stronger form one
problem from [GMZ16].
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The second part of the chapter is dedicated to some possible uncountable extensions
of a famous combinatorial lemma, due to Vlastimil Pták. To wit, we show that the
validity of an analogous statement for the cardinal number ω1 can not be decided in
ZFC; we also offer sufficient conditions, for a class of larger cardinal numbers.

Symmetrically separated sequences

Kottman’s theorem, asserting that the unit sphere of an infinite-dimensional normed
space contains a sequence of points whose mutual distances are strictly greater than one,
sparked a new insight on the non-compactness of the unit ball in infinite dimensions. El-
ton and Odell employed methods of infinite Ramsey theory to improve Kottman’s the-
orem significantly by showing that the unit sphere of an infinite-dimensional normed
space contains a sequence (xn)∞

n=1 such that ‖xn − xk‖ > 1 + ε (k, n ∈ N, k 6= n) for
some ε > 0.

The main objective of the chapter is to revisit and investigate the above-mentioned
results in the setting of symmetric separation: let us say that a subset A of a normed
space is symmetrically (δ+)-separated (respectively, symmetrically δ-separated) when ‖x±
y‖ > δ (respectively, ‖x ± y‖ > δ) for any distinct elements x, y ∈ A. J.M.F. Castillo
and P.L. Papini asked whether there is a symmetric version of the Elton–Odell theorem;
however according to Castillo, it has not been known whether the unit sphere of an
infinite-dimensional Banach space contains a symmetrically (1+)-separated sequence.

Our main results are a proof of a symmetric version of Kottman’s theorem, together
with a proof of the symmetric analogue to the Elton–Odell theorem, for a huge class of
Banach spaces, that includes, in particular, all classical Banach spaces. We also give a
good bunch of quantitative lower estimates for the ε appearing in the conclusion to the
Elton–Odell theorem, for some specific classes of Banach spaces.

Uncountable separated sets

Over the last years, a renewed interest and a rapid progress in the analysis of the natu-
ral non-separable analogues of the results discussed in the previous chapter have been
observed. Perhaps the first spark was lit by Mercourakis and Vassiliadis who have
identified certain classes of compact Hausdorff spaces K for which the unit sphere of
the Banach space C(K) contains an uncountable (1+)-separated set. The result has
been subsequently improved by Kania and Kochanek to every (non-metrisable) com-
pact Hausdorff space K, and, very recently, sharpened by Cúth, Kurka, and Vejnar.

Our first main result for this part consists in understanding the fact that Auerbach
systems can be profitably exploited to approach the above problem; this allows us to
deduce that the unit sphere of every ‘large’ Banach space contains an uncountable (1+)-
separated set. We also observe the–perhaps unexpected–fact that under the present
assumptions the conclusion cannot be improved, in the sense that every (1+)-separated
subset of Bc0(Γ) has cardinality at most ω1.
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We next turn our attention to some strong structural constrains on the space, which
allow construction of potentially larger separated subsets of the unit sphere. For ex-
ample, we strengthen considerably one result by Kania and Kochanek by proving the
existence of a (1+)-separated set in the unit sphere of every (quasi-)reflexive space X
that has the maximal possible cardinality, that is, equal to dens X.

In the case where the number dens X has uncountable cofinality, such set can be
taken to be (1 + ε)-separated for some ε > 0. When X is a super-reflexive space, we
exhibit a (1 + ε)-separated set in the unit sphere of X that also has the maximal possible
cardinality—this answers a question raised by T. Kania and T. Kochanek.

To conclude, let us mention that, as a by-product of our techniques, the results dis-
cussed in this chapter actually produce symmetrically separated sets. However, the
clause about symmetry is not the main issue in our results, which are sharper than the
ones present in the literature, even when the symmetry assertion is removed from them.
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Notation
Our notation concerning Banach space theory is standard, as in most textbooks in Func-
tional Analysis; all undefined notations of definitions may be found, e.g., in [AlKa06,
FHHMZ10, LiTz77, LiTz79]. We also refer to the same textbooks for the basic results
in Banach space theory, that we use implicitly, or without specific reference to the lit-
erature. For example, we do not define in the thesis the notions of reflexive, super-
reflexive, or Radon–Nikodym Banach spaces; for such definitions, we refer, e.g., to
[AlKa06, Bea85, BeLi00, Die75, Die84, DiUh77, FHHMZ10, vDu78]. On the other hand,
we have decided to introduce and briefly discuss most notions used in the thesis; this
should allow the reader to read the text without jumping too frequently into the ref-
erences or specialised textbooks. As a consequence, the text should be accessible to
anyone having followed a course in Functional Analysis.

Let us mention here that we will restrict our considerations to normed spaces over
the real field, although most of the results (Chapter 1 excluded) apply directly to com-
plex Banach spaces. For a normed space X, we shall denote by SX the unit sphere of X
and by BX the closed unit ball of X.

Let us then dedicate a few words on some notation concerning set theory, which fol-
lows, e.g., [Cie97, Kun80b, Jec03]. We use von Neumann’s definition of ordinal numbers
and we regard cardinal numbers as initial ordinal numbers. In particular, we write ω
for ℵ0, ω1 for ℵ1, etc., as we often view cardinal numbers as well-ordered sets; we also
denote by c the cardinality of continuum. For a cardinal number κ, we write κ+ for the
immediate successor of κ, that is, the smallest cardinal number that is strictly greater
than κ.

If F and G are subsets of a certain ordinal number λ, we shall use the (perhaps self-
explanatory) notation F < G to mean that sup F < min G; in the case that G = {g} is
a singleton, we shall write F < g instead of F < {g}. Analogous meaning is attributed
to expressions such as g < F, f 6 G, and so on.

Finally, we mention that when f : S → Z is a function between sets S and Z and H
is a subset of S, we shall denote by f �H the restriction of the function f to the set H. In
case that S = N, i.e., f is a sequence, we shall sometimes use the small abuse of notation
to write f �[1,N], instead of f �{1,...,N}.
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Chapter 1

Smooth renormings

This chapter is dedicated to one contribution to the vast field of smooth renormings
of Banach spaces, that stands at the intersection between the renorming theory and the
study of smooth functions in normed spaces. In the first section, we shall shortly review
the basic definitions and a few well-known results in this area; we will also present some
of the most useful techniques, as they will be relevant for the proofs of our results. The
second section contains our renorming argument and the proof of the main result of
the chapter; in the last section, we present some simple modifications of the renorming
result that apply to polyhedral Banach spaces.

1.1 A few smoothing techniques

The aim of this section is to introduce the topic of smooth renormings of Banach spaces,
via the description of a few selected important results; let us immediately notice that the
field is way too broad for a reasonably complete presentation, ever for a discussion of
the main lines of investigation. For this reason, we will just describe a few results in the
directions relevant to our results, in order to give a flavor of a small part of the area. For
a more complete discussion and references we refer to the monographs [DGZ93] and
[HáJo14], or the survey papers [God01] and [Ziz03] in the Handbook; let us also refer to
the nice elementary introduction given in [FrMc02].

Our main perspective will be to motivate the fact that, unlike the finite-dimensional
case, the existence of non-trivial Ck-smooth functions on an infinite-dimensional Banach
space is a strong assumption, forcing several geometric constrains on the space. On the
other hand, the presence of one Ck-smooth norm frequently implies the existence of a
large supply of such norms.

To begin with, let us start by recalling the basic standard definitions of differentia-
bility.

Definition 1.1.1. Let O be an open subset of a normed space X, x ∈ O and f : O→ R.
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2 CHAPTER 1. SMOOTH RENORMINGS

(i) f is Gâteaux differentiable at x if there exists F ∈ X∗ such that for every h ∈ X

lim
t→0

f (x + th)− f (x)
t

= 〈F, h〉;

(ii) f is Fréchet differentiable if the above limit is uniform in h ∈ SX, i.e., if

lim
h→0

f (x + h)− f (x)− 〈F, h〉
‖h‖ = 0;

(iii) f is C1-smooth if it is Fréchet differentiable on O and the function x 7→ f ′(x) is a
continuous function from O to X∗.

(iv) if f is a norm on X, then f is Gâteaux (Fréchet) differentiable if it is a Gâteaux
(Fréchet) differentiable function on X \ {0}.

The uniquely determined functional F is frequently denoted by f ′(x); we will also
use the word smooth as a synonym to differentiable. Let us note that, in case f = ‖·‖ is a
norm on X, then ‖ f ′(x)‖ 6 1 and 〈 f ′(x), x〉 = ‖x‖; consequently, f ′(x) is a supporting
functional at x.

Let us now pass to recall the statement of the classical Šmulyan lemma [Smu40] on
Fréchet smooth norms (cf. [DGZ93, Theorem I.1.4]).

Lemma 1.1.2 (Šmulyan lemma). A norm ‖·‖ is Fréchet smooth at x ∈ SX if and only if
( fn)∞

n=1 is a convergent sequence, whenever ( fn)∞
n=1 ⊆ BX∗ satisfies 〈 fn, x〉 → 1.

Although very simple, this criterion has several interesting consequences; let us give
a sample of some of them (cf. [FHHMPZ01, Chapter 8]).

Corollary 1.1.3. Let (X, ‖·‖) be a Banach space.
(i) ‖·‖ is C1-smooth whenever it is Fréchet differentiable;

(ii) If the dual norm on X∗ is Fréchet smooth, X is reflexive;

(iii) If the dual norm on X∗ is LUR, then ‖·‖ is Fréchet smooth.

This gives a first, immediate, geometrical consequence of the existence of a dual
smooth norm in the dual. In the case where the smoothness is assumed on the norm of
X, rather than X∗, then one may deduce that X is an Asplund space. Let us record that
it is now customary to define a Banach space X an Asplund space if every its separable
subspace has separable dual; several characterisations of Asplund spaces may be found
in [DGZ93, §I.5] or [HáJo14, Theorem 5.2].

The proof of this last claim is also very simple and we shall sketch it presently;
plainly, it suffices to verify that X∗ is separable, for every separable Banach space X
with a Fréchet smooth norm. In fact, it is elementary to verify that a norm ν is Gâteaux
differentiable at a point x if and only if x admits a unique supporting functional, which,
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in this case, is ν′(x). Consequently, the image of X under ν′ consists exactly of those
functionals in SX∗ that attain their norm, and it is a separable set, according to (i) of
the above corollary. The Bishop–Phelps theorem leads us to the conclusion that X∗ is
separable.

We are next going to discuss a strengthening of this result, which gives us the pos-
sibility to introduce two fundamental notions in this area: bump functions and varia-
tional principles. A bump on a Banach space X is a function f : X → R with non-empty,
bounded support. Once a C1-smooth (or, more generally, Ck) norm is present in X, it is
immediate to construct a C1- smooth bump in X; it suffices to compose the norm with a
smooth bump on the real line which is constant in a neighbourhood of the origin.

The more general statement we shall prove is that X is Asplund, whenever it admits
a C1-smooth bump (let us mention that the result can be generalised further by replacing
C1 to mere Fréchet smoothness, but with a more complicated proof, [DGZ93, Theorem
II.5.3]). A main ingredient in the proof is the celebrated Ekeland variational principle,
whose statement we recall.

Theorem 1.1.4 (Ekeland variational principle, [Eke74, Eke79]). Let (M, d) be a complete
metric space and let ϕ : M → R ∪ {∞} be lower semi-continuous, bounded from below and
not identically equal to ∞. Then, for every ε > 0, there exists a point x0 ∈ M with ϕ(x) >
ϕ(x0)− εd(x, x0), whenever x ∈ M.

Lemma 1.1.5 ([Fab87]). If a Banach space X admits a C1-smooth bump, it is Asplund.

Proof. As above, we may assume that X is separable. Select a C1-smooth bump ϕ and
consider the function

ψ(x) =

{
ϕ−2(x) if ϕ(x) 6= 0
+∞ if ϕ(x) = 0

;

let us now fix arbitrarily f ∈ X∗ and ε > 0. The function ψ− f satisfies the assumptions
of Ekeland variational principle, whence there exists a point x0 ∈ X with ψ(x0) < ∞
and

ψ(x0 + th)− 〈 f , x0 + th〉 > ψ(x0)− 〈 f , x0〉 − εt‖h‖,
whenever t > 0 and h ∈ X. ψ being Fréchet differentiable at x0, we conclude

〈ψ′(x0), h〉 > 〈 f , h〉 − ε‖h‖,

which implies ‖ − 2ϕ−3(x0) · ϕ′(x0)− f ‖ = ‖ψ′(x0)− f ‖ 6 ε. It follows that the image
of X under ϕ′ is linearly dense in X∗, and we are done. �

At this stage we should state one of the main open problems in the area, whether
every Asplund space admits a Fréchet smooth, or even C1, bump, cf. [GMZ16, Problem
144].

On the other hand, the analogous question of the existence of a C1-norm on every
Asplund space was given a negative answer by Richard Haydon after a profound study
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of smoothness on C0(T) spaces, where T is a tree, [Hay90], [Hay96], and [Hay99]; also
see the discussion in [FrMc02, §9,10]. In particular, Haydon [Hay99] was able to prove
that C0(T) admits a C∞-smooth bump, for every tree T; it follows, in particular, the
much simpler fact that C0(T) is Asplund. This result is compared with the previous
example [Hay90] of a tree such that the corresponding C0(T) admits no Gâteaux dif-
ferentiable norm. As a consequence, there exist Asplund spaces that admit not even a
Gâteaux-smooth norm; moreover, it is in general impossible to obtain smooth norms
from smooth bumps.

Let us now pass to discuss a few geometrical consequences of the existence of a Ck-
smooth norm (or, more generally, bump) on a Banach space. Prior to this, let us just
mention that the definition of Ck-smooth function is the expected one: f : O → R is
C2-smooth if the map x 7→ f ′(x) is a C1-smooth map from O to X∗, and so on. Let us
also mention that we shall not discuss here the basic rules of calculus; these are worked
out in detail in [HáJo14, Chapter 1] or in the undergraduate-level [Col12].

A first, classical, such result is due to Meshkov [Mes78], who proved that X is iso-
morphic to a Hilbert space, whenever both X and X∗ admit a C2-smooth bump. This
result has been later generalised replacing the assumption of C2-smoothness by the as-
sumption the first derivative to be locally Lipschitz, [FWZ83]; also see [FaZi99] for an
alternative proof. In the same paper [FWZ83], the authors also show that the existence
of a C2-smooth norm on a Banach has profound structural consequence for the space;
in some sense, such spaces are either super-reflexive, or close to c0. More precisely, we
have the following.

Theorem 1.1.6 ([FWZ83]). If a Banach space X admits a bump with locally uniformly contin-
uous derivative, then either X contains a copy of c0 or it is super-reflexive.

Moreover, in case X admits a bump with locally Lipschitz derivative and it contains no copy
of c0, then X is (super-reflexive) with type 2.

This result is specially interesting also for one ingredient in its proof, since part of the
argument is an instance where it is possible to ‘convexify’ a smooth bump and produce
a smooth norm; see the definition of the function ψ in [FWZ83, Theorem 3.2] or the
discussion in [FrMc02, Theorem 25].

Deville [Dev89] succeeded in pushing the result even further and proved that the
existence of a C∞-smooth bump on a Banach space X that contain no copy of c0 im-
plies that X is of exact cotype 2k, for some integer k, and it contains a copy of `2k . In
particular, it follows that every ‘very smooth’ Banach space contains a sequence space
and, consequently, there are no Tsirelson-like very smooth Banach spaces, cf. [GMZ16,
Problem 2], or [FHHMZ10, p. 474].

We shall now pass to a discussion of the second phenomenon we wish to emphasise
in this section, namely the existence of a large supply of smooth norms on a Banach
space with one such norm; more precisely, it is often the case that, if a Banach space X
admits a Ck-smooth norm, then every equivalent norm can be approximated by a Ck-
smooth one. Of course, this phenomenon is a particular case of one of the main classical
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themes in analysis, i.e., the smooth approximation of continuous functions. However,
the important particular case of norm approximation by smooth norms, and not merely
smooth functions, has one additional difficulty, as one needs to preserve the convexity
of the involved functions. In particular, the use of partitions of the unity, when available,
may not be a sufficiently powerful tool.

On the other hand, broadly speaking, the construction of the smooth norm is carried
out by techniques locally using only finitely many ingredients, which is, of course, an
idea present already in the concept of partitions of unity. Probably the first explicit use
of this technique in order to construct smooth norms is found in the work of Pechanec,
Whitfield and Zizler [PWZ81]. To get an idea of the difficulty of constructing smooth
norms, we refer to, e.g., [MaTr91, Hay96, Hay99, HáHa07, Bib14].

Let us start with the formal definition of the relevant notion of approximation, which
in short is the uniform convergence on bounded sets.

Definition 1.1.7. Let (X, ‖·‖) be a Banach space and let P be a property of norms. We
say that ‖·‖ is approximated by norms with P if, for every ε > 0, there exits a norm |||·||| on
X, with property P and such that

(1− ε) ‖·‖ 6 |||·||| 6 (1 + ε) ‖·‖ .

Obviously, this is equivalent to
∣∣∣|||·||| − ‖·‖ ∣∣∣ 6 ε on the unit ball of (X, ‖·‖). This

notion of convergence turns the set of all equivalent norms on X into a Baire space,
whence the use of Baire category theorem is possible. This allows, in some cases, for the
approximation with norms that share two properties simultaneously; this important
technique is by now called Asplund averaging, [DGZ93, §II.4].

With this definition at our disposal, the main problem of smooth approximation of
norms can be easily formulated as follows.

Problem 1.1.8. Assume that a Banach space X admits a Ck-smooth norm. Must every
equivalent norm on X be approximable by Ck-smooth norms?

To begin with, let us notice that, so far, no counterexample is known and, in its full
generality, the problem is still open even in the case k = 1. In the separable setting, the
problem has been completely solved for every separable Banach space and every k in
[HáTa14], after a good bunch of partial positive results [Háj95, DFH96, DFH98]. Still in
the separable context, let us mention that the analogue problem for analytic norms is
open, even for `2, cf. [HáJo14, p. 464].

In the context of non-separable Banach spaces, the situation is way less understood.
In the case k = 1, clause (iii) in Corollary 1.1.3 implies that it is sufficient to ap-

proximate every dual norm on X∗ with a dual LUR norm. In turn, Fabian, Zajíček, and
Zizler [FZZ81] proved that the collection of dual LUR norms on X∗ is residual, when-
ever non-empty (let us mention, in passing, that the idea of using the Baire theorem on
the space of equivalent norms is introduced in this paper). Consequently, for k = 1, the
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problem has a positive solution, once a dual LUR norm is present on X∗. According to
[GTWZ83], this is the case whenever X∗ is WCG; this covers a wide range of Banach
spaces, in particular all reflexive Banach spaces.

In the absence of a dual LUR renorming, the problem appears to be completely open.
One specific Banach space for which the problem is open is the space C([0, ω1]), whose
dual space does not even admit a strictly convex dual norm [Tal86], cf. [DGZ93, Theo-
rem VII.5.2]. In the same paper, Talagrand proved the existence of a C1-smooth norm on
C([0, ω1]); building on this result, Haydon [Hay92, Hay96] was able to crystallise the no-
tion of a Talagrand operator and prove the existence of a C∞-smooth norm on C([0, ω1]).
Nevertheless, the C1-smooth approximation of norms in such space is still an open prob-
lem.

For k > 2 the problem seems to be more difficult, and no dual approach is avail-
able. In the already mentioned [PWZ81] the authors construct a particular LUR and
C1-smooth norm on c0(Γ) which admits C∞-approximations. This result has later been
largely generalized to include every Banach space of the form C([0, µ]), µ an ordinal
number, and every WLD Banach space with a Ck-smooth norm (in which case the ob-
tained norm can be approximated by Ck-smooth norms) [HáPr14]. Moreover, it was
known that every lattice norm on c0(Γ) admits C∞-smooth approximations, [FHZ97];
we shall sketch part of this argument later, in Section 1.1.3.

This bunch of partial results suggests that the spaces c0(Γ) are very plausible can-
didates for a positive solution to the approximation problem and indeed, in their re-
markable paper [BiSm16], Bible and Smith have succeeded in solving the C∞-smooth
approximation problem for norms on c0(Γ). Their approach consists in the construction
of smooth norms via boundaries; for more instances of constructing smooth (or poly-
hedral) norms using boundaries see, e.g., [Bib14, Fon80, FPST14, Háj95], or Bible’s PhD
thesis, [Bib16]. This approach has been very recently refined and extended in a series of
papers authored by Smith and his coauthors, [AFST19, Smi19, SmTr19].

Let us then pass to the description of our contribution to the field. Our main result
delves deeper into the fine behaviour of Ck-smooth approximations of norms in the
separable setting. Roughly speaking, we consider approximations which are not only
uniform on the unit ball, but also have a better asymptotic behaviour; the study of this
notion was motivated by Problem 170 (stated somewhat imprecisely) in [GMZ16] and
our main results provides a positive answer to the problem.

The result is, in some sense, analogous to the condition (ii) in [DGZ93, Theorem
VIII.3.2], which claims that in a Banach space with Ck-smooth partitions of unity, the
Ck-smooth approximations to continuous functions exist with a prescribed precision
around each point.

Let us now present the formal statement of our main result.

Theorem 1.1.9 ([HáRu17, Theorem 1.1]). Let X be a separable Banach space with a Schauder
basis (ei)

∞
i=1 and assume that X admits a Ck-smooth norm. Then, for every equivalent norm ‖·‖

on X and for every sequence (εN)
∞
N=0 of positive reals, there is a Ck-smooth renorming |||·||| of
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X such that for every N > 0∣∣∣ |||x||| − ‖x‖ ∣∣∣ 6 εN‖x‖ (x ∈ XN),

where XN := span{ei}∞
i=N+1.

In other words, we can approximate every equivalent norm on X with a Ck-smooth
one in a way that on the vectors from the ‘tail’ of the Schauder basis the approximation
is improving (as fast as we wish). In particular, the Ck-smooth approximating norm
preserves the same asymptotic structure as the approximated norm. For this reason,
we expect that the above result, or analogous results involving the same notion of ap-
proximation, may have consequences in some isometric or quasi-isometric problems.
One such instance could potentially be the context of metric fixed point theory (see,
e.g., [ADL97, GoKi90, KiSi01], or [BeLi00, Chapter 3] and the references therein), where
several notions are present of properties which asymptotically improve with growing
codimension. For example, let us mention the notion of asymptotically non-expansive
function or the ones of asymptotically isometric copy of `1 or c0.

It is perhaps worth crystallising such notion of approximation in a formal definition.

Definition 1.1.10. Let X be a separable Banach space with Schauder basis (ei)
∞
i=1 and

let P be a property of norms. We say that a norm ‖·‖ on X admits approximation with
asymptotic improvement by norms with property P if, for every sequence (εN)

∞
N=0 of pos-

itive real numbers, there exists a norm |||·||| of X with property P and such that for every
N > 0 ∣∣∣ |||x||| − ‖x‖ ∣∣∣ 6 εN‖x‖ (x ∈ XN),

where XN := span{ei}∞
i=N+1.

Once this notion of approximation is available, one may ask for further results con-
cerning such approximation. Let us recall, for example, that the collection of strictly
convex (resp. LUR, resp. uniformly convex) equivalent norms on X is residual, when-
ever non-empty ([FZZ81], see, e.g., [DGZ93, Theorem II.4.1]). It follows, in particular,
that every norm on a super-reflexive Banach space can be approximated by a uniformly
convex one. We will now observe the simple fact that, in general, such approximation
may fail to have asymptotic improvement. Consequently, the notion introduced above
is not just a formal strengthening, but it leads to a truly stronger notion of approxima-
tion.

As a technical point, let us mention that we do not known if the mere assumption of
the existence of a norm as above for some sequence (εN)

∞
N=0, with εN → 0 would lead

to a different notion. In other words, we do not know if the speed of the approximation
has a substantial rôle in the definition.

Example 1.1.11. Consider the Banach space `2
∞ with its natural basis, and then let

X :=

(
∞

∑
n=1

Xn

)
`2

,
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where Xn = `2
∞, for every n ∈ N. Let us denote by (ei)

∞
i=1 the natural Schauder basis of

X, where {e2n−1, e2n} is the natural basis in Xn; the original norm ‖·‖ of X can then be
expressed as

‖x‖ =
(

∞

∑
n=1

max
{
|x(2n− 1)|, |x(2n)|

}2
)1/2

.

We note that ‖·‖ admits no approximation with asymptotic improvement via uniformly
convex norms.

In fact, for every N > 0,

X2N := span{ei}∞
i=2N+1 =

(
∞

∑
n=N+1

Xn

)
.

Consequently, if |||·||| is a uniformly convex approximation of ‖·‖ with asymptotic im-
provement, and εN ↘ 0, then, in particular, the restriction of |||·||| to Xn is a better and
better approximation of ‖·‖∞, as n→ ∞. As a consequence, |||·|||�Xn becomes flatter and
flatter as n→ ∞, which contradicts its uniform convexity.

Before, we also mentioned very much in passing the approximation with polyhedral
norms. Actually, the study of polyhedral norms on a (separable) Banach space is very
much connected with the study of smooth norms, as polyhedral Banach spaces admit
‘small’ boundaries and this allows for the construction of smooth norms. Let us state
the following result as a witness of this phenomenon; some undefined notions present
in its statement will be introduced in subsequent sections (also see Section 1.1.4 for a
proof of some its implications).

Theorem 1.1.12 ([Fon90, Háj95]). For a separable Banach space X, the following are equiva-
lent:

(i) X admits a polyhedral norm;

(ii) X admits a norm with a countable boundary;

(iii) X admits a norm which locally depends on finitely many coordinates;

(iv) X admits a C∞-smooth norm which locally depends on finitely many coordinates.

Moreover, in a later paper [DFH98] it was also shown that in such Banach spaces ev-
ery equivalent norm can be approximated (uniformly on bounded sets) by polyhedral
norms and by C∞-smooth norms that locally depend on finitely many coordinates. This
naturally suggests the question whether this result can be sharpened and the approx-
imation can be chosen to have asymptotic improvement. As it turns out, the approxi-
mation technique used in the proof of our main result can also be adapted to these two
cases; consequently, we have the following result.

Theorem 1.1.13 ([HáRu17, §3]). Let X be a polyhedral Banach space with a Schauder basis
and let ‖·‖ be an equivalent norm on X. Then ‖·‖ admits approximation with asymptotic
improvement via polyhedral norms and via C∞-smooth norms that locally depend on finitely
many coordinates.
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In conclusion to this section, we shall describe how the remaining part of the chap-
ter is organised. The proof of the main Theorem 1.1.9 will be presented in Section 1.2,
whereas Section 1.3 is dedicated to Theorem 1.1.13 (and the definition of polyhedral Ba-
nach space). Prior to this, we shall introduce the concept of local dependence on finitely
many coordinates and prove a few properties of this notion in Section 1.1.1, while Sec-
tion 1.1.2 records an ubiquitous tool for constructing smooth norms, via Minkowski
functionals. Moreover, in Sections 1.1.3 and 1.1.4 we will sketch some techniques to
construct smooth norms.

1.1.1 Local dependence on finitely many coordinates

In this part we introduce the notion of function locally dependent on finitely many
coordinates, formally introduced in [PWZ81], and we discuss some properties of Banach
spaces that admit non-trivial such functions. It turns out that this notion is fundamental
in the study of higher order smoothness in Banach spaces, cf. [HáZi06], or [HáJo14, §5.5].

Definition 1.1.14. Let X be a Banach space, Ω an open subset of X, S an arbitrary set,
f : Ω → S an arbitrary function, and M ⊆ X∗. We say that f locally depends on finitely
many coordinates from M (is LFC-M, for short) if for every x ∈ Ω there exist an open
neighbourhood O of x and a finite collection of functionals {x∗1 , . . . , x∗n} ⊆ M such that
f (y) = f (z) for every y, z ∈ O with 〈x∗i , y〉 = 〈x∗i , z〉. We say that f is LFC if it is LFC-X∗.

Occasionally, we will also say that f depends only on {x∗1 , . . . , x∗n} on O if f (y) = f (z)
for every y, z ∈ O with 〈x∗i , y〉 = 〈x∗i , z〉.

Finally, in the case where f is the norm function, we say that ‖·‖ is LFC-M if it is
LFC-M on X \ {0}.

Equivalently, f is LFC-M if for every x ∈ Ω there are an open neighbourhood O of
x, a finite set of functionals {x∗1 , . . . , x∗n} ⊆ X∗ and a function g : Rn → R such that

f (y) = g (〈x∗1 , y〉, . . . , 〈x∗n, y〉)

whenever y ∈ O.

O
(x∗1 ,...,x∗n)

��

f
// R

Rn
g

>>

We shall start by giving a few obvious, but important, permanence properties of
the LFC condition: if functions f j : X → Sj are LFC-Mj for j = 1, . . . , k, then plainly
F( f1, . . . , fk) is LFC-(∪Mj), for every function F : S1× · · ·× Sk → S. As a particular case,
sums and products of LFC functions are still LFC. One more important permanence
property is the fact that the Implicit Function theorem applied to an LFC function results
in an LFC implicit function.
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Fact 1.1.15. Let X, Y, and Z be normed spaces, U ⊆ X and V ⊆ Y be open subsets and
f : U × V → Z be a function. Assume that f depends only on {x∗1 , . . . , x∗n} ⊆ (X ⊕ Y)∗ on
U ×V. Assume further that the equation f = 0 defines a unique function u : U → V, namely
there exists a unique function u : U → V with f (x, u(x)) = 0 for x ∈ U. Then, u depends
only on {x∗1�X, . . . , x∗n�X} on U.

In particular, if f is LFC-M, then u is LFC-(M�X).

Proof. Let x, y ∈ U be such that 〈x∗i �X, x〉 = 〈x∗i �X, y〉; then, of course, 〈x∗i , (x, u(x))〉 =
〈x∗i , (y, u(x))〉. The LFC property of f yields us 0 = f (x, u(x)) = f (y, u(x)), whence
u(x) = u(y) follows from the uniqueness of the function u. �

We now pass to the presentation of some examples of LFC functions: obviously,
every continuous linear functional x∗ on X is LFC-{x∗}; consequently, also f ◦ x∗, where
f : R→ S is an arbitrary function, is an example of an LFC function.

A less trivial, and actually important, example is the canonical norm of c0 which
is LFC-({e∗j }∞

j=1) (on c0 \ {0}). To see this, fix a non-zero x ∈ c0 and consider O :=
{y ∈ c0 : ‖x − y‖∞ < ‖x‖∞/4}. Let us then select N ∈ N such that |x(n)| 6 ‖x‖∞/2
whenever n > N and note that for every such n we have |y(n)| < 3

4‖x‖∞, while ‖y‖∞ >
3
4‖x‖∞, for every y ∈ O. Therefore, ‖y‖∞ = maxn=1,...,N |y(n)| for y ∈ O and we are
done.

With only formal modifications one shows the same assertion for every c0(Γ) space.
Moreover, we will see in Corollary 1.1.24 that c0(Γ) spaces even admit a C∞-smooth LFC
norm (and, consequently, a bump with the same properties).

It turns out that this example is archetypal since every infinite-dimensional Banach
space with an (arbitrary) LFC bump is in fact a c0-saturated Asplund space ([FaZi97,
PWZ81]). In the remaining part of the section, we shall present (part of) the proof of
this important result; in particular, we shall stress the use of variational principles in
both parts of the result.

The first preparatory lemma implies in particular that the existence of an LFC bump
implies the existence of an LFC upper semi-continuous bump.

Lemma 1.1.16. Let f : X → R be LFC-M; then χsupp f is LFC-M.

Proof. Fix x ∈ X and let O be a neighbourhood of x such that f depends only on
{x∗1 , . . . , x∗n} ⊆ M on O; we claim that χsupp f also depends only on {x∗1 , . . . , x∗n} on
O. Assuming by contradiction that this is false, there must exist y, z ∈ O with 〈x∗i , y〉 =
〈x∗i , z〉 but χsupp f (y) 6= χsupp f (z); we may assume, for example, y ∈ supp f and z /∈
supp f . Then, there exists a sequence (yn)∞

n=1 that converges to y and such that f (yn) 6=
0. Since yn− y+ z→ z and O is open, we can assume that (yn)∞

n=1, (yn− y+ z)∞
n=1 ⊆ O;

of course, we also have 〈x∗i , yn〉 = 〈x∗i , yn − y + z〉. Consequently, the LFC property of
f implies f (yn − y + z) = f (yn) 6= 0. But then, yn − y + z → z implies z ∈ supp f , a
contradiction. �

Theorem 1.1.17 ([FaZi97]). If a Banach space X admits an LFC-M bump, then span M = X∗.
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Proof. Let us fix a functional f ∈ X∗ and ε > 0. It is sufficient to find { f1, . . . , fn} ⊆ M
such that |〈 f , x〉| 6 ε‖x‖ whenever x ∈ Z := ∩n

i=1 ker fi. In fact, this condition means
that ‖ f �Z‖ 6 ε, so we can find an Hahn–Banach extension g ∈ X∗ of f �Z such that
‖g‖ 6 ε. Then, of course, f − g vanishes on Z, whence f − g ∈ span{ f1, . . . , fn} ⊆
span M; finally ‖ f − ( f − g)‖ = ‖g‖ 6 ε, whence the conclusion.

In order to find such { f1, . . . , fn} ⊆ M, we argue as follows: find a closed and
bounded set A 6= ∅ whose characteristic function is LFC-M and apply the Ekeland
variational principle to find x0 ∈ A where the functional f ‘almost attains’ its mini-
mum. The LFC condition tells us that, in a neighbourhood of x0, A contains a subspace
of the form Z = ∩n

i=1 ker fi, fi ∈ M; therefore, x0 is an interior point of A∩Z in the space
Z. Hence, − f �Z almost attains its maximum at an interior point and, by the maximum
principle, it is almost constant. Let us give the details below.

According to the previous lemma, we may find a non-empty closed bounded set A
such that χA is LFC-M. The Ekeland variational principle Theorem 1.1.4, applied to
(A, ‖·‖), f and ε, furnishes us with a point x0 ∈ A with 〈 f , x〉 > 〈 f , x0〉 − ε‖x− x0‖, i.e.,
〈 f , x− x0〉 > −ε ‖x− x0‖ for every x ∈ A. From the LFC-M property of χA, we can find
δ > 0 and { f1, . . . , fn} ⊆ M such that χA depends only on { f1, . . . , fn} on BO(x0, δ). As a
consequence, for every z ∈ Z = ∩n

i=1 ker fi, with ‖z‖ < δ, we have 〈 fi, x0〉 = 〈 fi, x0 + z〉,
whence 1 = χA(x0) = χA(x0 + z). This implies that for every z ∈ Z with ‖z‖ < δ we
have x0 + z ∈ A, thus 〈 f , z〉 > −ε‖z‖; by homogeneity, we conclude |〈 f , z〉| 6 ε‖z‖ for
every z ∈ Z, and the proof is complete. �

We are now ready to prove the first part of the result announced above.

Corollary 1.1.18. If a Banach space X admits an LFC bump, then it is an Asplund space.

Proof. Of course, the existence of an LFC bump passes to subspaces, so it is sufficient to
show that X∗ is separable whenever X is. Assume, therefore, that X is separable and
pick an LFC bump f on X; hence, for every x ∈ X there are an open neighbourhood Ox
of x and a finite set Φx ⊆ M of functionals such that f depends only on Φx on Ox. By the
Lindelöf property of X, the open cover {Ox}x∈X admits a countable subcover {On}∞

n=1;
plainly, the LFC property of f can be witnessed using only the open sets {On}∞

n=1 and
the corresponding set of functionals {Φn}∞

n=1. In particular, f is LFC-(∪Φn); hence, by
the previous theorem, X∗ = span (∪Φn) is separable. �

We shall now pass to the proof that every Banach space X with an LFC bump is
c0-saturated; as above, since the existence of an LFC bump passes to subspaces, it is
sufficient to show that X contains a copy of c0. In the argument we shall make use of
the so called compact variational principle, [DeFa89]; we also refer to [DGZ93, §V.2] for a
discussion of the result.

Theorem 1.1.19 (Compact variational principle, [DeFa89]). Let X be a Banach space that
contains no copy of c0, O ⊆ X be a symmetric, bounded open neighbourhood of 0 and let
f : O → R be even, lower semi-continuous and such that f (0) = 0 and inf∂O f > 0. Then
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there are a symmetric compact set K ⊆ O and a neighbourhood V of 0 with K + V ⊆ O such
that: for every δ > 0 there are η > 0 and a finite set F ⊆ K such that for every v ∈ V, ‖v‖ > δ
there is z ∈ F satisfying f (z + v) > f (z) + η.

In particular, for every v ∈ V, v 6= 0 there is z ∈ K with f (z + v) > f (z).

In order to show the necessity of the assumption that X contains no copy of c0, let us
consider the function g : c0 → R defined by

g(x) =

{
0 ‖x‖ 6 1
1 ‖x‖ > 1

= χ(1,∞) (‖x‖) ;

clearly, g is LFC and it satisfies the assumptions of the theorem with O = 2BO
c0

. However,
let us fix a compact subset K of O and a neighbourhood V of 0; as g is LFC there are a
covering {BO(xj, δj)}n

j=1 of K and a finite set M ⊆ X∗ such that g depends only on
M on each BO(xj, 2δj). Select then a non-zero vector v ∈ ∩x∗∈M ker x∗ ∩ V such that
‖v‖ 6 min δj. For every x ∈ K there exists j = 1, . . . , n such that x ∈ BO(xj, δj); therefore,
x, x + v ∈ BO(xj, 2δj) and 〈x∗, x〉 = 〈x∗, x + v〉 for every x∗ ∈ M. Consequently, g(x) =
g(x + v). In other words, for every compact K ⊆ O and every neighbourhood V of
0 there exists a non-zero v ∈ V with g(x + v) = g(x) for every x ∈ K, whence the
conclusion of the result is false.

As it turns out, essentially the same argument applies to every Banach space with an
LFC bump.

Theorem 1.1.20 ([PWZ81]). Let X be an infinite-dimensional Banach space with an LFC bump.
Then X contains a copy of c0.

Proof. According to Lemma 1.1.16, we can choose a non-empty, closed and bounded
set A such that χA is LFC; we can assume that 0 ∈ A. Moreover, χA · χ−A = χA∩(−A)
is also LFC, whence we can even assume that A is symmetric. Therefore, the function
g := 1− χA is lower semi-continuous, even, LFC and such that g(0) = 0 and g = 1 on
∂O, for some open ball O. Verbatim the same argument as before this proof shows that
for every compact subset K of O and every neighbourhood V of 0 there exists v ∈ V,
v 6= 0, such that g(z + v) = g(z) for every z ∈ K. The compact variational principle
then implies that X contains a copy of c0. �

To conclude, let us restate formally the main result proved in this section.

Theorem 1.1.21 ([FaZi97, PWZ81]). Every infinite-dimensional Banach space with an LFC
bump is a c0-saturated Asplund space.

1.1.2 Implicit Function theorem for Minkowski functionals

If asked to prove the existence of a smooth norm that approximates the max norm on
the plane, everyone would draw a convex body with no corners and whose boundary is
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close to the boundary of the unit square in the plane. Then he would just claim that this
is the unit ball of the desired smooth norm. What is implicit in the argument is that the
smooth convex body is the unit ball of a smooth norm; in other words, the Minkowski
functional of a smooth convex body is a smooth norm.

The goal of this section is to prove a technical result which exactly formalises the
above idea; as it is to be expected the proof involves the Implicit Function theorem. The
argument seems to appear outlined explicitly for the first time in [HáHa07], but it was
already present in several arguments in the literature; the statement and proof given
here are essentially [HáJo14, Lemma 5.23].

Lemma 1.1.22 (Implicit Function theorem for Minkowski functionals). Let (X, ‖·‖) be a
normed space and D 6= ∅ be an open, convex, symmetric subset of X; also let f : D → R be
even, convex and continuous. Assume the existence of a > f (0) such that the set B := { f 6 a}
is bounded and closed in X.

If there is an open set O with { f = a} ⊆ O such that f is Ck-smooth on O, then the
Minkowski functional µ of B is an equivalent Ck-smooth norm on X.

If f is LFC on O, then µ is LFC.

Let us notice that in the assumption of the result under consideration, the set B is
assumed to be a closed subset of X, and not merely a closed subset of D; indeed, the
closedness of B in X is used in the first paragraph of the argument (such paragraph
actually proves a very standard property of Minkowski functionals, and its proof is
included only to stress the rôle of the closedness of B in X).

As it turns out, the mere assumption that B is a closed subset of D, in fact conse-
quence of the continuity of f , would not be sufficient to conclude the result; let us offer
one relevant example here. Let us consider the space X := `2

∞ and let D be the open unit
ball in X; let us also consider the function f := 2 · χD{ , which is evidently C∞-smooth on
D. If we set a = 1 and O = ∅, then the unique missing assumption is that { f 6 1} = D
is not closed in X. On the other hand, the Minkowski functional of B is the norm of X,
which is not differentiable.

Proof. Since f is even and convex, the set B is additionally convex and symmetric; con-
sequently, µ is a norm equivalent to ‖·‖ and B is the unit ball of the norm µ. In order to
justify this last claim, note that whenever x ∈ B, then of course µ(x) := inf{t > 0 : x ∈
t · B} 6 1. Conversely, the assumption µ(x) 6 1, yields t−1 · x ∈ B for every t > 1;
therefore, x ∈ B follows from the closedness of B in X.

Assume now that f is Ck-smooth on O. The set

V :=
{
(x, ρ) ∈ (X \ {0})× (0, ∞) : ρ−1 · x ∈ O

}
is plainly an open subset of (X \ {0})× (0, ∞); moreover, the function F : V → R de-
fined by F(x, ρ) := f (ρ−1 · x) is Ck-smooth on V.

We now claim that the equation F = a on V globally defines a unique implicit
function from X \ {0} to (0, ∞); moreover, such a function is µ. In other words, for
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every h ∈ X \ {0} there exists a unique ρ > 0 such that F(h, ρ) = a; in addition,
ρ = µ(h). In order to prove this, let us fix h 6= 0. From µ(h)−1 · h ∈ {µ 6 1} = B,
we first obtain F(h, µ(h)) = f (h/µ(h)) 6 a. In the case that the inequality were strict,
then, f being continuous on the open set D, there would exist ε > 0 small such that
f (h/(µ(h)− ε)) 6 a; therefore we would have h/(µ(h)− ε) ∈ B, which, however, con-
tradicts the definition of µ. To conclude, the function [0, ∞) ∈ t 7→ f (t · h) is convex and
equals f (0) < a for t = 0; consequently, there can not exists two distinct values t, s > 0
with f (t · h) = f (s · h) = a. This implies the uniqueness of ρ that satisfies the above
equation and shows our assertion.

Next, from the convexity of f we also have

f ((1 + t)h)− f (h)
t

> f (h)− f (0)

for every h ∈ D and t > 0 small; consequently when f (h) = a, we obtain

〈 f ′(h), h〉 = lim
t→0+

f ((1 + t)h)− f (h)
t

> f (h)− f (0) = a− f (0) > 0.

We may then deduce that for h 6= 0

D2F (h, µ(h)) = − 1
µ(h)2 〈 f

′ (h/µ(h)) , h〉 = − 1
µ(h)

〈
f ′
(

h
µ(h)

)
,

h
µ(h)

〉
6= 0

(where D2F denotes the partial derivative of F with respect to its second variable). We
are now in position to apply the Implicit Function theorem (cf. [HáJo14, Theorem 1.87])
and deduce that µ is Ck-smooth on X \ {0}.

Finally, let us assume that f is LFC on O and let us fix (x, ρ) ∈ V. By definition,
we may select a neighbourhood A of ρ−1 · x such that f depends only on the finite set
{x∗1 , . . . , x∗n} ⊆ X∗ on the set A. We may now let Ã be the open neighbourhood of (x, ρ)
defined by Ã :=

{
(y, t) ∈ V : t−1 · y ∈ A

}
and we may extend the functionals x∗i to func-

tionals x̃∗i on X⊕R, by letting 〈x̃∗i , (y, t)〉 = 〈x∗i , y〉; we also let x∗ ∈ (X⊕R)∗ be defined
by 〈x∗, (y, t)〉 = t. We then prove that F depends only on {x̃∗1 , . . . , x̃∗n, x∗} on Ã: indeed,
if this finite collection of functionals does not separate two points (y, t), (z, s) ∈ Ã, then
in particular t = s and 〈x∗i , y〉 = 〈x̃∗i , (y, t)〉 = 〈x̃∗i , (z, s)〉 = 〈x∗i , z〉. Consequently,
〈x∗i , t−1 · y〉 = 〈x∗i , s−1 · z〉 and we conclude F(y, t) = f (t−1 · y) = f (s−1 · z) = F(z, s).
Therefore, F is LFC on V and Fact 1.1.15 leads us to the conclusion that µ is LFC on
X \ {0}. �

Let us now distill a particular case of the above result, in which the technical as-
sumptions are automatically satisfied; this particular case is already sufficient to show
the existence of a C∞-smooth and LFC norm on the Banach space c0(Γ).

Corollary 1.1.23. Let (X, ‖·‖) be a normed space and f : X → R be an even, convex and Ck-
smooth function. Assume, moreover, that there exists a > f (0) such that the set B := { f 6 a}
is bounded. Then, the Minkowski functional µ of B is a Ck-smooth equivalent norm on X; if f is
LFC, then so is µ.
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In conclusion of this part, let us present perhaps the simplest application of the above
technique and construct a C∞-smooth norm on the space c0(Γ). The first construction
of a C∞-smooth norm on c0 is due to Kuiper and appeared in [BoFr66]; the argument
below comes from [HáZi06]. Let us also mention that the technique of gluing together
various seminorms in a single function Φ, present in the argument, is a pervasive trick
in this area and will also appear in our argument.

Corollary 1.1.24. The space c0(Γ) admits an LFC, C∞-smooth equivalent norm; moreover, such
norm can be chosen to approximate the original one ‖·‖∞.

Proof. Let us fix ε ∈ (0, 1/2) and select a C∞-smooth, even and convex function ϕ : R→
R with the properties that ϕ(x) = 0 if |x| 6 1− ε and ϕ(±1) = 1. Let us now consider
the function Φ : c0(Γ)→ R defined by

Φ(x) := ∑
γ∈Γ

ϕ(x(γ)),

for x = (x(γ))γ∈Γ ∈ c0(Γ).
We first note that the sum defining Φ is locally finite on c0(Γ) \ {0}: in fact, for x 6= 0,

the set {|x| > 1/4} is finite and every y ∈ c0(Γ) with ‖x− y‖∞ 6 1/4 satisfies |y| 6 1/2
outside such a set. In other words, for every non-zero x ∈ c0(Γ), Φ is a finite sum on
B(x, 1/4); it follows that it is a C∞-smooth and LFC function. Plainly, it is additionally
even and convex.

Finally, the inclusions

{‖·‖∞ 6 1− ε} = {Φ = 0} ⊆ {Φ 6 1} ⊆ {‖·‖∞ 6 1}

allow us to apply the above corollary and deduce that the Minkowski functional µ of
{Φ 6 1} is a C∞-smooth and LFC norm. The same list of inclusions also implies ‖·‖∞ 6
µ 6 1

1−ε ‖·‖∞, which proves the second part of the result and concludes the proof. �

1.1.3 Smooth norms on c0(Γ)

Here we prove the main result in the paper [FHZ97], namely the fact that every lattice
norm on c0(Γ) can be approximated by a C∞-smooth LFC norm. We present it because
it is an instance of how to handle LFC functions and partially because we can offer a
simpler argument that avoids a main technicality.

A main tool in the proof is the use of convolution operators: of course, in finite-
dimensional spaces convolution is a prime tool for smooth approximation, but in the
infinite-dimensional setting the absence of Lebesgue measure rules out the possibility
to define the convolution in a trivial way. The main idea is to exploit the LFC property
of the canonical norm of c0(Γ): in a neighbourhood of x ∈ c0(Γ) the norm depends only
on finitely many coordinates, so one may hope that using the convolution only in those
finitely many coordinates will be sufficient for the approximation.
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We start by discussing the convolution for an arbitrary (convex) function f : c0(Γ)→
R, in order to shorten the approximation step in the proof of the result; henceforth, we
will consider a fixed even, C∞-smooth bump b : R → [0, ∞) such that supp b ⊆ [−δ, δ]
and

∫
R

b dλ = 1 (here, λ denotes Lebesgue measure on the real line and λn will denote
Lebesgue measure on Rn). We have a first, immediate remark, whose proof is omitted.

Fact 1.1.25. If f : R→ R is convex, then f ∗ b is convex and f 6 f ∗ b.

Let now f : c0(Γ)→ R be a convex function, fix a coordinate γ ∈ Γ and consider the
function f γ : c0(Γ)→ R, defined, for x = (x(γ))γ∈Γ, by

f γ(x) :=
∫

R
f (x− teγ)b(t) dλ(t) =

∫
R

f

(
∑

η 6=γ

x(η)eη + teγ

)
b(x(γ)− t) dλ(t);

the integral is clearly well defined since f is continuous on x + Reγ. As in the previous
fact, we check that f γ is convex and f 6 f γ. Let us also denote by Iγ the (linear)
convolution operator f 7→ f γ. The convexity of f γ allows us to iterate this convolution
operation, in a different coordinate: fixed γ′ 6= γ, it is immediate to verify that Iγ ◦
Iγ′ = Iγ′ ◦ Iγ. This allows us to unambiguously define Iπ := Iγ1 ◦ · · · ◦ Iγn , whenever
π = {γ1, . . . , γn} ⊆ Γ. In other words, for every finite subset π = {γ1, . . . , γn} of Γ,
consider the convex function f π := Iπ( f ), defined by

f π(x) =
∫

Rn
f

(
x−

n

∑
i=1

tieγi

)
n

∏
i=1

b(ti) dλn(t1, . . . , tn).

We already know that every f π > f is a convex function on c0(Γ) and f π 6 f π′

whenever π ⊆ π′. We are then in position to consider the function F : c0(Γ)→ R∪{∞},
defined by

F := sup
π∈[Γ]<ω

f π.

Plainly, F > f is a convex function; it is also easy to see that F is even (respectively, odd),
whenever so is f .

Moreover, in case f is uniformly continuous, then F approximates f (whence, in
particular, it is real valued): in fact, let ω f be the modulus of continuity of f , fix ε > 0
and choose a bump b whose support is contained in [−δ, δ], where ω f (δ) 6 ε. Since
‖∑n

i=1 tieγi‖∞ 6 δ, whenever |ti| 6 δ, we have

f π(x)− f (x) 6
∫
[−δ,δ]n

∣∣∣∣∣ f
(

x−
n

∑
i=1

tieγi

)
− f (x)

∣∣∣∣∣ n

∏
i=1

b(ti) dλn(t1, . . . , tn)

6
∫
[−δ,δ]n

ε
n

∏
i=1

b(ti) dλn(t1, . . . , tn) = ε;
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thus, f 6 F 6 f + ε.

Let us now pass to the statement of the main result of the section. A norm ‖·‖
on c0(Γ) is a lattice norm if ‖x‖ 6 ‖y‖ whenever x, y ∈ c0(Γ) satisfy |x| 6 |y| (i.e.,
|x(γ)| 6 |y(γ)| for every γ ∈ Γ). As an immediate consequence, note that ‖x‖ =

∥∥|x|∥∥.

Theorem 1.1.26 ([FHZ97, Theorem 1]). Every equivalent lattice norm ‖·‖ on c0(Γ) can be
approximated by C∞-smooth LFC norms.

We first shortly describe the strategy of the proof. A main feature of the ‖·‖∞ norm is
that it only depends on the ‘large coordinates’: if we pick a vector from the unit sphere
of c0(Γ) and set equal to 0 all its coordinates with absolute value smaller than 1/2, we
do not modify its norm. A generic lattice norm may fail to have this property and
the first step consists in approximating ‖·‖ with a function that depends on the large
coordinates. We then use the above convolution procedure to this function and we find
a smooth approximation; the Implicit Function theorem then leads us to the conclusion.

We shall now start with the first step of the argument and define this approximating
function. Let us therefore fix an equivalent lattice norm ‖·‖ on c0(Γ); from the equiva-
lence of ‖·‖ and ‖·‖∞, we may choose a constant C > 0 such that ‖·‖ 6 C ‖·‖∞. Let us
fix a small parameter ∆ > 0 and consider the vector x · χ{|x|>∆}; this amounts exactly to
neglecting the small coordinates of x. We then set

f∆(x) := sup
{
‖y‖ : y = x on {|x| > ∆} and |y| 6 ∆ on {|x| 6 ∆}

}
.

It will be useful to rewrite the formula in terms of an equivalence relation: let us say
that y ∼∆ x if x · χ{|x|>∆} = y · χ{|y|>∆}. We can then rewrite

f∆(x) := sup{‖y‖ : y ∼∆ x}.

Obviously, f∆(y) = f∆(x) whenever y ∼∆ x; since clearly x ∼∆ x · χ{|x|>∆}, we

deduce that f∆(x) = f∆

(
x · χ{|x|>∆}

)
. This equality expresses the crucial property that

f∆ only depends on large coordinates; let us list some more properties of such function.

Lemma 1.1.27. Let the function f∆ be defined as above. Then:

(i) f∆(x) = f∆

(
x · χ{|x|>∆}

)
;

(ii) f∆ is lattice and even;

(iii) ‖·‖ 6 f∆ 6 ‖·‖+ 2C∆;

(iv) f∆ is convex.

We thus see that the approximating function f∆ keeps the lattice property of ‖·‖, but
it has the additional pleasant feature of depending on large coordinates. The proof of (i)
was already observed before; (ii) and (iii) are equally immediate and therefore omitted.
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Proof of (iv). The crux of the argument lies in the following claim.
Claim 1.1.28. Let x, y ∈ c0(Γ), λ ∈ [0, 1] and z̃ ∼∆ z := λx + (1− λ)y. Then there exist
x̃, ỹ ∈ c0(Γ) with x̃ ∼∆ x, ỹ ∼∆ y and such that |z̃| 6 λ|x̃|+ (1− λ)|ỹ|.

Indeed, once this is proved, the lattice property yields

‖z̃‖ 6 ‖λ|x̃|+(1−λ)|ỹ|‖ 6 λ
∥∥∥|x̃|∥∥∥+(1−λ)

∥∥∥|ỹ|∥∥∥ = λ‖x̃‖+(1−λ)‖ỹ‖ 6 λ f∆(x)+ (1−λ) f∆(y).

z̃ ∼∆ z being arbitrary, the convexity of f∆ follows.

Proof of the Claim. Fix x, y ∈ c0(Γ), λ ∈ [0, 1] and z̃ ∈ c0(Γ) with z̃ ∼∆ z := λx+(1−λ)y.
In order to define x̃ and ỹ we consider four cases, according to the values of x(γ) and
y(γ).

1. |x(γ)|, |y(γ)| 6 ∆.
In this case, |z(γ)| 6 ∆ too, whence z̃(γ) is an arbitrary element in [−∆, ∆]. If we
set x̃(γ) = ỹ(γ) := z̃(γ), the inequality is plainly satisfied for this γ.

2. |x(γ)|, |y(γ)| > ∆.
Here, we are forced to choose x̃(γ) = x(γ) and ỹ(γ) = y(γ). In the case that
|z(γ)| > ∆ too, then z̃(γ) = z(γ); hence, z̃(γ) := λx̃(γ) + (1− λ)ỹ(γ) and the
inequality is satisfied. In case |z(γ)| 6 ∆, then |z̃(γ)| 6 ∆, whence |z̃(γ)| 6 ∆ 6
λ|x̃(γ)|+ (1− λ)|ỹ(γ)|, and we are done with this case.

3. |x(γ)| > ∆, |y(γ)| 6 ∆.
We are forced to let x̃(γ) = x(γ), but we can pick any ỹ(γ) ∈ [−∆, ∆]. If |z(γ)| >
∆, then z̃(γ) = z(γ); hence, we may set ỹ(γ) = y(γ) and the inequality holds
true. On the other hand, if |z(γ)| 6 ∆, we select ỹ(γ) with |ỹ(γ)| = ∆; we have
λ|x̃(γ)|+ (1− λ)|ỹ(γ)| > ∆ > |z̃(γ)| and the inequality is true also in this case.

4. |x(γ)| 6 ∆, |y(γ)| > ∆.
We argue as in the previous case, exchanging the roles of x and y.

From the construction, it is obvious that x̃ ∼∆ x, ỹ ∼∆ y and |z̃| 6 λ|x̃| + (1 −
λ)|ỹ|. We only have to check that in fact x̃, ỹ ∈ c0(Γ): however, all but finitely many
coordinates γ fall in the first case, whence x̃ and ỹ coincide with z̃ on all but finitely
many coordinates. Since z̃ ∈ c0(Γ), we conclude that x̃, ỹ ∈ c0(Γ), and we are done. �

�

Clauses (i)–(iii) in the above lemma are observed in [FHZ97], but the authors seem to
have not realized the convexity of f∆. In fact, the subsequent step in their proof consists
in defining a ‘convexified’ function, denoted C∆, at the beginning of p. 265. Then, much
of the subsequent effort consists in proving that the properties of f∆ are preserved when
passing to C∆; finally the convolution technique is applied to the latter function (see
from the second half of p. 269 on). Here, armed with the further information that f∆ is
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convex, we apply the convolution machinery already to the function f∆; in particular,
property (iv) above allows us to skip completely pp. 265–268.

Let us however stress that, although this convexification procedure is redundant for
this argument, the technique itself is a very important one; it is, in fact, the same one
used in [FWZ83] that we have mentioned when commenting on Theorem 1.1.6.

End of the proof of Theorem 1.1.26. We fix a small parameter ∆ > 0, in particular such that
3C∆ is as small as we wish, and we consider the function f∆ as above. We then apply the
convolution procedure to this function and δ = ∆/2 (let us recall that supp b ⊆ [−δ, δ]);
for π = {γ1, . . . , γn} ⊆ Γ we set

f π
∆ (x) =

∫
Rn

f∆

(
x−

n

∑
i=1

tieγi

)
n

∏
i=1

b(ti) dλn(t1, . . . , tn),

F∆ := sup
π∈[Γ]<ω

f π
∆ .

We already know that F∆ is even and convex; it is moreover immediate to verify
that ‖·‖ 6 F∆ 6 ‖·‖ + 3C∆. Consequently, for ∆ sufficiently small, i.e., 3C∆ 6 ε, the
symmetric convex set {F∆ 6 1} satisfies

{‖·‖ 6 1− ε} ⊆ {F∆ 6 1} ⊆ {‖·‖ 6 1};

it follows that its Minkowski functional |||·||| := µ{F∆61} is an equivalent norm with
‖·‖ 6 |||·||| 6 1

1−ε ‖·‖. In order to conclude the proof it is therefore sufficient to show
that F∆ is C∞-smooth and LFC and invoke Lemma 1.1.22.

In preparation for this, we prove that the functions f π
∆ (and consequently also F∆)

depend on the large coordinates: actually, f π
∆ (x) = f π

∆ (y) whenever x ∼∆/2 y. Note first
that if ‖e‖∞ 6 ∆/2 and x ∼∆/2 y, then x + e ∼∆ y + e: in fact, the two vectors coincide
even on the set {|x| > ∆/2} ⊇ {|x + e| > ∆} and on the complementary set we have
|x + e|, |y + e| 6 ∆. Therefore, if |ti| 6 ∆/2 = δ we have x−∑n

i=1 tieγi ∼∆ y−∑n
i=1 tieγi ,

which yields f∆
(
x−∑n

i=1 tieγi

)
= f∆

(
y−∑n

i=1 tieγi

)
; integration over [−δ, δ] then leads

us to the conclusion that f π
∆ (x) = f π

∆ (y).
This property and similar calculations also prove the following two facts. For x ∈

c0(Γ), let π(x) := {|x| > ∆/4}; then

(i) on the set {y ∈ c0(Γ) : ‖y− x‖∞ < ∆/4}, the function f π(x)
∆ depends on the finitely

many coordinates from π(x);

(ii) f π(x)
∆ = F∆ on the same set {y ∈ c0(Γ) : ‖y− x‖∞ < ∆/4}.

The former assertion means in particular that the function f π(x)
∆ is LFC and it also

readily implies its C∞-smootness; the latter implies that F∆ locally coincides with some
f π
∆ , whence it also is C∞-smooth and LFC. �
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As a particular case of the above result, or of the much simpler Corollary 1.1.24,
we conclude the existence of a C1-smooth norm on c0 with locally uniformly contin-
uous derivative. In conclusion to this section, we mention that the conclusion to this
result can not be improved, in the sense that the word ‘locally’ can not be removed from
the above sentence [Wel69]; the simple proof, based on Darboux theorem, may also be
found in [HáJo14, Proposition 5.49].

Proposition 1.1.29 ([Wel69]). There is no C1-smooth bump on c0 with uniformly continuous
derivative.

1.1.4 Countable boundaries

In this section we shall show how to use boundaries to construct smooth norms, prov-
ing in particular the main implication in the characterisation given in [Háj95]; we will
also see the interplay between countable boundaries and polyhedral Banach spaces, in
the separable setting. In particular, the subsequent results will provide a proof of some
implications of Theorem 1.1.12. Let us start recording the definition of boundary for a
Banach space, while the definition of polyhedral Banach space is recorded at the begin-
ning of Section 1.3.

Definition 1.1.30. A subset B of BX∗ is a boundary for X if

‖x‖ = max
x∗∈B
|〈x∗, x〉|,

i.e., for every x ∈ X there exists x∗ ∈ B such that ‖x‖ = |〈x∗, x〉|.

The Hahn-Banach theorem obviously implies that SX∗ is a boundary for X; more-
over, an easy argument involving the Krein–Milman theorem implies that Ext BX∗ is a
boundary. Let us also observe that a Banach space admits a finite boundary if and only
if it is a finite-dimensional polyhedral Banach space.

The first important result that we shall state here is due to Vladimir P. Fonf [Fon80];
one its alternative proof may be found in [Ves00].

Theorem 1.1.31 ([Fon80, Fon00]). Every separable polyhedral Banach space admits a count-
able boundary.

Let us notice that the converse implication does not hold, as it is possible to prove
that the space c is not polyhedral, although it clearly admits a countable boundary. On
the other hand, spaces with a countable boundary admit polyhedral renormings, as the
next simple lemma shows. In its proof, we will need the following well-known criterion
for polyhedrality, for whose proof we refer to [HáJo14, Lemma 5.101].

Proposition 1.1.32 (see, e.g., [HáJo14, Lemma 5.101]). Let X be a normed space and let
B ⊆ BX∗ be 1-norming for X. If B satisfies the condition

(∗) for every f , w∗-accumulation point of B, and x ∈ BX we have |〈 f , x〉| < 1
(i.e., no such f can satisfy ‖ f ‖ = 1 and attain the norm)
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then (B is a boundary for X and) X is polyhedral.

Lemma 1.1.33. Assume that the normed space (X, ‖·‖) admits a countable boundary. Then
‖·‖ can be approximated by polyhedral norms.

Proof of Lemma 1.1.33. Let ( fn)∞
n=1 be a boundary for ‖·‖; fix (εn)∞

n=1 ↘ 0 and let gn :=
(1 + εn) fn. Then, the norm ν := supn |gn| approximates ‖·‖ and (gn)∞

n=1 is plainly 1-
norming for ν. We prove that (X, ν) is polyhedral by means of condition (∗). Assume
that g is a w∗-accumulation point of of (gn)∞

n=1; since εn → 0, we easily see that g is also
a w∗-accumulation point of ( fn)∞

n=1, whence ‖g‖ 6 1. Pick now x ∈ X with ν(x) = 1; as
( fn)∞

n=1 is a boundary, there exists k ∈N such that |〈 fk, x〉| = ‖x‖. Consequently,

|〈g, x〉| 6 ‖g‖ ‖x‖ 6 ‖x‖ = |〈 fk, x〉| < |〈gk, x〉| 6 ν(x);

hence, (∗) is satisfied and Proposition 1.1.32 implies the polyhedrality of (X, ν). �

Let us note that this simple trick of ‘lifting up’ the coordinates is actually quite useful
and it will re-appear in the next proof. As it is apparent, it is a way to isolate a finite
subset of ‘larger’ coordinates; its forthcoming appearance in an argument involving the
LFC condition is therefore not unexpected.

We now present the main result in [Háj95], showing how to obtain a smooth norm
from a countable boundary. The strategy of the proof consists in using two tools: first,
the above trick of lifting up some coordinates leads to an LFC norm and, secondly, this
local finiteness allows to implement the same convolution technique of Section 1.1.3.

Theorem 1.1.34 ([Háj95]). Let (X, ‖·‖) be a normed space with a countable boundary. Then
‖·‖ can be approximated by C∞-smooth LFC norms.

Proof. Let us fix a countable boundary ( fn)∞
n=1 ⊆ SX∗ for X; moreover, fix a strictly

decreasing sequence (δn)∞
n=1 ↘ 0 and let gn := (1 + δn) fn. Consider then the seminorm

ν := sup |gn|; plainly, ‖·‖ 6 ν 6 (1 + δ1) ‖·‖, whence ν is a norm that approximates
‖·‖. Moreover, (gn)∞

n=1 is a boundary for (X, ν): to see this, fix x ∈ X such that ‖x‖ = 1.
Find n0 such that |〈 fn0 , x〉| = 1, whence |〈gn0 , x〉| = 1 + δn0 ; for every n > n0 we then
have |〈gn, x〉| 6 1 + δn < 1 + δn0 . Therefore, ν(x) = maxn=1,...,n0 |〈gn, x〉| and (gn)∞

n=1 is
a boundary for (X, ν). Note that a similar argument would also show that ν is LFC.

Let us then consider the isometry T : (X, ν)→ (`∞, ‖·‖∞) defined by x 7→ (〈gn, x〉)∞
n=1

and let Z ⊆ `∞ be its range. It is sufficient to construct, as we will do, an equivalent
norm on `∞ which approximates ‖·‖∞ and is C∞-smooth and LFC when restricted to Z.

Let us fix a sequence (εn)∞
n=1 ↘ 0 with εn 6

δn−δn+1
4 and pick a sequence (bn)∞

n=1 of
even C∞-smooth bumps bn : R → [0, ∞) with

∫
bn = 1 and supp bn ⊆ [−εn, εn]. For

z ∈ `∞ and n ∈N define the functions

Fn(z) :=
∫

Rn

∥∥∥∥∥z−
n

∑
i=1

tiei

∥∥∥∥∥
∞

n

∏
i=1

bi(ti) dλn(t1, . . . , tn) =
∫

R
Fn−1(z− ten) · bn(t) dλ(t).
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In the notation of Section 1.1.3, we have Fn = I{1,...,n}(‖·‖∞) > ‖·‖∞. Thus, we al-
ready know that (Fn)∞

n=1 is an increasing sequence of even and convex functions; more-
over, ‖∑n

i=1 tiei‖∞ 6 ε1 for ti ∈ supp bi implies that ‖·‖∞ 6 Fn 6 ‖·‖∞ + ε1. The function
F := sup Fn is therefore even, convex and it satisfies ‖·‖∞ 6 F 6 ‖·‖∞ + ε1. Hence, the
set B := {F 6 1 + 2δ1} satisfies

{‖·‖∞ 6 1 + 2δ1 − ε1} ⊆ B ⊆ {‖·‖∞ 6 1 + 2δ1}
and its Minkowski functional µ is a norm that approximates ‖·‖∞. To conclude, we
show that F�Z is C∞-smooth and LFC on the set {‖·‖∞ > 1 + δ1} ⊇ {F = 1 + 2δ1} (this
inclusion follows from ε1 < δ1); an appeal to Lemma 1.1.22 then concludes the proof.

The rough idea is that z ∈ Z has a finite set of coordinates which are substantially
larger than the remaining ones, so this property remains true (with the same finite set of
coordinates) if we pick y close to z. The convolution operator defining Fn(y) only takes
into account points close to y, so these points have the same finite set of large coordi-
nates. In other words, the ‖·‖∞ appearing in the integral is in fact always a maximum
over the same finite set, which implies the desired properties. Let us give the details
below.

Fix z = (z(n))∞
n=1 ∈ Z with ‖z‖∞ > 1 + δ1; the vector x := T−1z ∈ X then satisfies

‖x‖ > 1. Therefore, there is n0 ∈ N with |〈 fn0 , x〉| = ‖x‖ > 1, whence |z(n0)| =
|〈gn0 , x〉| = (1 + δn0)‖x‖; on the other hand, |z(n)| 6 (1 + δn0+1)‖x‖ whenever n >

n0 + 1. If we select any y ∈ Z with ‖y− z‖∞ 6
δn0−δn0+1

4 =: ε and tn ∈ supp bn, where
n > n0 + 1, we then have:

|y(n0)− tn0 | −
∣∣∣y(i)− ti

∣∣∣ > |y(n0)| − |y(i)| − εn0 − εi > (δn0 − δn0+1)‖x‖ − 2ε− 2εn0

> (δn0 − δn0+1)− 2ε− 2εn0 =
δn0 − δn0+1

2
− 2εn0 > 0.

This implies that for arbitrary n > n0 + 1, y ∈ Z with ‖y− z‖∞ 6 ε and ti ∈ supp bi
we have ∥∥∥∥∥y−

n

∑
i=1

tiei

∥∥∥∥∥
∞

= max
i=1,...,n0

|y(i)− ti|,

whence

Fn(y) =
∫

Rn

∥∥∥∥∥y−
n

∑
i=1

tiei

∥∥∥∥∥
∞

n

∏
i=1

bi(ti) dλn(t1, . . . , tn)

=
∫

Rn0
max

i=1,...,n0
|y(i)− ti|

n0

∏
i=1

bi(ti) dλn0(t
1, . . . , tn0).

In other words, we have shown that for every z ∈ Z with ‖z‖∞ > 1 + δ1 there exists

n0 ∈N such that for every y ∈ BZ

(
z,

δn0−δn0+1
4

)
we have

F(y) =
∫

Rn0
max

i=1,...,n0
|ti|

n0

∏
i=1

bi(y(i)− ti) dλn0(t
1, . . . , tn0).
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This equality immediately implies that F�Z is C∞-smooth and LFC on the set {‖·‖∞ >
1 + δ1}, which finishes the proof. �

1.2 The main renorming

This section is dedicated to the main renorming procedure and the consequent proof of
Theorem 1.1.9; let us start by describing the rough idea. By the result in [HáTa14], for

every N one can find a Ck-smooth norm ‖·‖N such that
∣∣∣ ‖·‖N − ‖·‖

∣∣∣ 6 εN ‖·‖. One

is then tempted to use the standard gluing together in a Ck-smooth way and hope that
the resulting norm will satisfy the desired properties. Unfortunately, in this way there
is no possibility to assure that on XN only the ‖·‖n norms with n > N will enter into
the gluing procedure. To achieve this feature it is necessary that the norms ‖·‖N be
quantitatively different on XN and XN = span{ei}N

i=1. In particular, we need a suitable
finite set of these norms to be substantially larger than the others, very much in the
same spirit of the arguments in Sections 1.1.3 and 1.1.4. The first part of the argument,
consisting of the geometric Lemma 1.2.1 and some easy deductions, is exactly aimed
at finding new norms which are quantitatively different on tail vectors and ‘front vec-
tors’. The second step consists in iterating this renorming for every n and rescaling the
norms. Finally, we suitably approximate these norms with Ck-smooth ones and we glue
everything together using the standard technique.

Throughout the section, we will assume that (X, ‖·‖) is a separable (real) Banach
space that admits a Schauder basis (ei)

∞
i=1. We shall start by fixing some notation.

We denote by K := b.c.(ei)
∞
i=1 the basis constant of the Schauder basis (which of

course depends on the particular norm we are using). We will also denote by Pk the
usual projection defined by Pk(∑∞

j=1 αjej) = ∑k
j=1 αjej and we set Pk := IX − Pk, i.e.,

Pk(∑∞
j=1 αjej) = ∑∞

j=k+1 αjej. It is clear that ‖Pk‖ 6 K and ‖Pk‖ 6 K + 1. Finally, we
denote Xk := span{ei}k

i=1 and Xk = span{ei}∞
i=k+1 the ranges of the two projections

respectively.
The first part of the argument to be presented below will make extensive use of con-

vex sets. Let us recall that a convex set C in a Banach space X is said to be a convex body
whenever its interior is not empty. Obviously, a symmetric convex body is in particular
a neighbourhood of the origin and the unit ball BX of X is a bounded, symmetric convex
body (we shorthand this fact by saying that it is a BCSB). It is a simple classical fact that
any other BCSB B in X induces an equivalent norm on X via its Minkowski functional

µB(x) := inf{t > 0 : x ∈ tB}.

We will also denote by ‖·‖B the norm induced by B, i.e., ‖x‖B := µB(x); obviously ‖·‖BX
is the original norm of the space. Two obvious properties are that

B ⊆ C =⇒ µB > µC,
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µλB =
1
λ

µB

which, passing to the associated Minkowski functionals, yield

B ⊆ C ⊆ (1 + δ)B =⇒ 1
1 + δ

µB 6 µC 6 µB.

We now start with the first part of the argument.

Lemma 1.2.1. Assume that (X, ‖·‖) is a Banach space with a Schauder basis (ei)
∞
i=1 and let K

be the basis constant of (ei)
∞
i=1; let us also denote the unit ball of X by B. Fixed k ∈ N, two

parameters λ > 0 and 0 < R < 1, consider the sets

D :=
{

x ∈ X : ‖Pkx‖ 6 R
}
∩ (1 + λ) · B,

C := conv{D, B}.

Then C is a BCSB and

C ∩ Xk ⊆
(

1 + λ
K

K + 1− R

)
· B.

The BCSB C is the unit ball of an equivalent norm; such a new unit ball is obtained
modifying the ball B in the direction of Xk. The heuristic content of the lemma is then
that if we modify the unit ball in the direction of Xk, this modification results in a pertur-
bation of the ball also in the remaining directions, but this modification is significantly
smaller in a controlled way, given by the factor K

K+1−R < 1.

Proof. The fact that C is a BCSB is obvious. Let us fix a vector x ∈ C ∩ Xk; a simple
cone argument, based on 0 ∈ IntC, implies that tx ∈ IntC whenever t ∈ [0, 1). More-
over, conv{D, B} has non-empty interior, which easily implies that its interior equals
the interior of its closure; consequently, tx ∈ IntC = Int (conv{D, B}) ⊆ conv{D, B}.
If we can show that tx ∈

(
1 + λ K

K+1−R
)
· B, we may then let t → 1− and reach the

desired conclusion. In other words, we can assume without loss of generality that
x ∈ Xk ∩ conv{D, B}.

We may thus write x = ty + (1− t)z, where t ∈ [0, 1], y ∈ D and z ∈ B; in particular,
we have ‖Pky‖ 6 R and ‖z‖ 6 1. Moreover, x ∈ Xk implies

‖x‖ = ‖Pkx‖ 6 t‖Pky‖+ (1− t)‖Pkz‖ 6 tR + (1− t)(K + 1).

The conclusion of the lemma being evidently true if ‖x‖ 6 1, we can assume ‖x‖ > 1;
as a consequence, 1 6 K + 1− t(K + 1− R) whence t 6 K

K+1−R .

We next consider some slight perturbations of the points y and z, in such a way that
x is still their convex combination: let us fix two parameters τ, η > 0 to be determined
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later and consider the vectors u := (1− τ)y and v := (1 + η)z. Obviously, x = t
1−τ u +

1−t
1+η v and we require this to be a convex combination:

1 =
t

1− τ
+

1− t
1 + η

=⇒ τ =
(1− t)η

t + η
6 1

(of course this choice implies 1 − τ > 0). Our assumption that y ∈ D yields ‖u‖ 6
(1− τ)‖y‖ 6 (1− τ)(1 + λ); moreover, we have ‖v‖ 6 1 + η. We wish these norms to
be equally small, so we require (here we use the previous choice of τ)

1 + η = (1− τ)(1 + λ) =⇒ η = λt.

With this choice for τ and η we have ‖u‖, ‖v‖ 6 1 + η = 1 + λt 6 1 + λ · K
K+1−R ; by

convexity, the same assertion holds true for x, which completes the proof. �

We now modify again the obtained BCSB in such a way that on Xk the body is an
exact multiple of the original unit ball; this modification does not destroy the properties
achieved before, as we prove in the corollary below. It will be useful to denote by S :=
{x ∈ X : ‖Pkx‖ 6 R}; with this notation we have D := S ∩ (1 + λ) · B.

Corollary 1.2.2. In the above notation, let γ := K
K+1−R and

B̃ := conv
{

C, Xk ∩ (1 + λγ) · B
}

.

Then B̃ is a BCSB and
B ⊆ B̃ ⊆ (1 + λ) · B,

S ∩ B̃ = S ∩ (1 + λ) · B,

Xk ∩ B̃ = Xk ∩ (1 + λγ) · B.

Proof. It is obvious that B̃ is a BCSB. Of course B ⊆ C, whence B ⊆ B̃, a fortiori.
Moreover, D ⊆ (1 + λ) · B implies C ⊆ (1 + λ) · B; this and γ 6 1 assure us that
B̃ ⊆ (1 + λ) · B.

For what concerns the second assertion, the ‘⊆’ in the second assertion follows from
what we have just proved; for the converse inclusion, we just note that S∩ (1+ λ) · B =
D ⊆ B̃.

For the last equality, obviously Xk ∩ (1 + λγ) · B ⊆ B̃, which implies the ‘⊇’ in-
clusion. For the converse inclusion, let p ∈ Xk ∩ B̃; exactly the same argument as in
the first part of the previous proof (with C replaced by B̃) shows that we can assume
p ∈ conv{C, Xk ∩ (1 + λγ) · B} ∩ Xk. We may therefore write p = ty + (1− t)z, for
some y ∈ C and z ∈ Xk ∩ (1 + λγ) · B. In the case that t = 0, p = z ∈ Xk ∩ (1 + λγ) · B,
and we are done. On the other hand if t > 0, our assumption that p ∈ Xk allows us to
deduce that y ∈ Xk too; in light of the previous lemma, we conclude that y ∈ C ∩ Xk ⊆
(1 + λγ) · B. By convexity, p ∈ (1 + λγ) · B, and the proof is complete. �



26 CHAPTER 1. SMOOTH RENORMINGS

The next proposition is essentially a restatement of the above corollary in terms of
norms rather than convex bodies; we write it explicitly since the remainder of the argu-
ment is better presented using equivalent norms rather than convex bodies. The general
setting is the same as above: X is a separable Banach space with Schauder basis (ei)

∞
i=1.

Proposition 1.2.3. Let B be a BCSB in X with induced norm ‖·‖B; also let K be the basis
constant of (ei)

∞
i=1 relative to ‖·‖B. Fix k ∈ N and two parameters λ > 0 and 0 < R < 1.

Then there is a BCSB B̃ in X such that the induced norm ‖·‖B̃ satisfies the following properties:

(a)
‖·‖B̃ 6 ‖·‖B 6 (1 + λ) ‖·‖B̃ ,

(b)
‖·‖B = (1 + λγ) ‖·‖B̃ on Xk,

(c)

‖x‖B = (1 + λ)‖x‖B̃ whenever ‖Pkx‖ 6 R
1 + λ

‖x‖,

where γ := K
K+1−R .

Proof. The desired convex body B̃ is the BCSB defined in the previous corollary. In fact,
(a) follows immediately from the corollary and (b) is also immediate: for x ∈ Xk, we
have

‖x‖B̃ = inf
{

t > 0 : x ∈ t · B̃
}
= inf

{
t > 0 : x ∈ t ·

(
B̃ ∩ Xk

)}
=

inf
{

t > 0 : x ∈ t ·
(

Xk ∩ (1 + λγ) · B
)}

= inf {t > 0 : x ∈ t (1 + λγ) · B}

=
1

1 + λγ
inf {t > 0 : x ∈ t · B} = 1

1 + λγ
‖x‖B.

The proof of clause (c) is not equally trivial since S is not a cone; so, we first modify
it and we define

S1 :=
{

x ∈ X : ‖Pkx‖ 6 R
1 + λ

‖x‖
}

.

We first observe that the replacement of S with S1 does not modify the above construc-
tion: in other words, if we set D1 := S1 ∩ (1+ λ) · B, then we have C1 := conv{D1, B} =
C. In fact, S1 ∩ (1 + λ) · B ⊆ S implies C1 ⊆ C and the converse inclusion follows from
D ⊆ conv{D1, B}. In order to prove this last assertion, fix x ∈ D; then, ‖Pkx‖ 6 R < 1
and in particular Pkx ∈ B. Now, set xt := Pkx + t(x − Pkx) and choose t > 1 with the
property that ‖xt‖ = 1 + λ; with this choice of t we obtain ‖Pkxt‖ = ‖Pkx‖ 6 R =

R
1+λ‖xt‖, whence xt ∈ D1. Since x is a convex combination of xt and Pkx, we conclude
that D ⊆ conv{D1, B}.

Next, we claim that
S1 ∩ B̃ = S1 ∩ (1 + λ) · B.
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In fact, ‘⊇’ follows from the analogous relation with S, proved in the above corollary,
and S1 ∩ (1 + λ) · B ⊆ S. The converse inclusion follows–once more–from B̃ ⊆ (1 + λ) ·
B.

We are finally ready for the proof of (c): pick x ∈ S1 and notice that{
t > 0 : x ∈ tB̃

}
=
{

t > 0 : x ∈ tB̃ ∩ S1
}
=
{

t > 0 : x ∈ t
(

B̃ ∩ S1
)}

= {t > 0 : x ∈ t(S1 ∩ (1 + λ) · B)} = {t > 0 : x ∈ t(1 + λ) · B};
consequently,

inf
{

t > 0 : x ∈ tB̃
}
=

1
1 + λ

inf{t > 0 : x ∈ t · B},

which is exactly (c). �

We now are in position to enter the second part of the renorming procedure, which
consists in an inductive iteration of the above construction and a subsequent rescaling.

We start with the Banach space X with unit ball B and corresponding norm ‖·‖ :=
‖·‖B and we apply the previous proposition with k = 1, a certain λ1 > 0 and R = 1/2.
We let B1 := B̃ be the convex body constructed above and ‖·‖1 := ‖·‖B1

be the induced
norm. The properties proved above then imply

‖·‖1 6 ‖·‖ 6 (1 + λ1) ‖·‖1 ,

‖·‖ = (1 + λ1γ1) ‖·‖1 on X1,

‖x‖ = (1 + λ1)‖x‖1 whenever ‖P1x‖ 6 1/2
1 + λ1

‖x‖,

where γ1 := K
K+1/2 .

We proceed inductively in the obvious way: we fix a sequence (λn)∞
n=1 ⊆ (0, ∞)

such that ∏∞
i=1(1 + λi) < ∞ and, in order to have a more concise notation, denote by

‖·‖0 := ‖·‖ the original norm of X and by K0 := K. Apply inductively the previous
proposition: at the step n we use the proposition with the parameters λ = λn, R = 1/2,
k = n and B = Bn−1 and we set Bn := B̃n−1 and ‖·‖n := ‖·‖Bn

. This provides us with a
sequence of norms (‖·‖n)

∞
n=0 on X with the following properties (for every n ∈N):

‖·‖n 6 ‖·‖n−1 6 (1 + λn) ‖·‖n , (1.2.1)

‖·‖n−1 = (1 + λnγn) ‖·‖n on Xn, (1.2.2)

‖x‖n−1 = (1 + λn)‖x‖n whenever ‖Pnx‖n−1 6
1/2

1 + λn
‖x‖n−1, (1.2.3)
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where Kn denotes the basis constant of the Schauder basis (ei)
∞
i=1 relative to the norm

‖·‖n and γn := Kn−1
Kn−1+1/2 ∈ (0, 1).

Remark 1.2.4. The condition ‖Pnx‖n−1 6
1/2

1+λn
‖x‖n−1 appearing in (1.2.3) is somewhat

unpleasing since the involved norms change with n; we thus replace it with the follow-
ing more uniform, but weaker, condition.

‖x‖n−1 = (1 + λn)‖x‖n whenever ‖Pnx‖0 6
1
2

∞

∏
i=1

(1 + λi)
−1 · ‖x‖0. (1.2.4)

The validity of (1.2.4) is immediately deduced from the validity of (1.2.1) and (1.2.3):
in fact, if x satisfies ‖Pnx‖0 6 1

2 ∏∞
i=1(1 + λi)

−1 · ‖x‖0, then by (1.2.1)

‖Pnx‖n−1 6 ‖Pnx‖0 6
1
2

∞

∏
i=1

(1 + λi)
−1 · ‖x‖0 6

1
2

∞

∏
i=1

(1 + λi)
−1 ·

n−1

∏
i=1

(1 + λi) · ‖x‖n−1

=
1/2

1 + λn

∞

∏
i=n+1

(1 + λi)
−1 · ‖x‖n−1 6

1/2
1 + λn

‖x‖n−1;

consequently, (1.2.3) implies that ‖x‖n−1 = (1 + λn)‖x‖n.

In order to motivate the next rescaling, let us notice that for a fixed x ∈ X the se-
quence (‖x‖n)∞

n=0 has the same qualitative behavior, being a decreasing sequence; on
the other hand its quantitative rate of decrease changes with n. In fact, it is clear that for
a fixed x ∈ X, the condition ‖Pnx‖0 6 1

2 ∏∞
i=1(1 + λi)

−1 · ‖x‖0 is eventually satisfied, so
the sequence (‖x‖n)∞

n=0 eventually decreases with rate (1+ λn)−1. On the other hand, if
x ∈ XN, then for the terms n = 1, . . . , N the rate of decrease is (1+ λnγn)−1. This makes
it possible to rescale the norms ‖·‖n, obtaining norms |||·|||n (n > 0), in a way to have a
qualitatively different behavior, increasing for n = 1, . . . , N and eventually decreasing.

This property is crucial since it allows us to assure that, for x ∈ XN, the norms |||x|||n
for n = 0, . . . , N − 1 are quantitatively smaller than |||x|||N and thus do not enter in the
gluing procedure, which only takes into account ‘large’ coordinates. As we have hinted
at in conclusion of the previous section and as it will be apparent in the proof of Lemma
1.2.7 (cf. Remark 1.2.9), this is exactly what we need in order the approximation on
XN to improve with N. On the other hand, the fact that the norms |||x|||n are eventu-
ally quantitatively smaller will imply that the gluing procedure locally involves finitely
many ingredients, thereby preserving the smoothness.

Let us then pass to the suitable scaling.

Definition 1.2.5. Let

C :=
∞

∏
i=1

1 + λiγi

1 + λi
1+γi

2

,
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|||·|||n := C ·
n

∏
i=1

(
1 + λi

1 + γi

2

)
· ‖·‖n .

For later convenience, let us also set

|||·|||∞ = sup
n>0
|||·|||n.

The qualitative behavior of (|||x|||n)∞
n=0 is expressed in the following obvious, though

crucial, properties of the norms |||·|||n. In particular, (a) will be used to show that the
gluing together locally takes into account only finitely many terms; this will allow us to
preserve the smoothness in Lemma 1.2.10. (b) expresses the fact that on XN the norms
(|||·|||n)

N−1
n=0 are smaller than |||·|||N and will be used in Lemma 1.2.7 to obtain the im-

provement of the approximation.

Fact 1.2.6. (a) For every x ∈ X there is n0 ∈N such that for every n > n0

|||x|||n =
1 + λn

1+γn
2

1 + λn
|||x|||n−1.

In particular, it suffices to take any n0 such that ‖Pnx‖0 6 1
2 ∏∞

i=1(1 + λi)
−1 · ‖x‖0 for every

n > n0.
(b) If x ∈ XN, then for n = 1, . . . , N we have

|||x|||n =
1 + λn

1+γn
2

1 + λnγn
|||x|||n−1.

Proof. (a) Since Pnx → 0 as n → ∞, condition (1.2.4) implies that there is n0 such that
for every n > n0 we have ‖x‖n = (1 + λn)−1‖x‖n−1. Then it suffices to translate this to
the |||·|||n norms:

|||x|||n =

(
1 + λn

1 + γn

2

)
· C ·

n−1

∏
i=1

(
1 + λi

1 + γi

2

)
· ‖x‖n =

1 + λn
1+γn

2
1 + λn

· C ·
n−1

∏
i=1

(
1 + λi

1 + γi

2

)
· ‖x‖n−1 =

1 + λn
1+γn

2
1 + λn

|||x|||n−1.

(b) If x ∈ XN and n = 1, . . . , N, then x ∈ Xn too; thus by (1.2.2) we have ‖x‖n =
(1 + λnγn)−1‖x‖n−1. Now exactly the same calculation as in the other case gives the
result. �

We can now enter the third part of the renorming and conclude the renorming pro-
cedure: firstly, we smoothen up the norms |||·|||n and secondly we glue together all the



30 CHAPTER 1. SMOOTH RENORMINGS

obtained smooth norms. Fix a decreasing sequence (δn)∞
n=1 of positive reals with δn → 0

with the property that for every n > 0

(†) (1 + δn)
1 + λn+1γn+1

1 + λn+1
1+γn+1

2

6 1− δn

(of course this is possible since γn+1 < 1). We may then apply the main result in
[HáTa14] (Theorem 2.10 in their paper) and deduce the existence of Ck-smooth norms
|||·|||(s),n (for n > 0) such that for every n

|||·|||n 6 |||·|||(s),n 6 (1 + δn)|||·|||n.

Next, we shall select functions ϕn : [0, ∞) → [0, ∞) to be C∞-smooth, convex and
such that ϕn ≡ 0 on [0, 1− δn] and ϕn(1) = 1; note that, of course, the ϕn’s are strictly
monotonically increasing on [1− δn, ∞).

We are finally ready to define Φ : X → [0, ∞] by

Φ(x) :=
∞

∑
n=0

ϕn

(
|||x|||(s),n

)
and let |||·||| be the Minkowski functional of the set {Φ 6 1}.

The fact that |||·||| is the desired norm is now an obvious consequence of the next two
lemmas. In the first one we show that |||·||| is indeed a norm and that the approximation
on XN improves with N.

Lemma 1.2.7. |||·||| is a norm, equivalent to the original norm ‖·‖ of X.
Moreover for every N > 0 we have

∞

∏
i=N+1

(1 + λi)
−1 · ‖·‖ 6 |||·||| 6 1 + δN

1− δN
·

∞

∏
i=N+1

(1 + λi) · ‖·‖ on XN.

Proof. We start by observing that for every N > 0{
x ∈ XN : |||x|||∞ 6

1− δN

1 + δN

}
⊆
{

x ∈ XN : Φ(x) 6 1
}
⊆
{

x ∈ XN : |||x|||∞ 6 1
}

.

In fact, pick x ∈ XN such that Φ(x) 6 1, whence in particular ϕn

(
|||x|||(s),n

)
6 1 for

every n. The inequality |||·|||n 6 |||·|||(s),n and the properties of ϕn then imply |||x|||n 6 1
for every n. This proves the right inclusion. For the first inclusion, we actually show
that if x ∈ XN satisfies |||x|||∞ 6

1−δN
1+δN

, then Φ(x) = 0. To see this, fix any n > N; since
the function t 7→ 1−t

1+t is decreasing on [0, 1] and the sequence (δn)∞
n=1 is also decreasing,

we deduce
|||x|||n 6 |||x|||∞ 6

1− δN

1 + δN
6

1− δn

1 + δn
.
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Consequently, |||x|||(s),n 6 1 − δn and ϕn

(
|||x|||(s),n

)
= 0 for every n > N. For the

remaining values n = 0, . . . , N − 1 we use (b) in Fact 1.2.6 and condition (†):

|||x|||(s),n 6 (1 + δn)|||x|||n = (1 + δn)
1 + λn+1γn+1

1 + λn+1
1+γn+1

2

· |||x|||n+1

6 (1− δn)|||x|||n+1 6 1− δn;

hence ϕn

(
|||x|||(s),n

)
= 0 for n = 0, . . . , N − 1 too. It follows that Φ(x) = 0, which

proves the first inclusion.
Taking in particular N = 0, we see that {Φ 6 1} is a bounded neighbourhood of the

origin in (X, |||·|||∞). Since it is clearly convex and symmetric, we deduce that {Φ 6 1}
is a BCSB relative to |||·|||∞. Therefore |||·||| is a norm on X, equivalent to |||·|||∞. The fact
that |||·||| is equivalent to the original norm ‖·‖ follows immediately from the case N = 0
in the second assertion, which we now prove.

Fix N > 0; in order to estimate the distortion between |||·||| and ‖·‖ on XN, we show
that, on XN, |||·||| is close to |||·|||∞, that |||·|||∞ is close to |||·|||N and finally that |||·|||N is
close to ‖·‖.

First, passing to the associated Minkowski functionals, the inclusions obtained in the
first part of the proof yield

(∗) |||·|||∞ 6 |||·||| 6
1 + δN

1− δN
|||·|||∞ on XN.

Secondly, we compare |||·|||∞ with |||·|||N. Obviously, |||·|||N 6 |||·|||∞ and by property
(b) in Fact 1.2.6 already used above we also have |||·|||n 6 |||·|||N whenever n 6 N. We
thus fix n > N and observe

|||·|||n := C
n

∏
i=1

(
1 + λi

1 + γi

2

)
· ‖·‖n 6

n

∏
i=N+1

(
1 + λi

1 + γi

2

)
· C ·

N

∏
i=1

(
1 + λi

1 + γi

2

)
· ‖·‖N =

n

∏
i=N+1

(
1 + λi

1 + γi

2

)
· |||·|||N 6

∞

∏
i=N+1

(1 + λi) · |||·|||N.

This yields

(∗) |||·|||N 6 |||·|||∞ 6
∞

∏
i=N+1

(1 + λi) · |||·|||N on XN.
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Finally, we compare |||·|||N with ‖·‖0. The subspaces XN are decreasing with N,
whence (1.2.2) implies ‖·‖ = ∏N

i=1(1 + λiγi) · ‖·‖N on XN; hence

‖·‖ =
N

∏
i=1

(1 + λiγi) ·
∞

∏
i=1

1 + λi
1+γi

2
1 + λiγi

·
N

∏
i=1

(
1 + λi

1 + γi

2

)−1

· |||·|||N

=
∞

∏
i=N+1

1 + λi
1+γi

2
1 + λiγi

· |||·|||N.

This implies in particular

(∗) |||·|||N 6 ‖·‖ 6
∞

∏
i=N+1

(1 + λi) · |||·|||N on XN;

combining the (∗) inequalities then leads us to the desired conclusion. �

Remark 1.2.8. The estimate of the distortion in the particular case N = 0 is in fact shorter
than the general case given above. In fact, property (1.2.1) obviously implies ‖·‖n 6
‖·‖ 6 ∏n

i=1(1 + λi) · ‖·‖n. It easily follows that for every n

∞

∏
i=1

(1 + λi)
−1 · ‖·‖ 6 |||·|||n 6

∞

∏
i=1

(1 + λi) · ‖·‖ ;

it is then sufficient to combine this with the first of the (∗) inequalities.

Remark 1.2.9. Inspection of the first part of the above argument shows that whenever
x ∈ XN satisfies |||x|||∞ 6 1, then ϕn

(
|||x|||(s),n

)
= 0 for every n = 0, . . . , N − 1. In other

words, on the set XN ∩ {|||·|||∞ 6 1} the sum defining Φ starts at the N-th term; let us
also notice that this fact depends on Fact 1.2.6 (b). Consequently, this is the point in the
argument where we see the role of the initial norms to be smaller.

The remaining part of the argument consists in checking the regularity of |||·|||.

Lemma 1.2.10. The norm |||·||| is Ck-smooth.

Proof. We first show that for every x in the set {Φ < 2} there is a neighbourhood U of
x (in X) where the function Φ is expressed by a finite sum. We have already seen in the
proof of Lemma 1.2.7 that Φ = 0 in a neighbourhood of 0, so the assertion is true for
x = 0; hence we can fix x 6= 0 such that Φ(x) < 2. Observe that clearly the properties of
ϕn imply ϕn(1 + δn) > 2; thus x satisfies |||x|||n 6 |||x|||(s),n 6 1 + δn for every n.

Denote by c := 1
2 ∏∞

i=1(1 + λi)
−1 and choose n0 such that ‖Pnx‖ 6 c

2 · ‖x‖ for every
n > n0 (this is possible since Pnx → 0). Next, fix ε > 0 small so that c

2 + Kε 6 (1− ε)c
and (1 + ε)(1− δn0) 6 1, and let U be the following neighbourhood of x:

U :=
{

y ∈ X : ‖y− x‖ < ε‖x‖ and |||y|||n0
< (1 + ε)|||x|||n0

}
.
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Clearly for y ∈ U we have ‖x‖ 6 1
1−ε‖y‖; thus for y ∈ U and n > n0 we have

‖Pny‖ 6 ‖Pny− Pnx‖+ ‖Pnx‖ 6 Kε‖x‖+ c
2
· ‖x‖ 6 (1− ε)c‖x‖ 6 c‖y‖.

Hence (a) of Fact 1.2.6 implies that |||y|||n =
1+λn

1+γn
2

1+λn
|||y|||n−1 for every n > n0 and y ∈ U

(let us explicitly stress the crucial fact that n0 does not depend on y ∈ U ).
We have |||y|||n0

< (1 + ε)|||x|||n0
6 (1 + ε)(1 + δn0); using this bound and the previ-

ous choices of the parameters (in particular we use twice (†) and twice the fact that δn
is decreasing), for every n > n0 + 2 and y ∈ U we estimate

|||y|||(s),n 6 (1 + δn)|||y|||n = (1 + δn)
n

∏
i=n0+1

1 + λi
1+γi

2
1 + λi

· |||y|||n0

6 (1+ δn)
n

∏
i=n0+1

1 + λi
1+γi

2
1 + λi

· (1+ ε)(1+ δn0)
(†)
6 (1+ δn)

n

∏
i=n0+2

1 + λi
1+γi

2
1 + λi

· (1+ ε)(1− δn0)

6 (1 + δn)
n

∏
i=n0+2

1 + λi
1+γi

2
1 + λi

6 (1 + δn−1)
1 + λn

1+γn
2

1 + λn
·

n−1

∏
i=n0+2

1 + λi
1+γi

2
1 + λi

6 (1 + δn−1)
1 + λn

1+γn
2

1 + λn

(†)
6 1− δn−1 6 1− δn.

It follows that ϕn

(
|||y|||(s),n

)
= 0 for n > n0 + 2 and y ∈ U , hence

Φ =
n0+2

∑
n=0

ϕn ◦ |||·|||(s),n on U .

This obviously implies that Φ is Ck-smooth on the set {Φ < 2} and in particular {Φ <
2} is an open set. Concerning the regularity of Φ, we also observe here that Φ is lower
semi-continuous on X (this follows immediately from the fact that Φ is the sum of a
series of positive continuous functions).

The last step consists in applying the Implicit Function theorem for Minkowski func-
tionals, Lemma 1.1.22, and conclude the smoothness of |||·|||. More precisely, we apply
Lemma 1.1.22 to the open, convex, symmetric set {Φ < 2}, where the function Φ is
Ck -smooth, and to the bounded, closed neighbourhood of 0 given by {Φ 6 1}. This
is indeed possible, since {Φ 6 1} is a closed subset of X, in light of the lower semi-
continuity of Φ on X. Consequently, we obtain that the Minkowski functional |||·||| of
the set {Φ 6 1} is a Ck-smooth norm, thereby concluding the proof. �

To conclude the section, let us formally record the, at this stage entirely obvious,
proof of Theorem 1.1.9.
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Proof of Theorem 1.1.9. Fix a separable Banach space as in the statement and a sequence
(εN)

∞
N=0 of positive numbers. We find a sequence (λi)

∞
i=1 ⊆ (0, ∞) such that

∞

∏
i=N+1

(1 + λi) < 1 + εN

for every N > 0; next, we find a decreasing sequence (δN)
∞
N=0, δN ↘ 0, that satisfies (†)

and such that
1 + δN

1− δN
·

∞

∏
i=N+1

(1 + λi) 6 1 + εN

for every N > 0. We then apply the renorming procedure described in this section with
these parameters (λi)

∞
i=1 and (δN)

∞
N=0 and we obtain a Ck-smooth norm |||·||| on X that

satisfies

(1− εN) · ‖·‖ 6
∞

∏
i=N+1

(1+λi)
−1 · ‖·‖ 6 |||·||| 6 1 + δN

1− δN
·

∞

∏
i=N+1

(1+λi) · ‖·‖ 6 (1+ εN) · ‖·‖

on XN, for every N > 0; since these inequalities are obviously equivalent to∣∣∣ |||x||| − ‖x‖ ∣∣∣ 6 εN‖x‖ (x ∈ XN),

the proof is complete. �

1.3 Polyhedral remarks

In this short section we present some improvements of our main result in the partic-
ular case of polyhedral Banach spaces and we prove Theorem 1.1.13. Let us first start
by recalling the definition of a polyhedral Banach space. Finite dimensional polyhedral
Banach spaces were introduced by Klee in his paper [Kle60]; their infinite-dimensional
analogue [Lin66b] has been investigated in detail, also in the isomorphic sense, by sev-
eral authors, most notably Fonf, [Fon78, Fon80, Fon81, Fon90]. Let us also refer to
[FLP01, §6] for an introduction to the subject.

Definition 1.3.1. A finite-dimensional Banach space X is polyhedral if its unit ball is a
polyhedron, i.e., it is finite intersection of closed half-spaces. An infinite-dimensional
Banach space X is polyhedral if its finite-dimensional subspaces are polyhedral.

In other words, a finite dimensional Banach space X is polyhedral if and only if it
admits a finite boundary. It is also elementary to see that these conditions are equivalent
to the polyhedrality of X∗, or to Ext(BX) being a finite set, [HáJo14, §5.6].

As we already mentioned, it is proved in [DFH98] that if X is a separable polyhedral
Banach space, then every equivalent norm on X can be approximated by a polyhedral
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norm (see Theorem 1.1 in [DFH98], where the approximation is stated in terms of closed,
convex and bounded bodies).

In analogy with our main result, it is therefore natural to ask if this result can be im-
proved in the sense that the approximation with asymptotic improvement is possible. It
is not difficult to see that if we modify the argument of the previous section, by replac-
ing the Ck-smooth norms |||·|||(s),n with polyhedral norms |||·|||(p),n and the C∞-smooth
functions ϕn with piecewise linear ones, the resulting norm |||·||| is still polyhedral. We
thus have:

Proposition 1.3.2 ([HáRu17, Proposition 3.1]). Let X be a polyhedral Banach space with
a Schauder basis (ei)

∞
i=1. Then every equivalent norm ‖·‖ on X can be approximated with

asymptotic improvement by polyhedral norms.

Proof. We are going to follow the argument present in Section 1.2 with only two differ-
ences. First, after the norms |||·|||n have been constructed, we consider their approxima-
tions with polyhedral norms |||·|||(p),n, instead of smooth ones (this is possible in light of
Theorem 1.1 in [DFH98], that we mentioned above). Secondly, the functions ϕn used to
glue together the various norms are chosen to be piecewise linear; in particular we shall
use the functions

ϕn(t) := max
{

0,
t + δn − 1

δn

}
(t > 0).

When we glue together the norms |||·|||(p),n, as in the previous section, we already
know from the same arguments that the function Φ is locally expressed by a finite sum
on the set {Φ < 2}. Moreover, the Minkowski functional |||·||| of {Φ 6 1} is a norm that
approximates with asymptotic improvement the norm ‖·‖. Consequently, the argument
is complete, if we can show that |||·||| is polyhedral.

Let us therefore fix a finite-dimensional subspace E of X; we need to check that
B(E,|||·|||) = E ∩ {Φ 6 1} is a polyhedron. First, we note that since Φ is locally finite on
{Φ < 2} and E ∩ {Φ 6 3/2} is compact (let us recall that Φ is lower semi-continuous),
then Φ is expressed by a finite sum on the whole E ∩ {Φ 6 3/2}; so let us fix N ∈ N

such that

Φ(x) =
N

∑
n=0

ϕn

(
|||x|||(p),n

)
(x ∈ E, Φ(x) 6 3/2).

Moreover, the norms |||·|||(p),n are polyhedral, whence there are functionals
{

f (n)i

}
i∈In

,

where In is a finite set, such that

|||·|||(p),n = max
i∈In

f (n)i (·) on E.

For every x ∈ E with Φ(x) 6 3/2 we thus obtain

Φ(x) =
N

∑
n=0

max

{
0,
|||x|||(p),n + δn − 1

δn

}
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=
N

∑
n=0

max

{
0,

maxi∈In f (n)i (x) + δn − 1
δn

}

=
N

∑
n=0

max
i∈In

{
0,

f (n)i (x) + δn − 1
δn

}
.

Let us now define affine continuous functions by a(n)0 = 0 and a(n)i =
f (n)i +δn−1

δn
(i ∈ In, n = 0, . . . , N); we thus have, for x as above,

Φ(x) =
N

∑
n=0

max
i∈In∪{0}

a(n)i (x)

= max
ij∈Ij∪{0}

j=1,...,N

N

∑
n=0

a(n)in (x) = max
j∈J

Aj(x).

Here the functions Aj’s have the form ∑N
n=0 a(n)in for suitable indices in ∈ In, n =

0, . . . , N; hence they are affine continuous functions. We deduce that for every x ∈ E
with Φ(x) 6 3/2 one has

|||x||| 6 1 ⇐⇒ Φ(x) 6 1 ⇐⇒ Aj(x) 6 1 for j ∈ J.

We readily conclude that B(E,|||·|||) is a finite intersection of closed half-spaces; conse-
quently, it is a polyhedron and the proof is concluded. �

It is also known that on a separable polyhedral Banach space X, every equivalent
norm can be approximated by a C∞-smooth norm that depends locally on finitely many
coordinates. This claim is a consequence of results from various papers, which were
already mentioned before; let us record them here. We already mentioned Fonf’s re-
sult [Fon80, Fon00] that every separable polyhedral Banach space admits a countable
boundary. When combined with the argument in [Háj95] (cf. Theorem 1.1.34), we
conclude that every polyhedral norm on a separable Banach space admits C∞-smooth
LFC approximations. The density of polyhedral norms in separable polyhedral Banach
spaces [DFH98] then leads us to the conclusion.

By inspection of our argument it follows that if we use such approximations in our
proof, the resulting C∞-smooth norm |||·||| will also depend locally on finitely many
coordinates. Therefore, we obtain:

Proposition 1.3.3 ([HáRu17, Proposition 3.2]). Let X be a polyhedral Banach space with
a Schauder basis (ei)

∞
i=1. Then every equivalent norm ‖·‖ on X can be approximated with

asymptotic improvement by C∞-smooth LFC norms.
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Proof. We argue as in the proof of the main theorem, with the unique difference that
here the norms |||·|||(s),n are selected to be C∞-smooth and LFC (in particular, we use
C∞-smooth functions ϕn). We then know that the resulting norm |||·||| is C∞-smooth and
approximates with asymptotic improvement the norm ‖·‖. Finally, Φ is LFC on the set
{Φ < 2}, being locally a finite sum; the last clause of Lemma 1.1.22 then implies that
|||·||| is LFC. �

In conclusion of the chapter, we mention that we do not know whether our main
result can be generalized replacing Schauder basis with Markushevich basis. The argu-
ment presented here is not directly applicable, since, for example, we have made use of
the canonical projections on the basis and their uniform boundedness.
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Chapter 2

Auerbach systems

The main object of the chapter is the investigation of a specific notion of systems of
coordinates in some classes of non-separable Banach spaces, in particular the study of
the existence of large Auerbach systems in WLD Banach space. The first three sections
of the chapter are dedicated to such issues; it the first one, we shall review some relevant
material from the literature and state our main results, whose proofs are postponed to
the subsequent two sections. The second part of the chapter concerns some uncountable
generalisations to a combinatorial lemma due to Vlastimil Pták. Though this result is
not directly related to Auerbach systems, there are at least two reasons for its inclusion
in the same chapter. The first one is that our interest in such result was motivated by
its possible uses in the study of systems of coordinates, the second one is the common
presence of combinatorial aspects and the need to consider additional set-theoretical
axioms in both parts of the chapter.

2.1 Some systems of coordinates

The aim of this section is to review some material that we shall make extensive use of
in the present chapter and that will also be used in some places in Chapter 4. In the
first part, we shall review some basic information about systems of coordinates in (non-
separable) Banach spaces, in particular biorthogonal systems and Markushevich bases;
we shall also recall some properties of the class of weakly Lindelöf determined Banach
spaces, that will play a crucial rôle in this chapter. The second part of the section com-
prises results on Auerbach systems and formally states our contributions in this area,
to be discussed in detail in later sections. We conclude the section collecting in Section
2.1.2 some powerful combinatorial results, that will be important in many proofs.

Definition 2.1.1. A system {xγ; x∗γ}γ∈Γ ⊆ X × X∗ is a biorthogonal system if 〈x∗α, xβ〉 =
δα,β, whenever α, β ∈ Γ. A biorthogonal system {xγ; x∗γ}γ∈Γ is a Markushevich basis (M-
basis, for short) if

span{xγ}γ∈Γ = X and spanw∗{x∗γ}γ∈Γ = X∗.

39
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In the context of separable Banach spaces, it is clear that every Schauder basis nat-
urally induces an M-basis; one of the main advantages of this more general notion is
the existence of an M-basis in every separable Banach space, a classical result due to
Markushevich himself, [Mar43]. Among the various refinements of this result available
in the literature, let us single out the following, particularly related to our purposes. A
biorthogonal system {xγ; x∗γ}γ∈Γ is said to be λ-bounded (λ > 1) if ‖xγ‖ · ‖x∗γ‖ 6 λ, for
every γ ∈ Γ; it is said to be bounded in case it is λ-bounded, for some λ > 1. Pełczyński
[Peł76] and Plichko [Pli77] independently proved that every separable Banach space ad-
mits, for every ε > 0, a (1 + ε)-bounded M-basis (cf. [HMVZ08, Theorem 1.27]); one of
the major problems in the area is whether ε can be taken to equal 0 in the result, i.e., if
every separable Banach space admits an Auerbach basis.

The situation becomes more complicated when passing to the non-separable setting.
An elementary extension of Mazur’s technique for constructing basic sequences allows
to prove, in particular, that every Banach space X with w∗-dens X∗ > ω1 contains an
uncountable biorthogonal system (we shall say a bit more on this point at the beginning
of the proof of Theorem 2.2.3).

It is however consistent with ZFC that there exist non-separable Banach spaces that
virtually contain no ‘reasonable’ coordinate systems, in the sense that they admit no
uncountable biorthogonal systems. The first such example was obtained by Kunen in
two unpublished notes [Kun75, Kun80a], under the assumption of the Continuum Hy-
pothesis; such construction appeared later in Negrepontis’ survey, [Neg84, §7]. Other
published results, under ♣ and ♦ respectively, are [Ost76, She85]. Let us also refer to
[HMVZ08, Section 4.4] for a modification, suggested by Todorc̆ević, of the argument in
[Ost76].

As it turns out, the assumption of some additional set-theoretic axioms can not be
avoided in the above results. In fact, in his fundamental work [Tod06], Todorc̆ević
has shown that Martin’s Maximum (MM) allows for the existence of an uncountable
biorthogonal system in every non-separable Banach space ([Tod06, Corollary 7]).

When passing to the existence problem for M-bases in non-separable Banach spaces,
it is possible to give examples of classical Banach spaces that fail to admit any M-basis.
As proved by Johnson [Joh70], one such example is `∞. The proof of this assertion is a
nice application of the Cantor diagonal principle, and we shall sketch it below; prior to
this, we need to recall one definition.

A Banach space X is a Grothendieck space if every w∗ convergent sequence in X∗ con-
verges weakly. Every reflexive Banach space is an obvious example of a Grothendieck
space; one more such example is `∞, according to a result of Grothendieck, [Gro53] (cf.
[Die84, p. 103]).

Proposition 2.1.2 (Johnson, [Joh70]). A Grothendieck space with an M-basis is reflexive.
In particular, `∞ has no M-basis.

Proof. Assume that X is a Grothendieck space with an M-basis {xγ; x∗γ}γ∈Γ. Note that
the subspace Y := span{x∗γ}γ∈Γ of X∗ is w∗-dense in X∗ and, moreover, every element
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y ∈ Y is countably supported by the set {xγ}γ∈Γ, in the sense that {γ ∈ Γ : 〈y, xγ〉 6= 0}
is at most countable.

We shall now prove that Y is reflexive; by the classical Eberlein-Šmulyan theorem,
this amounts to proving that the unit ball BY of Y is weakly sequentially compact. If
(yn)∞

n=1 is any sequence in BY, there is a countable subset N of Γ such that 〈yn, xγ〉 = 0
for every γ ∈ Γ \ N and n ∈ N. The diagonal method allows us to obtain a sub-
sequence (ynk)

∞
k=1 such that (〈ynk , xγ〉)∞

k=1 is a convergent sequence, for every γ ∈ N
and, consequently, (ynk)

∞
k=1 is a w∗-convergent sequence in X∗ (according to the fact

that X = span{xγ}γ∈Γ). The Grothendieck property of X yields that (ynk)
∞
k=1 is weakly

convergent and its limit belongs to Y (as Y is weakly closed); therefore, Y is reflexive.
We may now deduce that BY is weakly compact and, a fortiori, w∗-compact in X∗;

in view of the Banach–Dieudonné theorem (see, e.g., [FHHMZ10, Theorem 3.92]), this
implies that Y is w∗-closed in X∗. Y being w∗-dense in X∗, we conclude that X∗ = Y is
reflexive, and so is X. �

We are now in position to recall some basic notions concerning weakly Lindelöf
determined Banach spaces, a very important class of Banach spaces that can be charac-
terised via M-bases with certain properties. The classical definition of those spaces, that
we shall adhere to, however consists in requiring the dual unit ball, in the relative w∗

topology, to be a Corson compact.

For the support of an element x ∈ RΓ we understand the set supp x := {γ ∈
Γ : x(γ) 6= 0}. We shall denote Σ(Γ) the topological space consisting of all x ∈ RΓ

with countable support, endowed with the restriction of the product topology of RΓ.
We shall refer to Σ(Γ) as a Σ-product; clearly, Σ(Γ) is a dense subset of RΓ.

Definition 2.1.3. A topological space K is a Corson compact whenever it is homeomorphic
to a compact subset of Σ(Γ), for some set Γ.

In other words, K is a Corson compact whenever it is homeomorphic to a compact
subset C of the product space [−1, 1]Γ for some set Γ, such that every element of C has
only countably many non-zero coordinates.

Concerning stability properties of this class of compacta, closed subspaces of Corson
compacta are evidently Corson. One more, non-trivial, stability property is that Haus-
dorff continuous images of Corson compacta are Corson; such a result was first proved
in [MiRu77] and independently in [Gul77]; the proof may also be found in [KKL11,
Theorem 19.12] or [Neg84, Theorem 6.26].

As very simple examples of Corson compacta, every compact metric space is eas-
ily seen to be homeomorphic to a subset of [−1, 1]ω (see, e.g., [Kec95, Theorem 4.14]);
therefore, every metrisable compact is Corson. It is easy to observe that these are the
unique examples of separable Corson compact spaces; for later use, we shall give below
a more precise statement of the result, whose formulation requires one more definition.
A topological space (X, τ) is said to have calibre ω1 if for every collection (Oα)α<ω1 of
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non-empty open subsets of X, there exists an uncountable set A ⊆ ω1 such that⋂
α∈A

Oα 6= ∅.

An immediate verification shows that every separable topological space has calibre ω1;
the more precise statement we mentioned above includes the validity of the converse,
for Corson compacta.

Fact 2.1.4. For a Corson compact K, metrisability, separability and calibre ω1 are equivalent
properties.

Proof. We only need to prove that calibre ω1 implies the metrisability of K. Assume
that K ⊆ Σ(Γ) is a Corson compact, where Γ is chosen so that Γ = ∪x∈Ksupp(x). As a
consequence, the open sets Oγ := {x ∈ K : x(γ) 6= 0} are non-empty. Since for every
uncountable subset A of Γ we have ∩γ∈AOγ = ∅, the calibre ω1 property of K implies
that Γ is countable. Consequently, K is a subset of the metrisable RΓ. �

We shall next give few examples of compact spaces that are not Corson; for this,
we need to recall that a topological space X is Fréchet–Urysohn if for every subset A of
T and every x ∈ A there exists a sequence in A that converges to x. An elementary
verification ([Kal00b, Lemma 1.6]) yields that every Σ-product is Fréchet–Urysohn. It
immediately follows that the topological spaces [0, ω1] and [−1, 1]Γ (for Γ uncountable)
are not Corson compacta (for the second example, note that the function constantly
equal to 1 belongs to the closure of Σ(Γ)).

In order to give more examples of Corson compacta, let us recall that a compact
space K is an Eberlein compact whenever it is homeomorphic to a compact subset of
c0(Γ), in its weak topology. It clearly makes no difference to consider c0(Γ) endowed
with the weak topology or the pointwise one, which readily shows that every Eberlein
compact is Corson. In their celebrated paper [AmLi68], Amir and Lindenstrauss proved
that every weakly compact subset of an arbitrary Banach space is Eberlein; they also
proved ([AmLi68, Corollary 2]) that (BX∗ , w∗) is Eberlein, whenever X is WCG (i.e.,
weakly compactly generated). As a particular case, that is also proved by a simple direct
proof, (Bc0(Γ)∗ , w∗) is Eberlein. Let us also recall, in passing, that every Eberlein compact
is homeomorphic to a weakly compact subset of a reflexive Banach space, [DFJP74,
Corollary 2]; that reflexivity can not, in general, be replaced by super-reflexivity is the
main result of [BeSt76]. Let us also refer to [FHHMZ10, §13.3] for proofs of the above
results and more on Eberlein compacta.

Definition 2.1.5. A Banach space X is weakly Lindelöf determined (hereinafter, WLD) if the
dual ball BX∗ is a Corson compact in the relative w∗-topology.

From the above considerations about Eberlein compacta it follows immediately that
every WCG Banach space is WLD; in particular, every reflexive space and every c0(Γ)
space is an example of a WLD Banach space.
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It is also immediate to verify that every closed subspace Y of a WLD Banach space
X is WLD. In fact, if i : Y → X denotes the inclusion, we have BY∗ = i∗(BX∗); hence, BY∗

is a Corson compact, from the w∗-w∗-continuity of i∗. An alternative proof of this claim
may be found in [HMVZ08, Corollary 5.43]. It is also immediate to verify that the class
of WLD Banach spaces is stable under renormings and quotient maps.

We shall now proceed to give a characterisation of WLD Banach spaces, in terms of
M-bases ([Kal00a, Kal00b, VWZ94], cf. [HMVZ08, Theorems 5.37 and 5.51]). A func-
tional x∗ ∈ X∗ is countably supported by an M-basis {xγ; x∗γ}γ∈Γ, or {xγ; x∗γ}γ∈Γ countably
supports x∗, if the support of x∗,

supp x∗ := {γ ∈ Γ : 〈x∗, xγ〉 6= 0}

is a countable subset of Γ. We shall also say that the M-basis is countably 1-norming if the
set of countably supported functionals is 1-norming for X, i.e., every x ∈ X satisfies

‖x‖ = sup{|〈x∗, x〉| : x∗ ∈ BX∗ is countably supported}.

Theorem 2.1.6. Let X be a Banach space. Then the following assertions are equivalent:
(i) X is WLD;

(ii) X admits an M-basis {xγ; x∗γ}γ∈Γ that countably supports X∗, i.e., every x∗ ∈ X∗ is
countably supported by {xγ; x∗γ}γ∈Γ;

(iii) X admits, under any equivalent norm, a countably 1-norming M-basis.
In this case, every M-basis countably supports X∗.

As an obvious example concerning the result, note that the canonical M-basis in
c0(Γ) countably supports `1(Γ), which gives an alternative proof that c0(Γ) is WLD.
On the other hand, the canonical M-basis of `1(Γ) plainly does not countably support
`∞(Γ), but it is countably 1-norming. Since the space `1(Γ), for Γ uncountable, is not
even WCG, in light of its Schur property, we conclude that the existence of a countably
1-norming M-basis in the original norm is strictly weaker than (iii). Let us also notice
that the implication (ii) =⇒ (iii) is obvious; that (ii) =⇒ (i) is also immediate to verify.

An immediate consequence of the theorem is the fact that dens X = w∗-dens X∗,
whenever X is WLD. Indeed, fix an M-basis {xγ; x∗γ}γ∈Γ for X. If {ϕα}α∈A is w∗ dense
in X∗, then ∪α∈Asupp ϕα = Γ; since the ϕα’s are countably supported, it follows that
dens X 6 |Γ| 6 |A|, and we are done.

Remark 2.1.7. We conclude with one comment concerning long basic sequences in WLD
spaces, to be used in a later proof; for the notion of a long basic sequence we refer,
e.g., to [HMVZ08, Section 4.1]. Let X be a WLD Banach space and (eα)α<λ be a long
basic sequence. Then (eα)α<λ is a long Schauder basis of its closed linear span Y, a
WLD Banach space. Since (eα)α<λ is in particular an M-basis for Y, it follows from the
previous theorem that it countably supports Y∗. As a consequence of this, we obtain
that for every ϕ ∈ X∗ the set {α < λ : 〈ϕ, eα〉 6= 0} is at most countable.
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For a more detailed presentation of these notions, the reader may wish to consult,
e.g., [DGZ93, §VI.7], [FHHMZ10, §14.5], [HMVZ08, §3.4, §5.4] [KKL11, §19.8], [Kal00b],
[Ziz03] and the references therein. Let us just add here that the class of WLD Banach
spaces has been introduced by Valdivia in the paper [Val88] and later given its current
name after the extensive study in [ArMe93]. For additional information on Markushe-
vich bases is some classes of non-separable Banach spaces we also refer to the very
recent paper [Kal20].

2.1.1 Auerbach systems

We shall now turn our attention to the notion of Auerbach systems and Auerbach bases;
these are biorthogonal systems with optimal boundedness properties, formally defined
as follows.

Definition 2.1.8. An Auerbach system is a biorthogonal system {xγ; x∗γ}γ∈Γ with the
property that ‖xγ‖ = ‖x∗γ‖ = 1, for γ ∈ Γ. An Auerbach system that is also an M-
basis is called an Auerbach basis.

Such a notion originated from Auerbach’s paper [Aue35], where it is shown that
every finite-dimensional normed space admits an Auerbach basis. This well-known
result, nowadays known as Auerbach lemma, may be found in most textbooks in Func-
tional Analysis, and we shall refer, for example, to [LiTz77, Proposition 1.c.3]. Its proof
consists in an extremal argument, based on maximizing the determinant function over
vectors from the unit ball, or, in other words, in finding a parallelepiped of maximal
volume generated by vectors from the unit ball.

It was recently understood by Weber and Wojciechowski [WeWo17] that critical points
of the determinant function are sufficient for finding an Auerbach system; this allowed
the authors to prove a conjecture, due to Pełczyński, concerning the number of distinct
Auerbach bases in an n-dimensional Banach space. We refer to the paper [WeWo17]
for a precise statement of the result—that, interestingly, depends on deep results from
algebraic topology, such as Lyusternik–Schnirelmann category and Morse theory.

In the infinite-dimensional setting, the first general result in the positive direction
is perhaps due to Day, who proved in [Day62] that every infinite-dimensional Banach
space contains a closed infinite-dimensional subspace with an Auerbach basis. More
precisely, the existence of an Auerbach system {xn; x∗n}n∈N such that (xn)∞

n=1 is a basic
sequence is proved. Moreover, for every ε > 0, the sequence (xn)∞

n=1 may be chosen
to have basis constant at most 1 + ε. Let us mention that non-trivial topological con-
siderations are involved in this argument too, as the proof passes through the use of
Borsuk–Ulam antipodal theorem. Day’s result was later generalised by Davis and John-
son in [DaJo73, Lemma 1] (also see [HMVZ08, Lemma 1.25] for the proof of this result);
one more generalisation, in a different direction, appears in [CGJ92, §2, §3].

As regards Auerbach bases in the infinite-dimensional context, we already men-
tioned the open problem whether every infinite-dimensional separable Banach space



2.1. SOME SYSTEMS OF COORDINATES 45

admits an Auerbach basis; in particular, their existence is unknown for the Banach
space C[0, 1], cf. [GMZ16, Problem 103]. There are, on the other hand, several exam-
ples of classical Banach spaces that are known to admit Auerbach bases. Aside from
the obvious examples of the classical sequence spaces c0 and `p (1 6 p < ∞), let
us refer to the recent paper [Bog••], where an Auerbach basis is constructed in every
finite-codimensional closed subspace of the space c0; the case of the general (infinite-
dimensional and infinite-codimensional, closed) subspace of c0 is apparently an open
problem. In the same paper it is also proved that every C(K) space, where K is a count-
able compact, admits an Auerbach basis; as Wojciechowski pointed out to us, it is not
clear whether the argument can be extended to cover the case of every scattered com-
pact, or at least every [0, α] space (where α is an ordinal number).

The results discussed above imply a fortiori the existence of non-separable Banach
spaces that admit no Auerbach bases, one example being the space `∞. On the other
hand, one may wonder whether every Banach space with an M-basis also admits an
Auerbach basis. A partial support for this conjecture may be found in Plichko’s claim
[Pli82] that every Banach space with an M-basis also admits a bounded M-basis; the
proof given in [Pli82] actually proves the claim only for strong M-bases, the general case
being treated in the later paper [HáMo10]. However, Plichko himself [Pli86] offered an
example of a WCG Banach space with no Auerbach basis, in particular showing that
every M-basis {xγ; x∗γ}γ∈Γ on such space satisfies

sup
γ∈Γ
‖xγ‖ · ‖x∗γ‖ > 2.

We shall now present Plichko’s example.

Example 2.1.9. There exists a WCG Banach space with no λ-bounded M-basis, for λ < 2.

Proof. Let us consider the normed space

X := c0[0, 1] + C[0, 1] = {y + f ∈ `∞[0, 1] : y ∈ c0[0, 1], f ∈ C[0, 1]} ,

with the canonical sup norm ‖·‖ inherited from `∞. It is immediate to verify that the
decomposition of x ∈ X as x = y + f , with y ∈ c0[0, 1] and f ∈ C[0, 1], is unique and
that in this case ‖ f ‖ 6 ‖y + f ‖. Consequently, X is isomorphic to c0[0, 1]⊕ C[0, 1] and
it is therefore WCG. The point in the proof that explains the factor 2 is the immediate
observation that, for y ∈ c0[0, 1], one has

inf
f∈C[0,1]

‖y + f ‖ = 1
2
‖y‖.

Let now {xγ; x∗γ}γ∈Γ be any M-basis on X and select a sequence (ϕn)∞
n=1 in X∗ that

separates points on C[0, 1] and with the property that every ϕn vanishes on c0[0, 1].
Since {xγ; x∗γ}γ∈Γ countably supports X∗, there exists a countable subset J of Γ such that
〈ϕn, xγ〉 = 0, whenever γ /∈ J and n ∈N. Up to enlarging the set J, we may additionally
assume that C[0, 1] ⊆ span{xγ}γ∈J .
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If we select any α /∈ J, then 〈ϕn, xα〉 = 0 (n ∈ N) and the fact that (ϕn)∞
n=1 separates

points on C[0, 1] imply xα ∈ c0[0, 1]; moreover, x∗α vanishes on span{xγ}γ∈J , whence
C[0, 1] ⊆ ker x∗α. Therefore, we conclude that

‖xα‖ · ‖x∗α‖ =
‖xα‖

dist(xα, ker x∗α)
>

‖xα‖
dist(xα, C[0, 1])

= 2.

�

In the same spirit as the above conjecture, one may hope that the existence of a
better system of coordinates, for instance a long Schauder basis, may be sufficient for
the existence of an Auerbach basis. This conjecture is once more false, as Godun proved
the existence of a non-separable Banach space with an unconditional basis, but with
no Auerbach bases, [God85, Theorem 2]. The same author [God90] later offered an
explicit example of such a Banach space, showing that the Banach space `1([0, 1]) admits
a renorming with no Auerbach bases. This result was then generalised by Godun, Lin,
and Troyanski ([GLT93], also see [HMVZ08, Section 4.6]), who proved that if X is a non-
separable Banach space such that BX∗ is w∗-separable, then there exists an equivalent
norm |||·||| on X such that (X, |||·|||) admits no Auerbach basis. We shall also refer to
[BDHMP05, §4.3] for some considerations on the same lines as these presented above.

These results show, in particular, that the existence of rather good systems of co-
ordinates, like M-bases in WCG spaces or even unconditional bases, is not a suffi-
cient assumption for a (non-separable) Banach space to admit an Auerbach basis. One
may try to make one step further and investigate the existence of uncountable Auer-
bach systems in spaces with such ‘good’ systems of coordinates. Indeed, the results
in [God85, God90, GLT93] motivated the authors of [GMZ16] to pose the question
of whether there exists a Banach space with unconditional basis and whose no non-
separable subspace admits an Auerbach basis ([GMZ16, Problem 294]).

One of the main results of the present chapter will be a solution to a stronger version
of the present question, in the following sense: we shall give (under the assumption of
the Continuum Hypothesis) an example of a non-separable Banach space with uncondi-
tional basis, but with no uncountable Auerbach system, in particular no non-separable
subspace admits an Auerbach basis.

This statement naturally suggests the investigation of sufficient conditions for a Ba-
nach space to contain subspaces with Auerbach bases and of as large as possible density
character. Therefore, a substantial part of the present chapter comprises quite general re-
sults concerning the existence of Auerbach systems in Banach spaces. To wit, we prove
that a sufficiently large Banach space contains a large subspace with Auerbach basis,
which is probably of interest on its own. We next improve and optimise this assertion,
in the case of a WLD Banach space. Let us now give the formal statement of our result.

Theorem 2.1.10 ([HKR••]). (i) Assume that κ is a cardinal number with κ > c. Then every
Banach space X such that w∗-dens X∗ > exp2 κ contains a subspace Y with Auerbach
basis and such that dens Y = κ+.
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(ii) Every WLD Banach space with dens X > ω1 contains a subspace Y with an Auerbach
basis and such that dens Y = dens X.

Clause (ii) of the above theorem is, of course, true also in the case that dens X = ω,
and it just reduces to Day’s theorem quoted above. This naturally suggests considering
the missing case that dens X = ω1 and our second main result in this chapter addresses
this issue by proving the following result.

Theorem 2.1.11 ([HKR••]). (CH) There exists a renorming |||·||| of the space c0(ω1) such that
the space (c0(ω1), |||·|||) contains no uncountable Auerbach systems.

Let us add a few comments comparing this result with the results that we discussed
above. Plainly, the class of WLD Banach spaces is stable under renormings and c0(ω1)
belongs to such class; as a consequence, Theorem 2.1.10(ii) can not be extended to the
case that dens X = ω1, since that assertion is consistently false in the case that dens X =
ω1. Let us mention here that we do not know whether this claim can be proved to be
false in ZFC or if it may hold true, under some additional set theoretic axioms.

Moreover, c0(ω1) evidently admits an unconditional basis and therefore Theorem
2.1.11 provides a negative answer to [GMZ16, Problem 294], at least under the assump-
tion of the Continuum Hypothesis. As we already mentioned, we actually prove a
stronger result: not only our example has the additional property to be WLD, even a
renorming of the space c0(ω1), but we are able to obtain the stronger conclusion that no
uncountable Auerbach system exists.

In a sense, we may also view Theorem 2.1.11 as the counterpart to Kunen’s result, for
the class of WLD Banach spaces. Obviously, every non-separable WLD Banach space
admits a biorthogonal system with maximal possible cardinality (any bounded M-basis
is a witness of this), so there is no Kunen type example in the context of WLD spaces.

To conclude this part, let us mention that we shall prove Theorem 2.1.10 in Section
2.2, while Section 2.3 is dedicated to the proof of Theorem 2.1.11. More accurate refer-
ences to the corresponding results in [HKR••] will also be given when we present the
proofs of the results.

2.1.2 Infinitary combinatorics

In subsequent sections of the present chapter and in several places in Chapter 4 we shall
need to exploit some results concerning infinitary combinatorics, whose statements are
recalled here for convenience of the reader. More information on different aspects of
this area may be found, e.g., in [EHMR84, Hal17, Jec03, JuWe97, Kun80b, Wil77].

Lemma 2.1.12 (∆-system lemma). Consider a family F = {Fγ}γ∈Γ of finite subsets of a set
S, where |Γ| is an uncountable regular cardinal number. Then there exist a subset Γ0 of Γ with
|Γ0| = |Γ| and a finite subset ∆ of S such that

Fγ ∩ Fγ′ = ∆,

whenever γ, γ′ ∈ Γ0, γ 6= γ′.
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This result, originally due to Shanin [Sha46], is more frequently stated in a slightly
different way, i.e., involving a set F , whose cardinality is a regular cardinal number;
we prefer this (equivalent) formulation, since it will apply more directly to our con-
siderations. The difference relies in the fact that, for γ 6= γ′, the sets Fγ and Fγ′ are not
necessarily distinct, so the cardinality of the set F may be smaller than |Γ|. We refer, e.g.,
to [Kun80b, Lemma III.2.6] for the more usual statement of the result and to the remarks
following the proof of Theorem III.2.8 for a comparison between the two formulations.

The second result that we shall use concerns partition properties for cardinal num-
bers and it is the counterpart for larger cardinals to the classical Ramsey’s theorem. For
the proof of the result to be presented and for a more complete discussion over partition
properties, we refer, e.g., to [HMVZ08, Theorem 5.67], [Jec03, Section 9.1], [Kun80b, pp.
237–238], or the monograph [EHMR84]. Before we state the result, we require a piece of
notation.

For a cardinal number κ, one defines the iterated powers by exp1 κ := 2κ and then
recursively expn+1 κ := exp(expn κ) (n ∈ N). Moreover, we shall denote by κ+ the
successor of κ, that is, the smallest cardinal number that is strictly greater than κ. If S
is a set and κ is a cardinal number, then we denote by [S]κ the set of all subsets of S of
cardinality κ, i.e.,

[S]κ := {A ⊆ S : |A| = κ}.
We also need to recall the arrow notation: assume that κ, λ, and σ are cardinal num-

bers and n is a natural number. Then the symbol

κ → (λ)n
σ

abbreviates the following partition property: for every function f : [κ]n → σ there exists
a set Z ⊆ κ with |Z| = λ such that f is constant on [Z]n; in this case, we say that Z is
homogeneous for f . With a more suggestive notation, the function f is sometimes called
a σ-colouring of [κ]n and, accordingly, the set Z is also said to be monochromatic.

Once this notation has been set forth, the classical Ramsey theorem [Ram29] can be
shortly stated as the validity of the partition property ω → (ω)k

n, for every n, k ∈N. Its
proof may be found in the references above or in the survey article [Gow03], where sev-
eral applications of Ramsey theory to Banach space are to be found. Its non-separable
counterpart appeared, together with the arrow notation, in the paper [ErRa56].

Theorem 2.1.13 (Erdős–Rado theorem). For every infinite cardinal κ and every n ∈N

(expn κ)+ → (κ+)n+1
κ .

The last result of combinatorial nature recorded in this section is Hajnal’s theorem
on free sets. Given a set S, by a set function on S we understand a function f : S→ 2S. A
subset H of S is a free set for f if f (x)∩H ⊆ {x}whenever x ∈ H. One may equivalently
require, and such approach is frequently followed, that the function f satisfies x /∈ f (x)
(x ∈ S), in which case H is a free set for f if it is disjoint from f (x), for every x ∈ H.
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The natural question which arises is to find sufficient conditions on f : κ → 2κ, where
κ is a cardinal number, for the existence of as large as possible free sets. It is clear
that the mere assumption the cardinality of f (x) to be less than κ, for x ∈ κ, does not
even ensure the existence of a two element free set. This is simply witnessed by the
function f (λ) := λ (= {α : α < λ}) (λ < κ). On the other hand, the existence of
λ < κ such that | f (x)| < λ for x ∈ κ turns out to be sufficient for the existence of free
sets of the maximal possible cardinality. This result was first conjectured by Ruziewicz
[Ruz36] and finally proved by Hajnal [Haj61]; partial previous results were obtained in
[Láz36, Pic37a, Pic37b, Sie37, Erd50, BrEr51, Fod52].

Let us now formally state Hajnal’s theorem; we shall refer, e.g., to [EHMR84, §44] or
[Wil77, §3.1] for the proof of the result and for further information on the subject.

Theorem 2.1.14 (Hajnal). Let λ and κ be cardinal numbers with λ < κ and κ infinite. Then
for every function f : κ → [κ]<λ there exists a set of cardinality κ that is free for f .

2.2 Existence of Auerbach systems

Our main goal for the present section is to prove some general results concerning the
existence of uncountable Auerbach systems in some classes of Banach spaces; we also
aim at finding as large as possible such systems. As a matter of fact, our arguments
will actually produce subspaces with Auerbach bases, not merely Auerbach systems. In
the first part of the section, we shall give results that only depend on density character
assumptions, while in the second part, we specialise our results to WLD Banach spaces.

Theorem 2.2.1 ([HKR••, Theorem 3.1]). Let κ > c be a cardinal number and let X be a Banach
space with w∗-dens X∗ > exp2 κ. Then X contains a subspace Y with Auerbach basis and such
that dens Y = κ+.

Proof. Let κ > c be a cardinal number. Suppose that X is a Banach space with the
property that λ := w∗-dens X∗ > exp2 κ. We may then find a long basic sequence
(eα)α<λ of unit vectors in X and a long sequence (ϕα,β)α<β<λ of unit functionals in X∗

with the following properties:
(i) ϕα,β is a norming functional for the molecule eα − eβ for each α < β < λ;

(ii) eγ ∈ ker ϕα,β for every α < β < γ < λ.
The existence of such sequences is proved by a very simple transfinite induction argu-
ment, which is a minor modification over the Mazur technique, [HMVZ08, Corollary
4.11]. Assuming to have already constructed elements (eα)α<γ and (ϕα,β)α<β<γ satisfy-
ing the two properties above (for some γ < λ), the unique difference is that we addition-
ally require eγ ∈ ∩α<β<γ ker ϕα,β. This is indeed possible, as |{ϕα,β}α<β<γ| 6 |γ| < λ,
whence the family {ϕα,β}α<β<γ does not separate points on X. In order to conclude the
inductive argument, it is then sufficient to choose, for each α < γ, a norming functional
ϕα,γ for the vector eα − eγ.
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We are now in position to invoke the Erdős–Rado theorem; let us consider the fol-
lowing colouring c : [λ]3 → [−1, 1] of [λ]3. Given any p ∈ [λ]3, we may uniquely write
p = {α, β, γ} with α < β < γ; we can therefore unambiguously set c(p) := 〈ϕβ,γ, eα〉 ∈
[−1, 1]. According to the Erdős–Rado theorem, we have (exp2 κ)+ → (κ+)3

κ, whence
from our assumptions we deduce a fortiori λ → (κ+)3

c . Consequently, there exists a
subset Λ of λ with |Λ| = κ+ which is monochromatic for the colouring c. In other
words, there exists t ∈ [−1, 1] such that 〈ϕβ,γ, eα〉 = t for every triple α, β, γ ∈ Λ
with α < β < γ; of course, we immediately deduce that eα − eβ ∈ ker ϕγ,η whenever
α, β, γ, η ∈ Λ satisfy α < β < γ < η.

In order to conclude the argument, consider the unit vectors uα,β :=
eα−eβ

‖eα−eβ‖
(α, β ∈

Λ, α < β); those are actually well defined, since eα 6= eβ for α 6= β. From our argument
above, we have 〈ϕγ,η, uα,β〉 = 0 whenever α < β < γ < η are in Λ. Moreover, condition
(i) clearly gives 〈ϕα,β, uα,β〉 = 1, while (ii) assures us that 〈ϕα,β, uγ,η〉 = 0 (α, β, γ, η ∈ Λ,
α < β < γ < η). At this stage it is, of course, immediate to construct an Auerbach
system of length κ+. To wit, find ordinal numbers (αθ)θ<κ+ and (βθ)θ<κ+ in Λ such that:

(i) αθ < βθ < αη whenever θ < η < κ+;

(ii) Λ = {αθ}θ<κ+ ∪ {βθ}θ<κ+ .
Then, the unit vectors uθ := uαθ ,βθ

(θ < κ+) with the corresponding biorthogonal
functionals ϕθ := ϕαθ ,βθ

(θ < κ+) clearly constitute an Auerbach system. Finally,
{uθ; ϕθ}θ<κ+ is an M-basis for the subspace Y := span{uθ}θ<κ+ , which concludes the
proof. �

It is a standard fact that the weak* density of the dual of X, w∗-dens X∗ does not
exceed some cardinal number λ if and only if there exists a linear continuous injection of
X into `∞(λ). Consequently, when w∗-dens X∗ 6 λ we deduce that dens X 6 |`∞(λ)| =
exp λ, or, in other words, dens X 6 exp(w∗-dens X∗). Combining this inequality with
the content of the previous theorem leads us to the following corollary.

Corollary 2.2.2. Let κ > c be a cardinal number. Suppose that X is a Banach space with
dens X > exp3 κ. Then X contains a subspace Y with Auerbach basis and such that dens Y =
κ+.

In the case where X is a WLD Banach space, we can improve the previous result
and obtain, under some cardinality assumptions on dens X, the existence of subspaces
with Auerbach basis and of the maximal possible density character, namely equal to
the density character of the Banach space X. We also point out that the restrictions on
dens X are in fact necessary, in view of the main result of Section 2.3.

Theorem 2.2.3 ([HKR••, Theorem 3.3]). Suppose that X is a WLD Banach space with dens X >
ω1 and let κ be a regular cardinal number such that ω1 < κ 6 dens X. Then X contains an
Auerbach system with cardinality κ.
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Proof. It is easy to construct in X a normalised, monotone long Schauder basic sequence
(eα)α<κ of length k. This is achieved via the uncountable analogue to the classical Mazur
technique (cf. [HMVZ08, Corollary 4.11]) combined with the equally elementary fact
(which we noted immediately after Theorem 2.1.6) that, X being WLD, w∗-dens X∗ =
dens X. Note that we may actually obtain one such sequence with length dens X, but
we shall not need it in what follows. Also observe that, as pointed out in Remark 2.1.7,
for every ϕ ∈ X∗ the set {α < κ : 〈ϕ, eα〉 6= 0} is at most countable. We shall exploit this
property at the very end of the argument.

Being a monotone long basic sequence, the family (eα)α<κ is in particular right-
monotone, in the sense that for every finite set F ⊆ κ and for every β < κ with F < β 1

one has ∥∥∥∥∥∑
α∈F

cαeα

∥∥∥∥∥ 6
∥∥∥∥∥∑

α∈F
cαeα + cβeβ

∥∥∥∥∥ ,

for every choice of scalars (cα)α∈F∪{β}. This condition is clearly equivalent to the re-
quirement that, for every pair of finite sets F, G ⊆ κ with F < G, one has∥∥∥∥∥∑

α∈F
cαeα

∥∥∥∥∥ 6
∥∥∥∥∥∑

α∈F
cαeα + ∑

α∈G
cαeα

∥∥∥∥∥ .

Given a subfamily (eα)α∈Γ of the basic sequence (eα)α<κ, we shall say that the family
(eα)α∈Γ is left-monotone if for every finite set F ⊆ Γ and for every β ∈ Γ with F < β one
has ∥∥cβeβ

∥∥ 6 ∥∥∥∥∥∑
α∈F

cαeα + cβeβ

∥∥∥∥∥ ,

for every choice of scalars (cα)α∈F∪{β}. We shall also say that a family is bi-monotone if it
is both left-monotone and right-monotone. Since every subfamily of the right-monotone
family (eα)α<κ is right-monotone too, the left-monotonicity of (eα)α∈Γ is equivalent to it
being bi-monotone.

We are interested in such bi-monotone families, since it is immediate to construct
an Auerbach system out of a bi-monotone family. Assume indeed that (eα)α∈Γ is a
bi-monotone family; the vectors {eα}α∈Γ plainly constitute a linearly independent set,
whence we can define linear functionals ϕα (α ∈ Γ) on span{eα}α∈Γ to be biorthogonal
to the system (eα)α∈Γ. Moreover, for every finite set F ⊆ Γ and for every β ∈ F, we
may express F = F− ∪ {β} ∪ F+ with F− < β < F+. Consequently, an appeal to the
left-monotonicity and then to the right-monotonicity yields us∣∣∣∣∣

〈
ϕβ, ∑

α∈F
cαeα

〉∣∣∣∣∣ = |cβ| = ‖cβeβ‖ 6
∥∥∥∥∥ ∑

α∈F−

cαeα + cβeβ

∥∥∥∥∥
1Let us remind the reader that this notation, like the analogous F < G used below, was defined in the

section Notation at the beginning of the dissertation.
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6

∥∥∥∥∥ ∑
α∈F−

cαeα + cβeβ + ∑
α∈F+

cαeα

∥∥∥∥∥ =

∥∥∥∥∥∑
α∈F

cαeα

∥∥∥∥∥ .

Therefore, ϕβ is a bounded linear functional of norm 1. By the Hahn–Banach theorem,
we can extend it to a functional, still denoted ϕβ, defined on the whole X; the system
{eα; ϕα}α∈Γ is then an Auerbach system. Moreover, {eα; ϕα}α∈Γ is clearly an M-basis for
the subspace Y := span{eα}α∈Γ, which is then the desired subspace.

In other words, in order to prove the result it will be sufficient to find a left-monotone
subfamily (eα)α∈Γ of (eα)α<κ such that |Γ| = κ. Therefore, we now turn our attention to
the construction of such a family, and we start with some more notation.

Given subsets Γ1 and Γ2 of κ, we say that Γ2 is an extension of Γ1 if Γ2 = Γ1 ∪ G, for
some set G ⊆ κ such that G > Γ1, i.e., we add some indices ‘after the end’ of Γ1. In such
a case, we also say that the family (eα)α∈Γ2 is an extension of the family (eα)α∈Γ1 ; clearly,
such extension relation defines a partial ordering on the collection of all subfamilies of
the family (eα)α<κ.

Let us now fix an element γ < κ and observe that the family {eγ} is trivially bi-
monotone. We can therefore consider the non-empty partially ordered set P consisting
of all left-monotone extensions of the family {eγ}, endowed with the partial order in-
duced by the extension relation described above. It is immediate to verify that every
chain in P admits an upper bound, given by the union of the elements of the chain;
therefore an appeal to Zorn’s lemma provides us with the existence of a maximal ele-
ment in P . In other words, there exists a subset Γ(γ) of κ such that the correspond-
ing family (eα)α∈Γ(γ) is a maximal left-monotone extension of {eγ}; in particular, every
proper extension of (eα)α∈Γ(γ) fails to be left-monotone. We also notice that, according
to our definition of extendability, γ = min Γ(γ).

We are now in position to consider the following dichotomy: either |Γ(γ)| < κ for
every γ < κ, or there exists an ordinal γ̃ < κ with the property that |Γ(γ̃)| = κ. In
the latter case, the family (eα)α∈Γ(γ̃) is by definition a bi-monotone family of length κ;
consequently, it induces an Auerbach system of the desired cardinality, as described
above, and the proof is complete. Our plan is to show that the former case actually
leads us to a contradiction, therefore only the latter case could occur, which in turn
would conclude the proof.

Start with γ0 := 0 and set Γ0 := Γ(γ0). Since |Γ0| < κ and κ is regular, it is possible to
select an ordinal γ1 < κ such that Γ0 < γ1; we may also set Γ1 := Γ(γ1). We next proceed
analogously by transfinite induction: assuming to have already found (γβ)β<δ, with the
corresponding set Γβ := Γ(γβ), for some δ < ω1, then |Γβ| < κ and the properties of
κ imply | ∪β<δ Γβ| < κ. Exploiting the regularity once again, we may thus find an
ordinal γδ < κ such that ∪β<δΓβ < γδ. Consequently, we have found an increasing
ω1-sequence (γβ)β<ω1 , together with sets Γβ := Γ(γβ), with the property that Γβ < γδ

whenever β < δ < ω1. Moreover, the assumption that κ > ω1 allows us to conclude
that we can find an ordinal γ < κ such that ∪β<ω1Γβ < γ.
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Consider now an arbitrarily fixed β < ω1; the family (eα)α∈Γβ
is a left-monotone

family which, by the very definition, admits no left-monotone extension. Since Γβ ∪ {γ}
plainly is an extension of Γβ, the family (eα)α∈Γβ∪{γ} fails to be left-monotone. The only
way for this to be possible, from the left-monotonicity of (eα)α∈Γβ

, is that there are a
finite set F ⊆ Γβ and scalars (cα)α∈F∪{γ} such that∥∥∥∥∥∑

α∈F
cαeα + cγeγ

∥∥∥∥∥ < |cγ|.

Up to a scaling, we can also assume that cγ = 1. Therefore, setting bβ := ∑α∈F cαeα, we
have found (for every β < ω1) a block bβ ∈ span{eα}α∈Γβ

satisfying

‖bβ + eγ‖ < 1.

The uncountable cofinality of ω1 therefore provides us with an uncountable subset
Ω of ω1 and a real δ > 0 such that ‖bβ + eγ‖ 6 1 − δ, for every β ∈ Ω. If b is any
convex combination of the bβ’s (β ∈ Ω), then of course ‖b + eγ‖ 6 1− δ too. Therefore,
for every such b we have ‖b‖ > δ and, setting C := conv{bβ}β∈Ω, we readily conclude
that dist(C, 0) > δ. Consequently, an appeal to the Hahn–Banach separation theorem
furnishes us with a normalised functional ϕ ∈ X∗ such that 〈ϕ, b〉 > δ for every b ∈ C,
in particular 〈ϕ, bβ〉 > δ for every β ∈ Ω.

This is, however, in contradiction with the fact that ϕ is countably supported by the
basic sequence (eα)α<κ. In fact, the vectors bβ (β ∈ Ω) are evidently disjointly supported,
whence only countably many of the supports of the bβ’s can intersect the support of
ϕ. Finally, if β is any index in Ω with the property that supp(bβ) ∩ supp(ϕ) = ∅,
then clearly 〈ϕ, bβ〉 = 0 and this is in contradiction with the conclusion of the previous
paragraph. This ultimately shows that the former possibility in the above dichotomy
cannot indeed occur, thereby concluding the proof. �

We shall now present an (unpublished) alternative approach to the above theorem,
that allows us to obtain a much shorter proof of the existence of Auerbach systems,
together with an improvement of the result. On the other hand, the argument to be
presented depends on the rather heavy Hajnal’s theorem (cf. Theorem 2.1.14), while the
above proof was essentially self-contained.

Theorem 2.2.4. Every WLD Banach space X with dens X > ω1 contains a subspace Y with
Auerbach basis and such that dens Y = dens X.

Proof. Let us denote by κ = dens X and select an M-basis {eα; e∗α}α<κ for X; we may
assume that ‖eα‖ = 1 (α < κ). We may also find, for each α < κ, a functional x∗α ∈ SX∗

such that 〈x∗α, eα〉 = 1. According to the fact that {eα}α<κ countably supports X∗, the
sets

Nα := supp x∗α = {β < κ : 〈x∗α, eβ〉 6= 0} (α < κ)
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are at most countable. We may therefore apply Hajnal’s theorem to the function f : κ →
[κ]<ω1 defined by α 7→ Nα; this yields the existence of a set H, with |H| = κ, that is
free for f . Given distinct α, β ∈ H, the condition β /∈ f (α) ∩ H translates to β /∈ Nα,
i.e., 〈x∗α, eβ〉 = 0. Consequently, the system {eα; x∗α}α∈H is biorthogonal, and we are
done. �

2.3 A renorming of c0(ω1) with no uncountable Auerbach
systems

The main result of this section is the construction of a WLD Banach space with density
character ω1 that contains no uncountable Auerbach systems. More specifically, we
wish to construct a renorming of the space c0(ω1) such that in this new norm the space
fails to contain uncountable Auerbach systems. This is indeed possible, at least under
the assumption of the Continuum Hypothesis. The formal statement of our result is as
follows.

Theorem 2.3.1 ([HKR••, Theorem 5.1] (CH)). There exists a renorming |||·||| of the space
c0(ω1) such that the space (c0(ω1), |||·|||) contains no uncountable Auerbach systems.

The subsequent results present in this section (all from [HKR••, §5]) are entirely de-
voted to the construction of the desired norm and the verification of the asserted prop-
erty. The section is therefore naturally divided into two parts: in the former one, we
introduce a family of equivalent norms (depending on some parameters) on c0(ω1) and
prove some properties of every such norm; in the latter, we prove that careful choice
of the parameters implies that the resulting space contains no uncountable Auerbach
system.

We shall denote by ‖·‖∞, or just ‖·‖ if no confusion may arise, the canonical norm
on c0(ω1) and by (eα)α<ω1 its canonical long Schauder basis; the corresponding set of
biorthogonal functionals, in `1(ω1) = c0(ω1)

∗, will be denoted by (e∗α)α<ω1 .

Fix a parameter δ > 0 so small that ∆ := δ
1−δ 6 1/5 (for example, we could choose

δ = 1/6). We also select an injective long sequence (λα)α<ω1 ⊆ (0, δ). Moreover, for
every α < ω1 there exists an enumeration σα of the set [0, α), i.e., a bijection σα : |α| → α
(observing that |α| is either ω or a finite cardinal). We may therefore assume to have
selected, for every α < ω1, a fixed bijection σα. Having fixed such notation, we are
now in position to define elements ϕα ∈ `1(ω1) (α < ω1) as follows: ϕ0 = e∗0 and, for
1 6 α < ω1,

ϕα(η) =


1 if η = α

0 if η > α

(λα)k if η < α, η = σα(k).

The above enumerations may be chosen arbitrarily and the subsequent argument will
not depend on any specific such choice. On the other hand, a substantial part of the
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argument to be presented will consist in explaining how to properly choose the coeffi-
cients λα.

We start with a few elementary properties of the functionals (ϕα)α<ω1 and their use
in the definition of the renorming. Plainly, ‖ϕα − e∗α‖1 = ∑|α|k=1(λα)k 6 ∑∞

k=1 δk = ∆,
whence it follows that ϕα ∈ c0(ω1)

∗ and ‖ϕα‖1 6 1 + ∆. Moreover, the canonical
basis of `1(Γ) is stable under more drastic perturbation than the ones allowed in the
general Small Perturbation lemma (see, e.g., [Jam74, Example 30.12]) and, in particular,
the inequality ‖ϕα − e∗α‖1 6 ∆ < 1 is sufficient to imply that (ϕα)α<ω1 is a Schauder
basis for `1(ω1).

Fact 2.3.2. (ϕα)α<ω1 is a long Schauder basis for `1(ω1), equivalent to the canonical Schauder
basis (e∗α)α<ω1 of `1(ω1).

Proof. From the inequality ‖ϕα − e∗α‖1 6 ∆ observed above, it follows that∥∥∥∥∥ n

∑
i=1

di ϕαi

∥∥∥∥∥
1

>

∥∥∥∥∥ n

∑
i=1

die∗αi

∥∥∥∥∥
1

−
∥∥∥∥∥ n

∑
i=1

di(e∗αi
− ϕαi)

∥∥∥∥∥
1

>

>
n

∑
i=1
|di| −

n

∑
i=1
|di|‖ϕαi − e∗αi

‖1 > (1− ∆)
n

∑
i=1
|di|

for every choice of scalars (di)
n
i=1. Combining this inequality with ‖ϕα‖1 6 1+∆ results

in

(1− ∆) ∑
α<ω1

|dα| 6
∥∥∥∥∥ ∑

α<ω1

dα ϕα

∥∥∥∥∥
1

6 (1 + ∆) ∑
α<ω1

|dα|.

In order to prove that span{ϕα}α<ω1 = `1(ω1), we shall consider the bounded linear
operator T : `1(ω1)→ `1(ω1) such that T(e∗α) = ϕα. The first part of the argument shows
that T is, indeed, a bounded linear operator and that ‖T − I‖ 6 ∆ < 1. Consequently,
T is an isomorphism of `1(ω1) onto itself, whence the closed linear span of (ϕα)α<ω1

equals `1(ω1). �

We may now exploit the functionals (ϕα)α<ω1 to define a renorming of c0(ω1).

Definition 2.3.3.
|||x||| := sup

α<ω1

|〈ϕα, x〉| (x ∈ c0(ω1)).

Moreover, we also denote by X the space X := (c0(ω1), |||·|||).

Let us preliminarily note that if α < β, then there exists k ∈ N such that α = σβ(k)
and consequently |〈ϕβ, eα〉| = (λβ)

k 6 1; it immediately follows that |||eα||| = 1. We
may then readily check that |||·||| is a norm, equivalent to ‖·‖∞. In fact, the inequality
|||·||| 6 (1 + ∆) ‖·‖∞ is obvious and the lower estimate follows from a familiar pattern:
if γ < ω1 is such that ‖x‖∞ = |x(γ)|, we then have

|||x||| = |||2x(γ)eγ + x− 2x(γ)eγ||| > 2|x(γ)| − |||x− 2x(γ)eγ|||
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> 2‖x‖∞ − (1 + ∆)‖x− 2x(γ)eγ‖∞ = (1− ∆)‖x‖∞.

We shall also denote by |||·||| the dual norm on `1(ω1); needless to say, such a norm
satisfies (1 + ∆)−1 ‖·‖1 6 |||·||| 6 (1− ∆)−1 ‖·‖1. The definition of |||·||| clearly implies
that |||ϕα||| 6 1 and 〈ϕα, eα〉 = 1 actually forces |||ϕα||| = 1.

By the very definition, {ϕα}α<ω1 is a 1-norming set for X; we now note the impor-
tant fact that such a collection of functionals is actually a boundary for X. A similar
argument also shows that X is a polyhedral Banach space and we also record such in-
formation in the next lemma, even if we shall not need it in what follows.

Lemma 2.3.4. {ϕα}α<ω1 is a boundary for X. Moreover, X is a polyhedral Banach space.

Proof. In the proof of the first assertion, by homogeneity, it is clearly sufficient to con-
sider x ∈ (c0(ω1), |||·|||) with ‖x‖∞ = 1; in particular, there is α < ω1 with |x(α)| = 1.
For such an α we thus have:

|〈ϕα, x〉| > |〈e∗α, x〉| − |〈ϕα − e∗α, x〉| > 1− ‖ϕα − e∗α‖1‖x‖∞ > 1− ∆.

On the other hand, consider the finite set Nx := {γ < ω1 : |x(γ)| > ∆}. Then for each
α /∈ Nx we obtain:

|〈ϕα, x〉| 6 |〈e∗α, x〉|+ |〈ϕα − e∗α, x〉| 6 |x(α)|+ ∆ 6 2∆ 6 1− ∆.

Consequently, the supremum appearing in the definition of |||x||| is actually over the
finite set Nx and it is therefore attained.

We then turn to the polyhedrality of (c0(ω1), |||·|||). Let E be any finite-dimensional
subspace of (c0(ω1), |||·|||) and let x1, . . . , xn be a finite ∆/2-net (relative to the ‖·‖∞
norm) for the set {x ∈ E : ‖x‖∞ = 1}. Let us consider the finite set NE := ∪n

i=1Nxi ,
where Nx := {γ < ω1 : |x(γ)| > ∆/2}; then for every x ∈ E with ‖x‖∞ = 1 there
clearly holds

{γ < ω1 : |x(γ)| > ∆} ⊆ NE.

The same calculations as before then demonstrate that for all such x we have

sup
α<ω1

|〈ϕα, x〉| = max
α∈NE

|〈ϕα, x〉|.

Consequently, |||·||| = maxα∈NE |〈ϕα, ·〉| on E and {ϕα}α∈NE is a finite boundary for E,
which is thus polyhedral. �

We now turn to the first crucial result for what follows, namely the fact that every
norm-attaining functional on X is finitely supported with respect to the basis (ϕα)α<ω1 .

Theorem 2.3.5. Let g ∈ SX∗ be a norm-attaining functional and let u ∈ SX be such that
〈g, u〉 = 1. Also, denote by F the finite set F := {α < ω1 : |u(α)| > ∆

1−∆}. Then

g = ∑
α∈F

gα ϕα and ∑
α∈F
|gα| 6 1.
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Proof. We begin with two very simple remarks, that we shall use in the course of the
argument. Combining the estimate in the proof of Fact 2.3.2 with |||ϕα||| = 1, we readily
deduce that

1− ∆
1 + ∆ ∑

α<ω1

|dα| 6
∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ ∑
α<ω1

dα ϕα

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ 6 ∑

α<ω1

|dα|. (2.3.1)

Moreover, we have
convw∗ {±ϕα}α<ω1

= BX∗ . (2.3.2)

This is an immediate consequence of the Hahn–Banach separation theorem and the fact
that {±ϕα}α<ω1 is 1-norming for X.

We now start with the argument: let g ∈ SX∗ be a norm-attaining functional and
choose u ∈ SX such that 〈g, u〉 = 1. We may express g as g = ∑α<ω1

gα ϕα, and we also
set F := {α < ω1 : |u(α)| > ∆

1−∆}. Moreover, let us choose arbitrarily

f = ∑
α<ω1

dα ϕα ∈ conv {±ϕα}α<ω1

(i.e., only finitely many dα’s are non-zero and ∑α<ω1
|dα| 6 1).

Claim. If 〈 f , u〉 > 1− η, then
∑
α/∈F
|dα| 6 12η.

Proof of the Claim. Recall that (1 + ∆)−1 6 ‖u‖∞ 6 (1− ∆)−1; hence for each α /∈ F we
have

|〈ϕα, u〉| 6 |〈e∗α, u〉|+ |〈ϕα − e∗α, u〉| 6 ∆
1− ∆

+ ∆‖u‖∞ 6 2
∆

1− ∆
.

Consequently, setting ρ := ∑α/∈F |dα|, we have

1− η 6 〈 f , u〉 6 ∑
α/∈F
|dα||〈ϕα, u〉|+ ∑

α∈F
dα〈ϕα, u〉 6 2ρ

∆
1− ∆

+ ∑
α∈F

dα〈ϕα, u〉,

whence

(†) ∑
α∈F

dα〈ϕα, u〉 > 1− η − 2ρ
∆

1− ∆
.

On the other hand, there exists α < ω1 with |u(α)| > (1 + ∆)−1 and for such α we
have

(‡) |〈ϕα, u〉| > |〈e∗α, u〉| − |〈ϕα − e∗α, u〉| > 1
1 + ∆

− ∆
1− ∆

.

Let us now consider the functional

ψ := ∑
α∈F

dα ϕα + ρ · sgn〈ϕα, u〉ϕα;
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clearly, ψ ∈ conv{±ϕα}α<ω1 , so |||ψ||| 6 1. We can therefore combine this information
with (†) and (‡) and conclude that

1 > 〈ψ, u〉 = ∑
α∈F

dα〈ϕα, u〉+ ρ · |〈ϕα, u〉|

> 1− η − 2ρ
∆

1− ∆
+ ρ ·

(
1

1 + ∆
− ∆

1− ∆

)
= 1− η + ρ ·

(
1

1 + ∆
− 3

∆
1− ∆

)
> 1− η +

ρ

12
;

in the last inequality we used the fact that ∆ 7→
(

1
1+∆ − 3 ∆

1−∆

)
is a decreasing function

on (0, 1) and the assumption that ∆ 6 1/5. It follows that ρ/12 6 η, whence the proof
of the claim is concluded. �

We now amalgamate those facts together. According to (2.3.2), we may find a net
( fτ)τ∈I in conv{±ϕα}α<ω1 such that fτ → g in the w∗- topology; the elements fτ have
the form fτ = ∑α<ω1

dα
τ ϕα, where, for each τ ∈ I, ∑α<ω1

|dα
τ| 6 1 and only finitely many

dα
τ’s are different from zero.

The net (∑α∈F dα
τ ϕα)τ∈I is plainly a bounded net in a finite-dimensional Banach space

(for what concerns the boundedness, observe that (2.3.1) implies |||∑α∈F dα
τ ϕα||| 6 1).

Hence, up to passing to a subnet, we may safely assume that it converges in |||·|||, and
a fortiori in the w∗-topology of X∗, to an element, say ∑α∈F d̃α ϕα. The basis equiva-
lence contained in the inequalities (2.3.1) now allows us to deduce in particular that
∑α∈F |d̃α| 6 1.

As a consequence of this currently obtained norm convergence, we see that

∑
α/∈F

dα
τ ϕα = fτ − ∑

α∈F
dα

τ ϕα
w∗−→ g− ∑

α∈F
d̃α ϕα = ∑

α/∈F
gα ϕα + ∑

α∈F

(
gα − d̃α

)
ϕα

and our present goal is to estimate the |||·|||-norm of the right hand side, making use of
this w∗ convergence and the above claim.

Let us fix temporarily η > 0; from the w∗ convergence we obtain 〈 fτ, u〉 → 〈g, u〉 =
1, whence the existence of τ0 ∈ I such that 〈 fτ, u〉 > 1− η for every τ > τ0

2. Conse-
quently, according to the above claim we deduce∣∣∣∣∣

∣∣∣∣∣
∣∣∣∣∣∑
α/∈F

dα
τ ϕα

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ 6 ∑

α/∈F
|dα

τ| 6 12η (τ > τ0).

This and the w∗ lower semi-continuity of the |||·|||-norm on X∗ then reassure us that∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣∑
α/∈F

gα ϕα + ∑
α∈F

(
gα − d̃α

)
ϕα

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ 6 12η.

2we are denoting by > both the order on the real line and the preorder in the directed set I—this
should cause no confusion, hopefully.
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Since η > 0 was fixed arbitrarily, we may let η → 0+ in the above inequality and, also
exploiting the fact that (ϕα)α<ω1 is a Schauder basis, we conclude that gα = 0 whenever
α /∈ F, while gα = d̃α for every α ∈ F. Therefore,

g = ∑
α<ω1

gα ϕα = ∑
α∈F

gα ϕα,

where ∑α∈F |gα| = ∑α∈F |d̃α| 6 1. �

Note that in the conclusion of the theorem we necessarily have ∑α∈F |gα| = 1, since
1 = |||g||| 6 ∑α∈F |gα|. Consequently, if g = ∑α∈F gα ϕα is any norm-attaining func-
tional we have |||∑α∈F gα ϕα||| = ∑α∈F |gα|. Since the set of norm-attaining functionals is
dense in X∗, according to the Bishop–Phelps theorem, this equality holds true for every
functional in X∗. We thus have the following immediate corollary.

Corollary 2.3.6. (ϕα)α<ω1 is isometrically equivalent to the canonical basis of `1(ω1).

In turn, this also implies (in the same notation as in the theorem)

{α < ω1 : gα 6= 0} ⊆ {α < ω1 : |〈ϕα, u〉| = 1}.

In fact, 1 = |||g||| = ∑α∈F |gα| and 1 = |||u||| > |〈ϕα, u〉| imply

1 = 〈g, u〉 = ∑
α<ω1

gα〈ϕα, u〉 6 ∑
α<ω1

|gα| · |〈ϕα, u〉| 6 ∑
α<ω1

|gα| = 1.

Consequently, all inequalities are, in fact, equalities and it follows that |〈ϕα, u〉| = 1
whenever gα 6= 0. It also follows that for every α < ω1 we have |gα| = gα · 〈ϕα, u〉 and
in particular 〈ϕα, u〉 = sgn(gα) whenever gα 6= 0.

As a piece of notation, it will be convenient to denote by supp(g) the set supp(g) :=
{α < ω1 : gα 6= 0} for a functional g = ∑α<ω1

gα ϕα ∈ X∗.
We can now approach the investigation of uncountable Auerbach systems in the

space X. Our last observation for this first part is the fact that if X contains an uncount-
able Auerbach system, then it also contains an uncountable Auerbach system such that
the supports of the functionals are in a very specific position: either the supports are
mutually disjoint and consecutive or the collection of the supports has an initial com-
mon root with cardinality 1, followed by consecutive blocks. As it is to be expected, the
∆-system lemma will play a prominent rôle in the proof; we shall also exploit again the
same ‘transfer of mass’ principle already present in the proof of the claim in Theorem
2.3.5.

Lemma 2.3.7. Assume that X contains an uncountable Auerbach system. Then X also contains
an Auerbach system {ũα; g̃α}α<ω1 such that one of the following two conditions is satisfied:

1. either there exists γ < ω1 with the properties that γ = min(supp(g̃α)) for every α < ω1
and supp(g̃α) \ {γ} < supp(g̃β) \ {γ} for every α < β < ω1;
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2. or supp(g̃α) < supp(g̃β) for every α < β < ω1.

Needless to say, the above conditions are mutually exclusive. Let us also point out
explicitly that (1) implies in particular supp(g̃α) ∩ supp(g̃β) = {γ} for α < β < ω1,
while (2) implies that the sets supp(g̃α) are mutually disjoint.

Proof. 3 Assume that X contains an uncountable Auerbach system and let us fix one,
say {uα; gα}α<ω1 ; according to Theorem 2.3.5, we know that the sets supp(gα) are finite
sets. In view of the ∆-system lemma we can therefore assume (up to passing to an un-
countable subset of ω1 and relabeling) that there exists a finite set ∆ ⊆ ω1 such that
supp(gα) ∩ supp(gβ) = ∆ for distinct α, β < ω1. In the case that ∆ is the empty set
we have obtained an uncountable Auerbach system with mutually disjointly supported
functionals and a simple transfinite induction argument yields the existence of an un-
countable subcollection of functionals whose supports are consecutive. In this case, (2)
holds and we are done.

Alternatively, if ∆ 6= ∅ we first have to concentrate all the mass present in ∆ in a
single coordinate. Fixed any γ ∈ ∆, we have γ ∈ supp(gα), whence |〈ϕγ, uα〉| = 1 for
every α < ω1. Consequently, we can pass to an uncountable subset of ω1 and assume
that 〈ϕγ, uα〉 has the same sign for every α < ω1. If we repeat the same procedure for
all the finitely many γ’s in ∆ we see that we can assume without loss of generality that
there are signs εγ = ±1 (γ ∈ ∆) such that 〈ϕγ, uα〉 = εγ for each α < ω1 and γ ∈ ∆. Let
us also fix arbitrarily an element γ ∈ ∆ and assume, for simplicity, that εγ = 1 (if this
is not the case, we can just achieve it by replacing the Auerbach system {uα; gα}α<ω1 by
{−uα;−gα}α<ω1).

We are now in position to define the functionals g̃α (α < ω1). Assume that

gα = ∑
γ<ω1

gγ
α ϕγ = ∑

γ∈∆
gγ

α ϕγ + ∑
γ∈∆{

gγ
α ϕγ,

where ∑γ<ω1
|gγ

α | = 1, for every α < ω1. We may then define

g̃α = ∑
γ∈∆
|gγ

α | · ϕγ + ∑
γ∈∆{

gγ
α ϕγ;

plainly, |||g̃α||| = 1 too (this follows from Corollary 2.3.6).
Finally, in order to evaluate 〈g̃α, uβ〉, note preliminarily that if γ ∈ ∆ then γ ∈

supp(gα) for each α < ω1; since gα attains its norm at uα, the remarks preceding the
present lemma imply that

|gγ
α | = gγ

α 〈ϕγ, uα〉 = gγ
α εγ = gγ

α 〈ϕγ, uβ〉,

3In this proof we shall denote by ∆ a finite set, obtained via the ∆-system lemma. This will not create
conflicts with the parameter ∆ 6 1/5, fixed at the very beginning of the section, since such parameter
will play no rôle here.
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whenever α, β < ω1. Consequently,

〈g̃α, uβ〉 := ∑
γ∈∆
|gγ

α | · 〈ϕγ, uβ〉+ ∑
γ∈∆{

gγ
α 〈ϕγ, uβ〉

= ∑
γ∈∆
|gγ

α |+ ∑
γ∈∆{

gγ
α 〈ϕγ, uβ〉

= ∑
γ∈∆

gγ
α 〈ϕγ, uβ〉+ ∑

γ∈∆{
gγ

α 〈ϕγ, uβ〉

= ∑
γ<ω1

gγ
α 〈ϕγ, uβ〉 = 〈gα, uβ〉.

It follows that {uα; g̃α}α<ω1 is also an Auerbach system and the mutual intersections
of the supports of the functionals g̃α all reduce to the singleton {γ}. Finally, a transfi-
nite induction argument analogous to the one needed above proves the existence of an
Auerbach system satisfying (1). �

We can finally pass to the second part of our considerations and prove the main re-
sult of the section. Prior to this, the following remark is dedicated to the presentation, in
a simplified setting, of one of the main ingredients in the proof of the result, concerning
the choice of the parameters λα.

Remark 2.3.8. Let u ∈ c0(ω1) be any non-zero vector and fix an ordinal γ < ω1 with
supp(u) < γ. We note that there are possible many choices of λγ such that the cor-
responding functional ϕγ satisfies 〈ϕγ, u〉 6= 0. Since the definition of ϕγ depends on
the choice of the parameter λγ, we shall also denote by ϕγ(λ) the functional obtained
choosing λγ = λ. Let us then observe that the function

λ 7→ 〈ϕγ(λ), u〉 := ∑
α<γ

u(α)〈ϕγ(λ), eα〉 =
|γ|

∑
k=1

u(σγ(k))λk

is expressed by a power series with bounded coefficients, not all of which equal zero.
Therefore λ 7→ 〈ϕγ(λ), u〉 is a nontrivial real-analytic function on (−1, 1) and, in view of
the identity principle for real-analytic functions, it necessarily has finitely many zeros
in (0, δ). This consideration allows us for many choices of a parameter λγ such that
〈ϕγ, u〉 6= 0. In the course of the proof of the result to follow, we shall need to exploit
the same argument involving analyticity in a more complicated setting.

Theorem 2.3.9 (CH). There exists a choice of the parameters (λα)α<ω1 such that the corre-
sponding space X = (c0(ω1), |||·|||) does not contain any uncountable Auerbach system.

Proof. Let us denote by c0(α) (α < ω1) the subspace of c0(ω1) consisting of all vectors
u ∈ c0(ω1) such that supp(u) ⊆ α. Since every element of c0(ω1) is countably sup-
ported, we have c0(ω1) = ∪α<ω1c0(α); moreover, every space c0(α), for ω 6 α < ω1, is
isometric to c0, hence it has cardinality the continuum. As a consequence, |c0(ω1)| = c
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too. Assuming (CH), we may therefore well order the non-zero vectors of c0(ω1) in an
ω1-sequence (vα)α<ω1 , i.e., c0(ω1) \ {0} = {vα}α<ω1 .

As in the previous remark, we shall occasionally denote by ϕγ(λγ) the functional
ϕγ, whenever it will be desirable to stress the dependence of ϕγ on the parameter λγ.
Those parameters (λα)α<ω1 will be chosen as to satisfy the conclusion of the following
claim.

Claim. It is possible to choose the parameters (λα)α<ω1 in such a way that the following two
assertions (A) and (B) are satisfied.

(A) For every N ∈ N, N > 2, for every choice of ordinal numbers α1, . . . , αN < ω1 and
β1, . . . , βN < ω1 with the properties that:

(i) {vα1 , . . . , vαN} is a linearly independent set;
(ii) β1 < β2 < · · · < βN;

(iii) α1, . . . , αN < β2;
(iv) supp(vα1), . . . , supp(vαN) < β2;
(v) 〈ϕβ1 , vαi〉 6= 0 for every i = 1, . . . , N;

one has:

det
((〈

ϕβi , vαj

〉)N

i,j=1

)
6= 0.

(B) For every N ∈N, for every choice of ordinal numbers α1, . . . , αN < ω1 and β1, . . . , βN <
ω1 with the properties that:

(i) {vα1 , . . . , vαN} is a linearly independent set;
(ii) β1 < β2 < · · · < βN;

(iii) α1, . . . , αN < β1;
(iv) supp(vα1), . . . , supp(vαN) < β1;

one has:

det
((〈

ϕβi , vαj

〉)N

i,j=1

)
6= 0.

Proof of the claim. We shall argue by transfinite induction on γ := βN < ω1, observ-
ing that for γ = 0 both conditions (A) and (B) are trivially satisfied, while ϕ0 = e∗0
regardless of the choice of λ0. We may therefore assume by the transfinite induction
assumption that, for a certain γ < ω1, we have already chosen parameters (λα)α<γ with
the corresponding functionals ϕα = ϕα(λα) in such a way that conditions (A) and (B)
are satisfied for every choice of the ordinals as above, subject to the condition βN < γ.
In order to verify the claim for γ, we only need to define λγ and therefore ϕγ; we shall
be considering the function λ 7→ ϕγ(λ) and show that a suitable choice of λ = λγ is
possible.
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We shall first focus on choosing λ in such a way to achieve condition (A). Let us select
arbitrarily N > 2 and ordinal numbers α1, . . . , αN and β1, . . . , βN satisfying conditions
(i)–(v) and such that βN = γ; note that in particular the functionals ϕβ1 , . . . , ϕβN−1 have
already been defined, and we only need to choose a suitable parameter λ in ϕβN(λ) =
ϕγ(λ). Observe that, by using the Laplace expansion for the determinant on the last
column,

det
((〈

ϕβi , vαj

〉)N

i,j=1

)
=

N

∑
j=1

(−)N+j
〈

ϕβN(λ), vαj

〉
dj =

〈
ϕβN(λ),

N

∑
j=1

(−)N+jdjvαj

〉
,

where dj is the determinant of the (N − 1)× (N − 1) matrix obtained removing the j-

th row and the N-th column from the original matrix
(
〈ϕβi , vαj〉

)N

i,j=1
. In the case that

N = 2, then actually dj = 〈ϕβ1 , vα3−j〉, whence dj 6= 0, according to (v). On the other
hand, if N > 3, then dj is the determinant of the matrix obtained from the action of the
functionals {ϕβ1 , . . . , ϕβN−1} on the set of vectors {vα1 , . . . , vαN} \ {vαj}. Those vectors
and functionals plainly satisfy conditions (i)–(v) with βN−1 < γ instead of γ; thereby,
dj 6= 0 follows from the transfinite induction assumption.

Consequently, in each case we may conclude that dj 6= 0 (j = 1, . . . , N) and condition
(i) then forces the vector ∑N

j=1(−)N+jdjvαj to be non-zero. According to the remark
preceding the proof, we may now deduce that the function

λ 7→
〈

ϕβN(λ),
N

∑
j=1

(−)N+jdjvαj

〉

is a non-trivial real-analytic function on (−1, 1) and consequently it has only finitely
many zeros on the set (0, δ). However, due to conditions (ii) and (iii), there are only
countably many choices for N ∈ N, α1, . . . , αN and β1, . . . , βN as in (A) and satisfying
βN = γ. Therefore, there exists a countable set Λ(A) ⊆ (0, δ) such that all the deter-
minants appearing in (A) and with βN = γ are different from zero, for every choice of
λ ∈ (0, δ) \Λ(A). With any such choice, condition (A) is verified for γ.

A very similar consideration also applies to condition (B). The argument is even
simpler, and we therefore omit the straightforward modifications, since we don’t need
to distinguish between the cases N = 2 and N > 3, the above argument for N > 3 now
being applicable to every N > 1; incidentally, this is the reason why we do not need
condition (v) in this case. Therefore, we obtain a countable subset Λ(B) of (0, δ) such
that condition (B) is verified for γ, whenever λ ∈ (0, δ) \Λ(B).

Finally, choosing any λγ ∈ (0, δ) \ (Λ(A) ∪ Λ(B)) and such that λγ 6= λα for α < γ
then provides us with a functional ϕγ for which both assertions (A) and (B) are satisfied
for γ; therefore, the transfinite induction step is complete and so is the proof of the
claim. �
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Having the claim proved, we may choose parameters (λα)α<ω1 satisfying conditions
(A) and (B) above; we then denote by X := (c0(ω1), |||·|||) the space obtained as de-
scribed in the first part of the section, where the functionals (ϕα)α<ω1 are obtained from
the presently chosen sequence (λα)α<ω1 . We may now conclude the proof, by showing
that the space X does not contain any uncountable Auerbach system.

Assume by contradiction that such systems do exist. Then we may find one, say
{uα; gα}α<ω1 , that satisfies the conclusion to Lemma 2.3.7. Moreover, according to The-
orem 2.3.5 the sets supp(gα) (α < ω1) are finite sets; therefore, we can also assume that
they all have the same finite cardinality, say N. On the other hand, we shall presently
show that both the cases contained in the conclusion to Lemma 2.3.7 are in contradic-
tion with conditions (A) and (B); this ultimately leads us to the desired contradiction
and concludes the proof.

Firstly, we show that the validity of (A) rules out the possibility (1) in Lemma 2.3.7 to
hold true. Assume by contradiction that the supports of (gα)α<ω1 satisfy condition (1)
and let us write supp(gα) := {βα

1, . . . βα
N}, where βα

1 < βα
2 < · · · < βα

N < ω1. According
to assumption (1), we have βα

1 = β
η
1 and {βα

2, . . . βα
N} < {β

η
2 , . . . β

η
N} for α < η < ω1; it

follows in particular that supα<ω1
βα

2 = ω1. Moreover, the non-zero vectors {u1, . . . , uN}
have been enumerated in the ω1-sequence (vα)α<ω1 , so we can find indices α1, . . . , αN
such that uj = vαj for every j = 1, . . . , N. We may also fix an ordinal number α < ω1

such that αj < α and supp(vαj) < α for j = 1, . . . , N.

Since supα<ω1
βα

2 = ω1, it is possible to choose an ordinal α < ω1 with the property
that βα

2 > α; needless to say, we may also assume that α > N. Let us set β j := βα
j , for

such a choice of α. With such a choice of the indices {α1, . . . αN} and {β1, . . . βN} it is
apparent that requirements (ii)–(iv) in condition (A) are satisfied; also (i) is undoubtedly
valid. Therefore, we only need to check the validity of (v): in order to achieve this,
note preliminarily that β1 ∈ supp(gα) for every α < ω1, in particular for α = αj. The
comments following Corollary 2.3.6 and the fact that gαj attains its norm at vαj then
assure us that actually |〈ϕβ1 , vαj〉| = 1.

Consequently, all the assumptions in condition (A) have been verified and the valid-
ity of (A) leads us to the conclusion that

det
((〈

ϕβi , vαj

〉)N

i,j=1

)
6= 0.

On the other hand, we may write gα := ∑N
i=1 ci ϕβi for some choice of scalars ci (i =

1, . . . , N) with ∑N
i=1 |ci| = 1. Since α > N we have

0 = 〈gα, uj〉 = 〈gα, vαj〉 =
N

∑
i=1

ci〈ϕβi , vαj〉 j = 1, . . . , N.
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In matrix form, the present equations read 〈ϕβ1 , vα1〉 . . . 〈ϕβN , vα1〉
...

...
〈ϕβ1 , vαN〉 . . . 〈ϕβN , vαN〉

 ·
 c1

...
cN

 =

0
...
0

 ;

this obviously contradicts det
((〈

ϕβi , vαj

〉)N

i,j=1

)
6= 0 and therefore clause (1) in Lemma

2.3.7 cannot occur.

A very similar argument, which we only sketch, proves that (2) is in contradiction
with (B). In fact, under the assumption of the validity of (2), and keeping the above
notation for supp(gα) := {βα

1, . . . βα
N}, we conclude that supα<ω1

βα
1 = ω1; we also select

α1, . . . , αN and α, proceeding in the same way as above. We are now in position to choose
α < ω1 such that βα

1 > α and α > N and define β j := βα
j , for such a choice of α. Having

chosen {α1, . . . αN} and {β1, . . . βN} in such a way, requirements (i)–(iv) in condition (B)
are satisfied. Therefore (B) assures us that

det
((〈

ϕβi , vαj

〉)N

i,j=1

)
6= 0

and a contradiction follows from verbatim the same argument as in the previous case.
Consequently, both clauses (1) and (2) in the conclusion to Lemma 2.3.7 fail to hold

and the contrapositive form to Lemma 2.3.7 itself implies that X contains no uncount-
able Auerbach system, thereby concluding the argument. �

Remark 2.3.10. In the above claim one could have replaced condition (B) above with the
following condition (C).

(C) For every choice of a vector vα such that:

(i) α < γ;

(ii) supp(vα) < γ;

one has
〈ϕγ, vα〉 6= 0.

The main motivation why one may consider the present condition (C) is clearly that (B)
is way more complicated than (C), even though (A) and (B) are actually quite similar.
On the other hand, the drawback of (C) is that (A)&(B) are exactly the conditions needed
to face the two possible cases contained in the conclusion to Lemma 2.3.7, while the
argument exploiting (A)&(C) would be somewhat more involved.
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2.4 Pták’s combinatorial lemma

In his 1959 paper [Ptá59], Vlastimil Pták distilled a combinatorial lemma aimed at the
investigation of weak compactness in Banach spaces. An interesting application of the
lemma, and partial motivation for the result itself, was an elementary proof of the fact
that if a uniformly bounded sequence of continuous functions ( fn)∞

n=1 ⊆ C(K) con-
verges pointwise to a continuous function f , then f may be uniformly approximated by
convex combinations of the fn ([Ptá63b, §2.1]). We shall record such an elementary proof
below, in Lemma 2.4.8. It is actually a standard exercise in Functional Analysis to un-
derstand this assertion as a particular case of Mazur’s theorem that a closed and convex
subset of a Banach space is weakly closed. However, this approach requires the Riesz
representation theorem for C(K)∗, Lebesgue’s dominated convergence theorem and the
Hahn–Banach separation theorem; therefore, it relies on much deeper principles than
the assertion itself, which, in particular, involves no measure theory whatsoever.

In later papers, Pták also applied and extended the same combinatorial ideas to the
study of separately continuous functions, cf. [Ptá63a, Ptá64], and interchangeability of
double limits [Ptá63b], aimed, in particular, at the study of weak compactness in Banach
spaces. When combined with previous results of Grothendieck [Gro52], this approach
leads to a proof of Krein’s theorem; such a proof is presented in the monograph [Köt69,
§24.6] and we shall say a bit more on it at the very end of the section.

This interesting lemma attracted the attention of the mathematical community, as
witnessed by several papers dedicated to its different proofs or extensions; let us men-
tion, among them, [Kin83, Sim67, Sim72a, Sim72b]. More recently, it was also used—
and given a different, Banach space theoretic, proof—in the paper [BHO89]. This proof
is also included in [FHHMZ10, Exercise 14.28], where Pták’s elementary proof of Mazur
theorem is also outlined (cf. [FHHMZ10, Exercise 14.29]). One further introduction to
this result may be found in [Tod97, §I.3], or in the systematic survey [Ptá01] by Pták
himself.

Let us now proceed to recall the statement of the result under investigation; we shall
require a piece of terminology, and we follow Pták’s notation from [Ptá59]. Given a
set S and a function λ : S → R by the support of λ we understand the set supp(λ) :=
{s ∈ S : λ(s) 6= 0}; in the case that supp(λ) is a finite set, we shall say that λ is finitely
supported.

A convex mean is a finitely supported function λ : S→ [0, ∞) such that

∑
s∈S

λ(s) = 1.

Plainly, a convex mean can also be naturally interpreted as a finitely supported prob-
ability measure on

(
S, 2S) via the definition λ(A) := ∑s∈A λ(s), for A ⊆ S. In what

follows, we shall profit from this notation, whenever convenient.
All the necessary notation being set forth, we are now in position to recall the original

statement of Pták’s lemma.



2.4. PTÁK’S COMBINATORIAL LEMMA 67

Lemma 2.4.1 (Pták’s combinatorial lemma, [Ptá59]). Let S be an infinite set andF ⊆ [S]<ω

be a collection of finite subsets of S. Then the following conditions are equivalent:
(i) there exist an infinite subset H of S and δ > 0 such that for every convex mean λ with

supp(λ) ⊆ H one has
sup
F∈F

λ(F) > δ;

(ii) there exist a strictly increasing sequence of finite sets (Bn)∞
n=1 ⊆ [S]<ω and a sequence

(Fn)∞
n=1 ⊆ F such that Bn ⊆ Fn, for every n ∈N.

Let us observe that the proof of the implication (ii) =⇒ (i) is immediate, as witnessed
by the choice of the set H := ∪∞

n=1Bn. Therefore, the actual content of the lemma lies in
the validity of the implication (i) =⇒ (ii) and it is precisely this implication to appear in
the result as devised in [BHO89].

In order to state this second formulation, we need one more definition. A family
F ⊆ 2S is said to be hereditary if whenever F ∈ F and G ⊆ F, then G ∈ F too.

Lemma 2.4.2 (Pták’s lemma, second formulation, [BHO89]). Let S be an infinite set and let
F ⊆ [S]<ω be an hereditary family. Assume that there exists δ > 0 such that for every convex
mean λ on S one has

sup
F∈F

λ(F) > δ.

Then there exists an infinite subset M of S such that every finite subset of M is in F .

Observe that, for an hereditary family F , condition (ii) of Lemma 2.4.1 is equiv-
alent to the conclusion of Lemma 2.4.2, as a simple verification shows. More pre-
cisely, the condition F being hereditary is only used in the verification that (ii) im-
plies the conclusion of Lemma 2.4.2. Moreover, the assumption in Lemma 2.4.2 im-
mediately implies (i) with H = S and, conversely, under the validity of (i), the as-
sumption of Lemma 2.4.2 is satisfied for the infinite set H and the hereditary family
{F ∩ H : F ∈ F} = {F ∈ F : F ⊆ H}.

Consequently, the two statements are formally equivalent. The advantage of the
second formulation, from our perspective, is that it immediately suggests its possible
generalisations to larger cardinalities, that we shall consider in what follows.

In order to have a more succinct formulation of our results, the following definition
seems appropriate.

Definition 2.4.3. Let κ be an infinite cardinal number. We say that Pták’s lemma holds true
for κ if for every set S with |S| > κ and every hereditary family F ⊆ [S]<ω such that

(†) δ := inf

{
sup
F∈F

λ(F) : λ is a convex mean on S

}
> 0,

there exists a subset M of S, with |M| = κ, such that every finite subset of M belongs to
F .
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Let us now proceed to give the formal statements of our main results. Prior to this,
we only mention that when the notation λω is used, it will be cardinal exponentiation
that is intended.

Theorem 2.4.4 ([HáRu19, Theorem A]). The validity of Pták’s lemma for ω1 is independent
of ZFC. More precisely:

(i) (MAω1) Pták’s lemma holds true for ω1;

(ii) (CH) Pták’s lemma fails to hold for ω1.

Theorem 2.4.5 ([HáRu19, Theorem B]). Let κ be a regular cardinal number such that λω < κ
whenever λ < κ. Then Pták’s lemma is true for κ.

Let us now single out a few simple particular cases of Theorem 2.4.5. In the case
when κ = τ+ is a successor cardinal (hence, in particular, regular), the condition λω < κ
whenever λ < κ is satisfied exactly when τω = τ. Moreover, if µ is any infinite cardinal
number, then τ := 2µ satisfies τω = τ; we therefore arrive at the following corollary.

Corollary 2.4.6. If τ is an infinite cardinal number such that τω = τ, then Pták’s lemma is
true for τ+. In particular, Pták’s lemma is true for (2µ)+, whenever µ is an infinite cardinal
number.

Consequently, there are in ZFC arbitrarily large cardinal numbers for which Pták’s
lemma is true. Moreover, the smallest cardinal the above corollary applies to is c+. The
assumption of additional set-theoretical axioms allows us to deduce one more corollary,
whose first clause is immediate.

Corollary 2.4.7.
(i) (CH) Pták’s lemma is true for ω2;

(ii) (GCH) If τ is a cardinal number with cf(τ) > ω, then Pták’s lemma is true for τ+.

Proof. We only need to prove the second assertion; in light of the previous corollary, this
amounts to proving that τω = τ, whenever cf(τ) > ω. If τ = α+ is a successor cardinal,
then by GCH we have τ = 2α, whence τω = τ.

In the case that τ is a limit ordinal, we may write

τ =
⋃
{α : α < τ, α successor}.

If s ∈ τω is any sequence in τ, the assumption on the cofinality of τ then implies the
existence of a successor ordinal α < τ such that the image of the sequence s is contained
in α. In other words,

τω =
⋃
{αω : α < τ, α successor},

where τω denotes here the collection of all functions from ω to τ. Since |αω| = α, from
the previous case, we conclude that |τω| = τ too. �
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Our presentation of the above theorems is organised as follows: in Section 2.5.1 we
shall present some general observations concerning the condition appearing in Pták’s
lemma. These considerations will, in particular, allow us to present the proof of Pták’s
original result and are based on the proof given in [BHO89]. In Section 2.5.2 we shall
prove Theorem 2.4.4, while Section 2.5.3 is dedicated to the proof of Theorem 2.4.5.
Prior to this, we shall conclude this section with two instances of uses of Pták’s lemma,
proving the claim about convex combinations of continuous functions and describing
Pták’s proof of Krein theorem. Moreover, we shall also dedicate Section 2.4.1 below to a
self-contained presentation of Martin’s Axiom, that will be needed for Theorem 2.4.4.

Lemma 2.4.8 ([Ptá63b, §2.1]). Let ( fn)∞
n=1 ⊆ C(K) be a bounded sequence of continuous func-

tions that converge pointwise to a continuous function f . Then f can be uniformly approximated
by convex combinations of the fn.

Proof. We may assume without loss of generality that ( fn)∞
n=1 converges pointwise to

0 and that ‖ fn‖ 6 1, for every n ∈ N. Let us now fix ε > 0 and consider, for x ∈ K,
the finite set Fx := {n ∈ N : | fn(x)| > ε/2}; we shall apply Lemma 2.4.1 to the family
F := {Fx : x ∈ K}.

If condition (ii) in Lemma 2.4.1 is satisfied there exist a strictly increasing sequence
(Bn)∞

n=1 of finite subsets of N and a sequence (xn)∞
n=1 ∈ K such that Bn ⊆ Fxn (n ∈ N);

as a consequence, | fk(xn)| > ε/2, whenever n ∈ N and k ∈ Bn. Let also x0 be an
accumulation point of the sequence (xn)∞

n=1. If k ∈ ∪Bn, then k belongs to Bn for every n
sufficiently large, since (Bn)∞

n=1 is an increasing sequence; consequently, | fk(xn)| > ε/2
for n large and the continuity of fk implies | fk(x0)| > ε/2. We conclude that k ∈ Fx0 ,
whence Fx0 ⊇ ∪Bn is an infinite set, a contradiction.

Pták’s lemma then implies the existence of a convex mean λ on N such that λ(Fx) <
ε/2 whenever x ∈ K; we shall prove that ∑∞

i=1 λ(i) fi has norm at most ε, whence it is
the desired convex combination. In fact, if x ∈ K, we have∣∣∣∣∣ ∞

∑
i=1

λ(i) fi(x)

∣∣∣∣∣ 6 ∑
i∈Fx

λ(i)| fi(x)|+ ∑
i/∈Fx

λ(i)| fi(x)|

6 ∑
i∈Fx

λ(i) + ε/2 ∑
i/∈Fx

λ(i) 6 λ(Fx) + ε/2 < ε.

�

It is elementary to give examples that show the necessity to assume the sequence
( fn)∞

n=1 to be bounded in C(K); one such simple example is outlined below.

Example 2.4.9. Consider a sequence of functions ( fn)∞
n=1 ∈ C([0, 1]) with the properties

that supp fn ⊆ [ 1
n+1 , 1

n ], fn > 0 and ‖ fn‖ = 2n. Of course, the sequence ( fn)∞
n=1 con-

verges pointwise to 0 and it consists of disjointly supported functions. Therefore, for
every finite sequence (λn)N

n=1 of non-negative reals, we have∥∥∥∥∥ N

∑
n=1

λn fn

∥∥∥∥∥ = max{2nλn : n = 1, . . . , N}.
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As a consequence, if ‖∑N
n=1 λn fn‖ < 1, then λn < 2−n, whence ∑ λn < 1. We conclude

that no convex combination of the functions fn can have norm smaller than 1.

To conclude the section, we shall outline a proof, via Pták’s lemma, of Krein’s theo-
rem on the weak compactness of the closed convex hull of a weakly compact set. The
main building block of the argument is Grothendieck’s characterisation of weak com-
pactness in terms of interchangeability of iterated limits [Gro52], inspired from earlier
work by Eberlein [Ebe47], where the approach through iterated limits was only implicit.
The argument may be found, e.g., in [Köt69, §24.6(1)], [Die84, p. 20], or [Woj91, p. 50].

Definition 2.4.10. A subset A of a Banach space X is said to interchange limits if for every
pair of sequences (xn)∞

n=1 ⊆ A and (x∗k )
∞
k=1 ⊆ BX∗ the existence of both iterated limits

lim
n→∞

lim
k→∞
〈x∗k , xn〉 lim

k→∞
lim

n→∞
〈x∗k , xn〉

forces their equality.

Theorem 2.4.11 (Grothendieck, [Gro52]). A bounded subset A of a Banach space is relatively
weakly compact if and only if it interchanges limits.

The necessity of the condition being essentially obvious, the real content of the result
lies in the fact that interchangeability of limits yields a sufficient condition for (relative)
weak compactness. Let us also observe that such implication contains the hard impli-
cation of the Eberlein–Šmulian theorem as a particular case, with essentially the same
proof.

Proof. Assume that A is relatively weakly compact and let (xn)∞
n=1 ⊆ A and (x∗k )

∞
k=1 ⊆

BX∗ be two sequences such that both iterated limits exist. If x is a weak cluster point
of (xn)∞

n=1 ⊆ A and x∗ is w∗ cluster point of (x∗k )
∞
k=1 ⊆ BX∗ , it is clear that both double

limits equal 〈x∗, x〉.
The strategy for the proof of the converse implication consists in showing that Aw∗ ⊆

X∗∗ is actually contained in X; since the restriction of the w∗ topology of X∗∗ to X is
obviously the weak topology of X, this implies that A is relatively weakly compact.

We shall therefore argue by contraposition and pick ψ ∈ Aw∗
such that dist(ψ, X) :=

d > 0. We then have the following simple fact.

Fact 2.4.12. For every finite subset F of X and ε > 0, there exists x∗ ∈ BX∗ such that

|〈 f , x∗〉| < ε ( f ∈ F) and |〈ψ, x∗〉 − d| < ε.

Indeed, the Hahn–Banach theorem yields a functional Λ ∈ BX∗∗∗ such that Λ�X = 0
and 〈Λ, ψ〉 = d; Goldstine theorem then reassures us of the validity of the assertion.

We shall next argue by induction as follows: we first fix arbitrarily a1 ∈ A and,
according to the above fact, we find x∗1 ∈ BX∗ such that

|〈a1, x∗1〉| < 1 and |〈ψ, x∗1〉 − d| < 1.
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The assumption that ψ ∈ Aw∗
then yields a2 ∈ A such that |〈ψ− a2, x∗1〉| < 1/2. One

more application of the fact provides us with x∗2 ∈ BX∗ such that

|〈a1, x∗2〉| < 1/2, |〈a2, x∗2〉| < 1/2, and |〈ψ, x∗2〉 − d| < 1/2.

One more step: the w∗ neighbourhood of ψ induced by x∗1 , x∗2 yields a3 ∈ A such that

|〈ψ− a3, x∗1〉| < 1/3, |〈ψ− a3, x∗2〉| < 1/3;

application of the fact to F = {a1, a2, a3} then yields x∗3 ∈ BX∗ such that

|〈a1, x∗3〉| < 1/3, |〈a2, x∗3〉| < 1/3, |〈a3, x∗3〉| < 1/3, |〈ψ, x∗3〉 − d| < 1/3.

If we proceed by induction in the same way, we obtain sequences (an)∞
n=1 ⊆ A and

(x∗k )
∞
k=1 ⊆ BX∗ such that

(i) |〈ψ− an, x∗k 〉| < 1/n, for k 6 n− 1;

(ii) |〈an, x∗k 〉| < 1/k, for n 6 k;

(iii) |〈ψ, x∗k 〉 − d| < 1/k.
Finally, (ii) implies limk〈an, x∗k 〉 = 0, whence limn limk〈an, x∗k 〉 = 0. On the other hand,
by (i) and (iii), we conclude

lim
k

lim
n
〈an, x∗k 〉 = lim

k
〈ψ, x∗k 〉 = d 6= 0.

�

Pták’s lemma is then exploited to show that convA interchanges limits whenever A
does, [Ptá01, Theorem 4.4], [Ptá63b, Theorem 3.3], or [Köt69, §24.6(4)]. Krein’s theorem
is an immediate consequence of the two above results. Let us also mention that the same
method of proof, still exploiting Pták’s lemma, can be extended to prove a quantitative
version to Krein’s theorem, [FHMZ05]; also see [HMVZ08, §3.6]. Let us conclude the
section with the proof of such further application of Pták’s lemma.

Theorem 2.4.13 (Pták, [Ptá63b]). Assume that a bounded subset A of a Banach space X inter-
changes limits. Then conv A interchanges limits.

Proof. We assume, without loss of generality, that A ⊆ BX, and we argue by contraposi-
tion. We may therefore select two sequences (un)∞

n=1 ⊆ conv A and (x∗k )
∞
k=1 ⊆ BX∗ such

that both iterated limits exist and∣∣∣∣ lim
k→∞

lim
n→∞
〈x∗k , un〉 − lim

n→∞
lim
k→∞
〈x∗k , un〉

∣∣∣∣ := ε > 0;

up to replacing (x∗k )
∞
k=1 with (−x∗k )

∞
k=1, we may actually assume

lim
k→∞

lim
n→∞
〈x∗k , un〉 − lim

n→∞
lim
k→∞
〈x∗k , un〉 = ε.
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If we let x∗ ∈ BX∗ be a w∗ cluster point of the sequence (x∗k )
∞
k=1, we plainly have

limk〈x∗k , un〉 = 〈x∗, un〉; moreover, up to discarding finitely many indices k, we can also
assume that

lim
n→∞
〈x∗k − x∗, un〉 = lim

n→∞
〈x∗k , un〉 − lim

n→∞
〈x∗, un〉 > 3ε/4 (k ∈N). (2.4.1)

Let us now fix a countable set T ⊆ A such that (un)∞
n=1 ⊆ conv T; by diagonalisation,

up to passing to a subsequence, we can assume that the sequence (x∗k )
∞
k=1 converges

pointwise on T, hence on conv T. As a consequence, we have limk〈x∗k , t〉 = 〈x∗, t〉,
whenever t ∈ T. This allows us to define finite sets Ft, t ∈ T, as follows:

Ft := {k ∈N : |〈x∗k − x∗, t〉| > ε/4}.

Claim 2.4.14. The family {Ft : t ∈ T} satisfies (†).

Proof of the claim. Assume, by contradiction, the existence of a convex mean λ on N such
that λ(Ft) 6 ε/8, for every t ∈ T. Let us then consider the functional ϕ := ∑ λ(k) · (x∗k −
x∗) and evaluate its action on t ∈ T:

|〈ϕ, t〉| 6 ∑
k∈Ft

λ(k)|〈x∗k − x∗, t〉|+ ∑
k/∈Ft

λ(k)ε/4 6 ∑
k∈Ft

2λ(k) + ε/4 = 2λ(Ft) + ε/4 6 ε/2.

Consequently, the above estimate holds true for t ∈ conv T, whence |〈ϕ, un〉| 6 ε/2, for
every n ∈N. However, this is a contradiction, since (2.4.1) yields

lim
n
〈ϕ, un〉 = ∑

k
λ(k) lim

n
〈x∗k − x∗, un〉 >∑ λ(k) · 3ε/4 = 3ε/4.

�

It then follows, a fortiori, that (†) is satisfied by the hereditary family

F := {F ⊆N : F ⊆ Ft, for some t ∈ T},

to which we apply Pták’s lemma. We may therefore conclude that there exists an infinite
subset of N every whose finite subset is contained in some Ft. Up to passing to one more
subsequence of the sequence (x∗k )

∞
k=1, we may assume that such infinite set equals N; in

other words, for every n ∈N there exists tn ∈ T such that {1, . . . , n} ⊆ Ftn , i.e.,

|〈x∗k − x∗, tn〉| > ε/4 (k = 1, . . . , n).

Up to passing to one more subsequence (both of (x∗k )
∞
k=1 and of (tn)∞

n=1), this inequal-
ity implies

lim
k

lim
n
|〈x∗k − x∗, tn〉| > ε/4.

On the other hand, the fact that (x∗k )
∞
k=1 converges pointwise to x∗ on T yields

lim
n

lim
k
〈x∗k − x∗, tn〉 = 0,

which ultimately shows that the two sequences (tn)∞
n=1 ⊆ A and (

x∗k−x∗

2 )∞
k=1 ⊆ BX∗ do

not interchange limits and concludes the proof. �
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2.4.1 A few words on Martin’s Axiom

This section is dedicated to one additional set-theoretical axiom, consistent with ZFC,
Martin’s Axiom (MA, for short). Since we shall need to assume the validity of such
axiom twice in this thesis, once in the present chapter and once in Chapter 4, we are
going to give here a reasonably short self-contained presentation of the axiom. In this
discussion, we shall follow mostly [Cie97, Chapter 8] and [JuWe97, Chapter 18]; more
extensive introductions can also be found in [Jec03, Chapter 16] and [Kun80b, §III.3].
Let us also mention here the very elementary introduction given in the Monthly article
[Sho75].

We will state the axiom in its partial order formulation; therefore, we shall start
reviewing some notions on partially ordered sets, or posets for brevity.

Definition 2.4.15. Let (P,6) be a partially ordered set. Two elements p, q ∈ P are
compatible (p 6⊥ q) if there exists r ∈ P such that r 6 p and r 6 q. If p and q are not
compatible, we say that they are incompatible and we write p ⊥ q.

An antichain is a subset A of P whose elements are pairwise incompatible.
(P,6) has the countable chain condition (ccc, for short) if every antichain in P is count-

able.

As a piece of notation, when p 6 q it is frequently said that p extends q; with this
notation, p and q are compatible iff they have a common extension.

Let us now give two examples that will guide our intuition throughout the section.

Example 2.4.16. (a) Given a topological space (X, τ), consider the poset (τ \ {∅},⊆).
Two non-empty open sets U and V are compatible iff there is a non-empty open set W
with W ⊆ U and W ⊆ V, i.e., iff U ∩V 6= ∅. Consequently, an antichain in (τ \ {∅},⊆)
is a collection of non-empty mutually disjoint open sets and (τ \ {∅},⊆) has the ccc if
and only if the topological space (X, τ) is ccc.

(b) Given sets I and J, Fn(I, J) denotes the collection of finite partial functions from I
to J, namely, p ∈ Fn(I, J) if p is a function with domain dom(p) a finite subset of I and
with values in J. Given p and q in Fn(I, J), we say that p 6 q if p extends q as a function.
As a consequence, functions p and q are compatible iff they have a common extension,
that is iff they agree on the set dom(p) ∩ dom(q).

Observe that if I 6= ∅ and J is uncountable, then the poset (P,6) := (Fn(I, J),6) is
not ccc. To see this, fix i0 ∈ I and consider, for j ∈ J, the singleton function f j such that
dom( f j) = {i0} and f j(i0) = j. It is clear that the collection { f j}j∈J consists of mutually
incompatible functions, hence (Fn(I, J),6) does not have the ccc.

As it turns out, the above poset is ccc if and only if I = ∅ or J is countable. The proof
of the reverse implication is a simple consequence of the ∆-system lemma, so short that
we will include it below (cf. [Kun80b, Lemma III.3.7]). Let us mention that the ∆-system
lemma is frequently used in arguments involving ccc.

Lemma 2.4.17. (Fn(I, J),6) has the ccc iff I = ∅ or J is countable.
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Proof. Note that if I = ∅ or J = ∅, then (Fn(I, J),6) = {∅}, so we can assume I and J
to be non-empty in what follows. Therefore, we only need to prove that (Fn(I, J),6) is
ccc, whenever J is countable.

Let pα ∈ (Fn(I, J),6) (α < ω1); by the ∆-system lemma, we may pass to an un-
countable subset B of ω1 such that the sets {dom(pα)}α∈B have a common root ∆. The
functions pα�∆ (α ∈ B) are elements of the countable set J∆, so we may find distinct
α, β ∈ B with pα�∆ = pβ�∆. Therefore, pα and pβ are compatible and (pα)α<ω1 is not an
antichain. �

Definition 2.4.18. A subset D af a partially ordered set (P,6) is dense (or cofinal) if for
every p ∈ P there exists d ∈ D with d 6 p.

In other words, every element of P admits an extension that belongs to D. Let us
describe some dense subsets in the posets introduced above.

Example 2.4.19. (a) If B is a basis for a topological space (X, τ), then by definition B \
{∅} is a dense subset of (τ \ {∅},⊆). Moreover, given an open subset O of X, consider
the set

D6O := {U ∈ τ \ {∅} : U ⊆ O}.
The density of D6O in (τ \ {∅},⊆) is equivalent to the requirement that for every V ∈
τ \ {∅} the set O ∩ V 6= ∅; in other words, D6O is dense in (τ \ {∅},⊆) iff O is dense
in (X, τ).

(b) We shall also use the following variation of part (a): if X is a compact Hausdorff
topological space and O is a dense open subset of X, then

D6O := {U ∈ τ \ {∅} : U ⊆ O}

is dense in (τ \ {∅},⊆). In fact, if V is a non-empty open set in X, V ∩O 6= ∅ and the
regularity of X [Rud87, Theorem 2.7] allows us to find a non-empty open set U with
U ⊆ V ∩O. Consequently, U ⊆ V, U ∈ D6O, and we are done.

(c) Assume that I and J are non-empty sets with I infinite and consider the poset
(Fn(I, J),6). Examples of dense subsets of Fn(I, J) are (for i ∈ I and j ∈ J)

{p ∈ Fn(I, J) : i ∈ dom(p)} and {p ∈ Fn(I, J) : j ∈ ran(p)}.

In fact, every finite function admits an extension whose range contains j and whose
domain contains i.

Before we proceed, let us give an heuristic explanation of a common use of Mar-
tin’s Axiom, which also motivates the terminology introduced so far. The rough idea is
that we wish to construct a certain object with some prescribed properties; we are then
invited to find a partially ordered set P, whose elements are ‘approximations’ of the
desired object and with p 6 q to be interpreted as the claim that p is a better approxima-
tion than q. A dense subset D of P (or, more generally, a collection D of such dense sets)
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represents a list of conditions we wish our object to satisfy. Martin’s Axiom claims the
existence of a ‘good collection’ of approximations having the properties encoded in D.
Once this collection of approximations is available, one may try to glue them together
(respecting the 6) and prove that the obtained object is as desired.

We shall give below a few proofs where this heuristic recipe is implemented. Prior
to this, and before the formal statement of Martin’s Axiom, we shall prove (in ZFC) a
countable version of MA, as a motivation for MA itself.

Lemma 2.4.20 (Rasiowa–Sikorski). Let (P,6) be a poset and D = (Dn)∞
n=1 be a countable

collection of dense subsets of P. Then there exists a decreasing sequence (pn)∞
n=1 in P that

intersects every element of D.

Proof. Assuming, inductively, to have already found p1 > p2 > . . . > pn, the density of
Dn+1 allows us to find pn+1 6 pn with pn+1 ∈ Dn+1. �

The decreasing sequence (pn)∞
n=1 in the conclusion of the lemma is the ‘good collec-

tion’ of approximations we were hinting at before. As an example where the collection
of approximations given by the Rasiowa–Sikorski lemma is used to construct an object
with specific properties, consider the construction of the Gurariı̆ space G described in
[GaKu11].

We wish to have the same statement as in the Rasiowa–Sikorski lemma, but admit-
ting sets D with larger cardinality; in other words, we wish to admit the possibility to
insert more than countably many conditions in the construction. In this case, the exis-
tence of a decreasing sequence in P that intersects every element of D is a too strong
requirement and it is therefore replaced by the existence of a subset with the following
monotonicity property.

Definition 2.4.21. A subset A of a poset (P,6) is directed if every pair of elements in A
admits a common extension in A; i.e., for every p, q ∈ A there exists r ∈ A with r 6 p
and r 6 q.

As a consequence, every finite subset of a directed set A ⊆ P admits a common
extension in A. Even replacing the existence of a decreasing sequence with the existence
of a directed subset that intersects every element of D, the conclusion of the Rasiowa–
Sikorski lemma fails to hold if we allow uncountable sets D. As a simple example for
this phenomenon, consider:

Example 2.4.22. Consider the poset Fn(ω, ω1) and, for α < ω1, the set

Dα := {p ∈ Fn(ω, ω1) : α ∈ ran(p)};

according to Example 2.4.19 (c), we know that such sets are dense. Assume now that
there exists a directed set A ⊆ Fn(ω, ω1) that intersects every Dα, α < ω1; since every
two functions in A are compatible, there exists a function fA, defined on some subset of
ω and with values in ω1, that extends every element of A. If p ∈ A ∩ Dα, by definition
α ∈ ran(p) ⊆ ran( fA); consequently, A ∩ Dα 6= ∅ for every α < ω1 implies that fA is
surjective, which is obviously impossible.
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Of course, for the above example we needed to consider Fn(I, J) with J uncountable,
in which case Example 2.4.16 (b) tells us that Fn(I, J) is not ccc. This suggests that we
add the ccc assumption on the poset P and finally leads us to the statement of Martin’s
Axiom.

Definition 2.4.23. MAκ is the statement that for every ccc poset P and every family D
of dense subsets of P, with |D| 6 κ, there exists a directed subset of P that intersects
every element of D.

MA is the statement that MAκ holds whenever κ < c.
Finally, m is the least cardinal number κ for which MAκ fails to hold.

It is obvious from the definition that MAκ implies the validity of MAλ whenever
λ < κ; moreover, MAω is true in ZFC, as a particular case of the Rasiowa–Sikorski
lemma. In order to justify the requirement that κ < c in the statement MA, let us now
prove that MAκ implies that κ < c. This will also be a consequence of Theorems 2.4.25
or 2.4.27 applied to [0, 1], but we are going to present a direct proof here (cf. [Kun80b,
Lemma III.3.13]), as an illustration of how to construct objects with ideal properties
under MA.

Lemma 2.4.24. If MAκ holds, then κ < c.

Let us first give the rough idea of the argument, which is an elaboration over Exam-
ple 2.4.22. We shall consider the poset Fn(I, J), where I and J are countably infinite sets;
if A is any directed set in Fn(I, J), then we may find a function fA that simultaneously
extends every element of A. By using countably many conditions, we can easily force
fA to be defined on the whole I; moreover, if h : I → J, we can also force fA to be distinct
from h. Since there are continuum many such functions h, the validity of MAc would
imply that fA is distinct from every h : I → J, a contradiction.

Proof. Let us fix sets I and J with |I| = |J| = ω and consider the ccc poset Fn(I, J) (the
ccc follows from the fact that Fn(I, J) is countable). Let us now consider, for a function
h : I → J, the dense set Dh := {p ∈ Fn(I, J) : p 66 h}, i.e., the collection of all finite
functions that are not extended by h. The verification that Dh is dense is very easy: if
q ∈ P, just find i /∈ dom(q) and let p ∈ P be an extension of q such that p(i) 6= h(i).

Since the collection of dense sets

{Dh : h ∈ J I} ∪ {{p ∈ P : i ∈ dom(p)} : i ∈ I}

has cardinality the continuum, the validity of MAc would imply the existence of a di-
rected set A that meets each of the above dense sets. In particular, the common extension
fA of the functions in A has domain I. However, if p ∈ Dh ∩ A, by definition h does
not extend p, while fA is an extension of it; as a consequence, fA is distinct from every
h ∈ J I , a contradiction. �
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As a consequence of the lemma, we have that ω1 6 m 6 c and MA can be restated
as the equality m = c. Of course, the Continuum Hypothesis implies Martin’s Axiom,
but, remarkably, many consequences of CH can actually be derived directly from MA
(let us refer to the article [MaSo70] for this perspective). On the other hand, Martin’s
Axiom plus the negation of the Continuum Hypothesis MA+¬CH is relatively consis-
tent with ZFC, as proved by Solovay and Tennenbaum [SoTe71]; also see [Cie97, §9.5]
or [Kun80b, §V.4]. It is also very frequent to be able to obtain results under the assump-
tion of MA+¬CH, or even of the weaker MAω1 , as it will be the case for the uses in the
present work. (Let us note here that MAω1 is strictly weaker than MA+¬CH, [Wei84, p.
835].)

We shall now prove two consequences of MA, the former being a version of Baire
Category theorem and the latter its analogue for Lebesgue null sets. These proofs are
just a sample of how to use Martin’s Axiom to construct objects with prescribed prop-
erties, as hinted at before. Many more (mostly, topological) consequences can be found,
e.g., in [Kun80b], [Rud75], or [Rud77]; an entire monograph deserves being dedicated
to the subject, [Fre84].

Theorem 2.4.25 (MAκ). Let K be a ccc compact Hausdorff topological space and let Oα (α < κ)
be open dense subsets of K. Then ∩α<κOα is dense in K.

Proof. Fix a non-empty open subset O of K; we shall prove that (∩α<κOα) ∩ O 6= ∅.
Consider the poset (P,6) comprising all non-empty open subsets p of K with p ⊆ O,
with p 6 q iff p ⊆ q. Like in Example 2.4.16 (a), it is immediate to verify that (P,6) is
ccc; moreover, for α < κ the sets

D6Oα
:= {p ∈ P : p ⊆ Oα}

are dense subsets of (P,6) (the argument in Example 2.4.19 (b) shows this).

Consequently, MAκ implies the existence of a directed subset A of P that meets every
dense set D6Oα

; in particular A is a collection of open sets with the finite intersection
property. The compactness of K then implies

pA :=
⋂

p∈A
p 6= ∅;

moreover, pA ⊆ O since every p ∈ A is an element of the poset P. Finally, for every α <
κ select p ∈ A ∩ D6Oα

, whence pA ⊆ p ⊆ Oα. Consequently, pA ⊆ (∩α<κOα) ∩O. �

Remark 2.4.26. In the argument, the ideal object we wish to construct is the set pA, to
witness that ∩Oα intersects O. Elements of P are outer approximations of it, with the
information to be contained in O; a ‘better’ approximation is more likely to be contained
in ∩Oα, since 6 is ⊆. The additional properties of our object are encoded in the sets
D6Oα

.
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As an immediate consequence of the result, if Hα (α < κ) are nowhere dense subsets
of K, then ∪Hα 6= K; when applied to the singletons of the ccc compact space [0, 1], this
yields one more proof that MAc is false. The above theorem then leads us consider the
topological version of MA to be the statement

No ccc compact Hausdorff topological space is the union
of less than c its nowhere dense subsets.

As it turns out, such axiom can be proved equivalent (in ZFC) to MA itself, cf. [Kun80b,
Theorem III.4.7], or [Wei84, Theorem 1.7]. Other similar equivalents of MA are also
given in [Fre84, Theorem 13.A].

In the classical statement of Baire Category theorem the compactness assumption
can be replaced by completeness and, perhaps not surprisingly, the above result admits
more general variants; let us refer e.g., to [Rud77, Theorem 14], [Kun80b, p. 194], or
[Juh77, Theorem 1.2] for three such instances. On the other hand, there is not a complete
analogy with the Baire Category theorem: a very simple (not ccc) example is based on
the fact that the complete metric space `2(ω1) is the union of ω1 many its closed proper
subspaces, [Kun80b, Exercise III.3.86]. Let us also refer to [Wei84, Example 1.10] for a
more striking example of a regular Baire space with ccc, which is union of ω1 nowhere
dense subsets.

In the opposite direction, let us also mention here the result by Baumgartner [Bau85]
of the relative consistency with ZFC that c > ω1 and every ccc compact Hausdorff
topological space without isolated points is the union of ω1 nowhere dense subsets.
In other words, it is relatively consistent with ZFC+¬CH that the conclusion of the
topological version of MA is false for every ccc compact Hausdorff topological space
without isolated points (note that, trivially, a topological space with at least one isolated
point is never union of nowhere dense subsets).

We then give the measure theoretic analogue to the above result. The poset to be
used in the next proof is sometimes called amoeba order, for reasons explained by Kunen
after the proof of the result, [Kun80b, Lemma III.3.28].

Theorem 2.4.27 (MAκ). The union of at most κ Lebesgue null subsets of Rd is Lebesgue null.

Proof. Let Eα (α < κ) be Lebesgue null subsets of Rd and set E := ∪α<κEα. Let us also
fix ε > 0; our aim is to find an open subset of Rd that contains E and whose measure
does not exceed ε (in this proof, we shall denote m Lebesgue measure on Rd).

Consider the poset P consisting of all open sets p of Rd with m(p) < ε endowed
with the partial order p 6 q iff p ⊇ q 4. Our first duty is the verification of the ccc; in
order to achieve this, let us preliminarily note that p, q ∈ P are incompatible if and only
if m(p ∪ q) > ε. Let therefore Q ⊆ P be an antichain and consider the sets

Qn := {q ∈ Q : m(q) < (1− 2−n) · ε};
4Our ideal object is an open set with small measure that contains every Eα; consequently, a larger open

set in P is a better approximation. Accordingly, our ideal object will be obtained as the union of a certain
directed collection of elements of P.
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it is sufficient to verify that every Qn is a countable set. For q ∈ Qn, select an open
subset q̃ of q that is finite union of open rectangles with rational endpoints and such that
m(q \ q̃) < 2−n · ε. Observe that if p̃ = q̃ for distinct p, q ∈ Qn, then p ∪ q = p ∪ (q \ q̃),
whence m(p ∪ q) < ε; a contradiction with p ⊥ q. Consequently, the correspondence
q 7→ q̃ is injective and, the collection of all q̃ being countable, we conclude that Qn is
countable.

Let us now consider the dense sets Dα := {p ∈ P : Eα ⊆ p} (α < κ). The verification
of the density is a much simpler task: given an open set p ∈ P, m(p) < ε and the
fact that Eα is Lebesgue null yield the existence of an open set q such that Eα ⊆ q and
m(q) < ε−m(p). Then p ∪ q ∈ Dα witnesses the density of Dα.

Let, finally, A be a directed subset of P that meets every Dα and consider the open
set GA := ∪p∈A p; clearly, E = ∪Eα ⊆ GA. Finally, the (hereditary) Lindelöf property
of Rd implies the existence of a countable subset (pn)∞

n=1 of A such that GA = ∪∞
n=1pn.

Moreover, for every N ∈ N, m(p1 ∪ · · · ∪ pN) < ε, since A is directed; hence, m(GA) 6
ε. �

In conclusion to this section we shall state one more consequence of Martin’s Axiom,
to be used in the proof of Theorem 4.1.15. Before we state the result we need one more
definition (cf. [Wei84, §3]).

Definition 2.4.28. A subset F of a partially ordered set (P,6) is centred if every its finite
subset admits a common extension in P, namely, for every p1, . . . , pk ∈ F there exists
r ∈ P with r 6 pi (i = 1, . . . , k).

A poset (P,6) is σ-centred whenever it can be expressed as countable union of cen-
tred subsets.

Every directed subset of P is an example of a centred set, a fortiori; in the case of the
poset (τ \ {∅},⊆), a collection A ⊆ τ \ {∅} is centred if and only if it has the finite
intersection property.

One more immediate observation is that every σ-centred poset is ccc; we may there-
fore understand this condition as a chain condition. Further examples of such chain
conditions can be found in the above mentioned [Wei84, §3], or in the monograph
[CoNe82]. The consequence of MA to be stated below yields the validity of the con-
verse implication for a certain class of posets; for its proof, we refer to [Wei84, Theorem
4.5].

Theorem 2.4.29 (MAκ). Every ccc poset of cardinality at most κ is also σ-centred.

2.5 Uncountable extensions of Pták’s lemma

This section is dedicated to the proof of the uncountable versions of Pták’s combinato-
rial lemma that we stated above. As we already mentioned, we shall divide our argu-
ments in three parts: in the first one, we shall present some general observations that
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will be of use in all the proofs. The second section is dedicated to the first uncountable
cardinal, while in the last one we are concerned with larger cardinal numbers.

2.5.1 General remarks

If S is any set, a subset A of S can be naturally identified, via the correspondence
A 7→ χA, with an element of the compact topological space {0, 1}S, endowed with
the canonical product topology. Let us recall that, under this identification, if A ∈ 2S, a
basis of neighbourhoods of A is given by the collection of sets{

B ∈ 2S : F ⊆ B ⊆ S \ G
}

,

where F and G are finite subsets of A and S \ A respectively. Throughout this section,
we shall make this identification and we shall not distinguish between the set A and its
characteristic function χA. Therefore, when F ⊆ 2S, we may consider the closure F of
F , in the product topology of {0, 1}S; henceforth, whenever we use the notation F it
will be the product topology the one under consideration.

In the case thatF is an hereditary family, it is easily seen thatF is an adequate compact,
in the sense of the following definition, first introduced by Talagrand [Tal79, Tal84]. A
family G ⊆ 2S is said to be adequate if:

(i) whenever G ⊆ F and F ∈ G, then G ∈ G, i.e., G is hereditary;

(ii) if every finite subset of G belongs to G, then G ∈ G too.
Conversely, every adequate family G can be expressed as F , for some hereditary family
of finite sets, namely F = {F ∈ G : |F| < ω}; in particular, every adequate family is a
closed subset of {0, 1}S. As it turns out, compact sets that originate from adequate fam-
ilies of sets are very fascinating objects in Functional Analysis and have been exploited
in several important examples; let us refer, e.g., to [AAM09, AMN88, Ark92, BeSt76,
Lei88, LeSo84, Ple95, Tal79, Tal84] for a sample of some of these constructions.

Our interest in adequate families originates from the following fact, a particular case
of the observation that F is adequate, whenever F is hereditary.

Fact 2.5.1. Let F be an hereditary family and M ∈ F . Then every finite subset of M belongs to
F .

In particular, if a finite set M ∈ F , then actually M belongs to F .

Proof. Assume that M ∈ F , where F is an hereditary family, and let F be a finite subset
of M. Since the set {

B ∈ 2S : F ⊆ B
}

is a neighbourhood of M, some element B of such neighbourhood belongs toF . F being
hereditary, F ⊆ B ∈ F yields F ∈ B, and we are done. �
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The next proposition is the non-separable counterpart to the argument in [BHO89,
Lemma 3.1], with the same proof, which we include for the sake of completeness.

Proposition 2.5.2. Let S be an infinite set and F ⊆ [S]<ω be an hereditary family such that
(†) holds. Then C(F ) contains an isomorphic copy of `1(S).

Proof. Let us preliminarily note that if λ is any convex mean on S, then supF∈F λ(F) >
δ; since this supremum is actually over the finite set consisting of all F ⊆ supp(λ),
it follows that there exists F ∈ F with λ(F) > δ. Consequently, for every finitely
supported function λ : S→ [0, ∞) there exists F ∈ F such that

∑
s∈F

λ(s) > δ ·∑
s∈S

λ(s).

For an element x = (x(s))s∈S ∈ c00(S), let us define

‖x‖ := sup

{∣∣∣∣∣∑s∈F
x(s)

∣∣∣∣∣ : F ∈ F
}

;

we claim that ‖·‖ is a norm on c00(S), equivalent to the ‖·‖1 norm. In order to prove
this, fix x ∈ c00(S) and let P be the finite set P := {s ∈ S : x(s) > 0}; up to replacing x
with −x, we may assume without loss of generality that

∑
s∈P

x(s) >
1
2 ∑

s∈S
|x(s)|.

Moreover, our assumption implies the existence of F ∈ F , with F ⊆ P, such that

δ · ∑
s∈P

x(s) 6 ∑
s∈F

x(s).

Consequently, we obtain

δ

2
·∑

s∈S
|x(s)| 6 δ · ∑

s∈P
x(s) 6 ∑

s∈F
x(s) 6 ‖x‖,

which proves our claim. In particular, the completion X of (c00(S), ‖·‖) is isomorphic to
`1(S).

Associated with F ∈ 2S there is a naturally defined functional F∗ ∈ X∗, given by
F∗x := ∑s∈F x(s); note that F∗ is well defined for every F ⊆ S in light of the fact that X
is isomorphic to `1(S). It is also clear from the definition of ‖·‖ that F∗ ∈ BX∗ , whenever
F ∈ F . Moreover, the correspondence F 7→ F∗ defines a function Φ : {0, 1}S → (X∗, w∗),
which is easily seen to be continuous and, of course, injective. It readily follows that Φ

establishes an homeomorphism between F ⊆ {0, 1}S and F ∗w∗ ⊆ BX∗ , where F ∗ :=
Φ(F ).

Finally, it is a standard fact that X isometrically embeds into C
(
F ∗w∗

)
= C

(
F
)
, as

a consequence of F ∗ clearly being 1-norming for X. The fact that X is isomorphic to
`1(S) then allows us to conclude the proof. �
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Remark 2.5.3. Since the argument is completely direct, it is actually possible to keep track
of the various embeddings and localise precisely the position of `1(S) into C

(
F
)
; more

precisely, it is possible to describe the vectors in C
(
F
)

that correspond to the canonical
basis of `1(S).

For s ∈ S, let us denote by πs : {0, 1}S → {0, 1} the canonical projection and let Vs
be the clopen set

Vs := π−1
s ({1}) ∩ F =

{
F ∈ F : s ∈ F

}
.

Inspection of the proof of the previous proposition shows that, assuming (†), the collec-
tion (χVs)s∈S ⊆ C

(
F
)

is equivalent to the canonical basis of `1(S).
A simple modification of an argument given in the course of the proof of Theorem

2.4.4(ii) will also prove the validity of the converse implication.
Remark 2.5.4. From the appearance of Rosenthal’s celebrated paper [Ros74], a well known
criterion to prove that a family ( fα)α<τ ⊆ BC(K) is equivalent to the canonical basis of
`1(τ) consists in showing that, for some reals r and δ > 0, the collection of sets

({ fα 6 r}, { fα > r + δ})α<τ

is independent. (We refer to [Ros74, Proposition 4] for the definition of the notion of
independence and for the simple proof of this claim.) It is perhaps of interest to note that
the copy of `1(S) obtained in Proposition 2.5.2 does not originate from such criterion,
unless we are in the trivial case that F = [S]<ω.

In fact, if there were reals r and δ > 0 such that

({χVs 6 r}, {χVs > r + δ})s∈S

is independent, then this would imply that (V{s , Vs)s∈S is an independent family. As a
consequence, for distinct s1, . . . , sn ∈ S we would have

∅ 6= Vs1 ∩ · · · ∩Vsn =
{

F ∈ F : {s1, . . . , sn} ⊆ F
}

;

it would follow from this and F being hereditary that {s1, . . . , sn} ∈ F , hence F =
[S]<ω.

In conclusion to this section, let us record how the results presented so far imply the
validity of the original statement of Pták’s lemma.

Proof of Lemma 2.4.2. We start observing that, without loss of generality, we can assume
|S| = ω. Let us, in fact, consider a subset S1 of S such that |S1| = ω and the hereditary
family F ∩ S1 := {F ∈ F : F ⊆ S1}. If λ is any convex mean on S1, we may extend
it to S in the obvious (and unique) way; plainly, if F ∈ F , λ(F) = λ(F ∩ S1), where
F ∩ S1 ⊆ F ∩ S1. Consequently, up to replacing S with S1 and F with F ∩ S1, we may
assume that |S| = ω.

Now, Proposition 2.5.2 yields that C(F ) contains a copy of `1, which in turn implies
that C(F ) is not an Asplund space. As a consequence of this, F is necessarily uncount-
able and it can not be a subset of the countable set [S]<ω. Fact 2.5.1 leads us to the
desired conclusion. �
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2.5.2 Pták’s lemma for ω1

This section is dedicated to the proof of Theorem 2.4.4; both clauses will heavily depend
on results from [AMN88]. The proof of claim (i) is essentially the same argument as in
the proof of Lemma 2.4.2 given above, but with the Asplund property being replaced
by the WLD one. Let us recall a bit of terminology, in order to explain this.

A compact space K has property (M) if every regular Borel measure on K has sepa-
rable support. Here, for the support of a Borel measure µ on K, we understand the closed
set

supp(µ) := {x ∈ K : |µ|(U) > 0 for every neighbourhood U of x}.
An elementary verification, based on the regularity of µ, readily shows that µ(K \ supp(µ)) =
0; it follows, in particular, that the support of µ is a singleton set precisely when µ is
multiple of a Dirac delta. One more elementary property is that if a sequence (µn)∞

n=1 ⊆
M(K) converges to a measure µ in the w∗ topology of M(K) = C(K)∗, then

supp(µ) ⊆ ∪∞
n=1supp(µn)

We shall need the following topological characterisation of WLD Banach spaces of
continuous functions, due to Argyros, Mercourakis, and Negrepontis [AMN88, Theo-
rem 3.5].

Theorem 2.5.5 ([AMN88]). Let K be a compact topological space. Then C(K) is WLD if and
only if K is a Corson compact with property (M).

Proof. We shall only discuss the necessity of the condition; we shall therefore assume
that the dual unit ball, in the w∗ topology, (BM(K), w∗) is a Corson compact. As it is well
known, K is homeomorphic to a subset of (BM(K), w∗), which immediately implies that
K is a Corson compact.

In order to prove property (M), we will use the equally well known fact that

BM(K) = convw∗{±δx : x ∈ K}

(this can be seen as a consequence of the Hahn–Banach theorem, or of the Krein–Milman
theorem, or given a simple direct proof). So, fix a measure µ ∈ BM(K); the Fréchet–
Urysohn property of (BM(K), w∗) yields the existence of a sequence (µn)∞

n=1 ⊆ conv{±δx : x ∈
K} that w∗ converges to µ. As a consequence, supp(µ) ⊆ ∪ supp(µn), where∪ supp(µn)
is evidently a separable Corson compact. It follows that supp(µ) is also separable, ac-
cording to Fact 2.1.4.

For the proof of the converse implication we shall refer to [AMN88, Theorem 3.5],
[Kal00b, Theorem 5.4], or [KKL11, Theorem 19.21]. �

The rôle of Martin’s axiom MAω1 in connection with the above result is that, un-
der MAω1 , every Corson compact has property (M) (cf. [AMN88, Remark 3.2.3] or
[HMVZ08, Theorem 5.62]). More precisely, recall that a compact space K satisfies the
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countable chain condition (ccc, for short) if every collection of non-empty disjoint open
sets in K is at most countable. It is clear that if µ is a regular Borel measure on K, then
the support of µ is ccc.

Consequently, the previous claim follows once we show that, under MAω1 , every
ccc Corson compact K is separable ([CoNe82, p. 201, Theorem (b)], or [Fre84, p. 207,
Exercise (i)]); according to Fact 2.1.4, it is equivalent to prove that K has calibre ω1 . Let
us also mention that it is possible to give a notion of pre-calibre for a partially ordered
set and prove a version of the result in the context of posets, from which the topological
form follows; we refer to [Wei84, Theorem 4.2] and [Kun80b, Exercise III.3.45].

Theorem 2.5.6 (MAω1). Every ccc compact Hausdorff topological space K has calibre ω1.

Proof. We shall first observe that if U is an open subset of K, then U is also ccc. In fact,
assume that {Oγ}γ∈Γ is a collection of mutually disjoint non-empty open subsets of U;
by definition, Oγ ∩U (γ ∈ Γ), are non-empty open subsets of U, hence of K. Since they
are also pairwise disjoint, the ccc of K implies |Γ| 6 ω.

Let now (Oα)α<ω1 be a collection of non-empty open subsets of K and consider the
open sets Uα := ∪α6β<ω1Oβ (α < ω1). We claim that for all but countably many α’s, we
have Uα ⊆ Uα+1; in fact, if not, the sets Uα \Uα+1, for α in this uncountable set, would
be uncountably many disjoint non-empty open sets, contradicting ccc. As Uα+1 ⊆ Uα,
it follows the existence of an ordinal α0 such that Uα = Uα0 whenever α0 6 α < ω1.

We therefore have a collection {Uα}α06α<ω1 of dense open subsets of the ccc com-
pact space Uα0 (the ccc follows from the observation opening the proof). Consequently,
the topological version of Martin’s Axiom, Theorem 2.4.25, yields the existence of x ∈
∩α06α<ω1Uα; it immediately follows that such x belongs to uncountably many Oα’s, and
we are done. �

The combination of the above considerations assures us that, assuming MAω1 , a
compact space K is Corson if and only if C(K) is WLD; by means of this equivalence,
we may now readily prove the first part of Theorem 2.4.4.

Proof of Theorem 2.4.4(i). According to Proposition 2.5.2, C(F ) contains an isomorphic
copy of `1(ω1) and, therefore, it fails to be WLD. Consequently, F is not Corson and it
follows immediately that there exists M ∈ F with |M| > ω1; in fact, if this were false,
then the inclusion map F ⊆ [0, 1]ω1 would witness the fact that F is Corson. We may
therefore apply Fact 2.5.1 and conclude the proof. �

As it turns out, assuming some additional set-theoretic axioms is necessary for the
validity of the results described above. In particular, the Continuum Hypothesis allows
for the construction of Corson compacta failing property (M). The first such example
was constructed by Kunen in [Kun81] and one its generalisation, the Kunen–Haydon–
Talagrand example, is described in [Neg84, §5], combining Kunen’s construction with
Haydon’s and Talagrand’s examples, [Hay78, Tal80]. Such compact K also has the prop-
erty that C(K) fails to contain an isomorphic copy of `1(ω1). One simpler example, still
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under CH, is based upon the Erdős space and may be found in [AMN88, Theorem 3.12]
or [HMVZ08, Theorem 5.60]. Interestingly, if the Corson compact K is an adequate com-
pact, then K fails to have property (M) if and only if C(K) contains an isomorphic copy
of `1(ω1) [AMN88, Theorem 3.13]; in other words, C(K) contains `1(ω1), whenever it
fails to be WLD.

The proof of claim (ii) in Theorem 2.4.4 that we shall give presently will also im-
plicitly depend on the Erdős space and is based on a combination of arguments from
[AMN88, Theorems 3.12, 3.13].

Proof of Theorem 2.4.4(ii). The assumption of the validity of the Continuum Hypothe-
sis allows us to enumerate in an ω1-sequence (Kα)α<ω1 the collection of all compact
subsets of [0, 1] with positive Lebesgue measure (which, in what follows, we shall de-
note L ). We may also let (xα)α<ω1 be a well ordering of the interval [0, 1]. The set
Kα ∩ {xβ}α6β<ω1 having positive measure, the regularity of L allows us to select a
compact subset Cα of Kα ∩ {xβ}α6β<ω1 such that L (Cα) > 0, for each α < ω1. Note
that if A ⊆ ω1 is any uncountable set, then sup A = ω1 and it follows that⋂

α∈A
Cα ⊆

⋂
α∈A
{xβ}α6β<ω1 = ∅.

We are now in position to define a Corson compact that fails property (M). Consider
the set

A :=

{
A ⊆ ω1 :

⋂
α∈A

Cα 6= ∅

}
;

if every finite subset of a given set A belongs to A, then the collection of closed sets
{Cα}α∈A has the finite intersection property and A ∈ A follows by compactness. Con-
sequently, A is an adequate compact. Moreover, the previous consideration shows that
every A ∈ A is a countable subset of ω1, whenceA is a Corson compact. The proof that
A fails to have property (M) may be found in [AMN88, Theorem 3.12], or [HMVZ08,
Theorem 5.60] and we shall not reproduce it here. Therefore, we may fix a positive
regular Borel measure µ on A, whose support is not separable.

We now consider again the clopen subsets of A (cf. Remark 2.5.3)

Vα := π−1
α ({1}) ∩A = {A ∈ A : α ∈ A} (α < ω1)

and we shall consider the set I := {α < ω1 : µ(Vα) > 0}. Plainly, for A ∈ supp(µ), we
have µ(Vα) > 0 whenever α ∈ A; consequently, A ⊆ I and we obtain that supp(µ) ⊆ 2I .
In light of the fact that the support of µ is not separable, it follows that I is uncountable.
(Here, we are using again the fact that every subspace of a separable Corson compact is
separable, cf. Fact 2.1.4.) In turn, we also obtain the existence of an uncountable subset
S of I and a real δ > 0 such that µ(Vα) > δ for α ∈ S.

We may now define the desired hereditary family of finite sets: let us consider F0 :=
{F ∈ A : F is a finite set} and set F := {F ∈ F0 : F ⊆ S}. Clearly, F ⊆ F0 = A;
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we infer, in particular, that F contains no uncountable set and the conclusion of Pták’s
lemma for the cardinal number ω1 fails to hold for F .

On the other hand, for every convex mean λ on S we have∥∥∥∥∥∑
s∈S

λ(s)χVs

∥∥∥∥∥
C(A)

> µ

(
∑
s∈S

λ(s)χVs

)
= ∑

s∈S
λ(s)µ(Vs) > δ ·∑

s∈S
λ(s) = δ.

From this strict inequality and F0 = A, we conclude the existence of F ∈ F0 such that

∑
s∈S

λ(s)χVs(F) > δ;

therefore,
δ < ∑

s∈S
λ(s)χVs(F) = ∑

s∈F∩S
λ(s) = λ(F ∩ S) 6 sup

G∈F
λ(G)

and we see that F satisfies (†). �

2.5.3 Larger cardinals

In this section we are going to prove Theorem 2.4.5; before entering into the core of the
proof, it will be convenient to recall some results that we shall make use of in the course
of the argument.

A topological space is totally disconnected if every non-empty connected subset is a
singleton. Clearly, topological products and subspaces of totally disconnected spaces
are totally disconnected.

For a topological space (X, τ) and a point x ∈ X, a local π-basis for x (cf. [Juh80,
§1.15]) is a family B of non-empty open subsets of X such that for every neighbourhood
V of x there exists B ∈ B with B ⊆ V (note that B is not required to contain x). Every
local basis is a local π-basis, a fortiori. The pseudo-weight of (X, τ) at x is the minimal
cardinality of a local π-basis for x.

The first ingredient we need is the following result, due to Šapirovskiı̌, [Sap75] (see,
e.g., [Juh80, §3.18] or [Neg84, Theorem 2.11]).

Theorem 2.5.7 (Šapirovskiı̌). Let K be a totally disconnected compact topological space and κ
be an infinite cardinal number. Then there exists a continuous function from K onto {0, 1}κ if
and only if there exists a non-empty closed subset F of K such that the pseudo-weight of F at x
is at least κ, for every x ∈ F.

The second building block for our proof is a characterisation, due to Richard Hay-
don, of those compact spaces whose associated Banach space of continuous functions
contains an isomorphic copy of `1(κ), for a certain cardinal number κ. Let us, prelimi-
narily, briefly review some results in this area.

Pełczyński [Peł68] and Hagler [Hag73] proved that a Banach space X contains an
isomorphic copy of `1 (let us write `1 ↪→ X, for short) if and only if L1[0, 1] ↪→ X∗.
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Pełczyński also demonstrated that, for an infinite cardinal κ, L1{0, 1}κ ↪→ X∗ when-
ever `1(κ) ↪→ X and he conjectured the validity of the converse implication. (Here,
by L1{0, 1}κ we understand the Lebesgue space corresponding to {0, 1}κ, the Borel σ-
algebra and the Haar measure on the compact group {0, 1}κ.)

The complete solution to Pełczyński’s conjecture follows from a combination of re-
sults due to Argyros and Haydon: Haydon [Hay78] proved that the conjecture is false
for κ = ω1 under the assumption of the Continuum Hypothesis. On the other hand,
Argyros [Arg82] proved the correctness of the conjecture for κ > ω2 (in ZFC) and for
κ = ω1, assuming MAω1 . A different proof of Argyros’ result can be obtained from
[ABZ84]; let us also refer to [AHLO86, Hay77, Hay79, Neg84] for a discussion of these
and related results.

In a related direction, Talagrand [Tal81] (also see [Arg83], for a simplified proof)
proved that, for a cardinal number κ with cf(κ) > ω1, `1(κ) ↪→ X if and only if there
exists a continuous function from (BX∗ , w∗) onto [0, 1]κ. The result we shall need is a
similar statement in the case that X is a C(K) space (cf. [Hay77, Remark 2.5]).

Theorem 2.5.8 (Haydon). Let κ be a regular cardinal number such that λω < κ whenever
λ < κ and let K be a compact topological space. Then `1(κ) ↪→ C(K) if and only if there exists
a continuous function from K onto [0, 1]κ.

Having recorded all the results we shall build on, we can now approach the proof of
Theorem 2.4.5.

Proof of Theorem 2.4.5. Let κ be a regular cardinal number such that λω < κ whenever
λ < κ, let S be a set with |S|
kappa and F ⊆ [S]<ω be an hereditary family such that (†) holds. When we com-
bine Proposition 2.5.2 with Haydon’s result, we obtain the existence of a continuous
surjection from F to [0, 1]κ. Consequently, there exists a closed subset K1 of F that
continuously maps onto {0, 1}κ; note that, being a subspace of {0, 1}κ, K1 is totally
disconnected. In light of Šapirovskiı̌’s theorem, we conclude that there exists a closed
subspace K of (K1, hence of) F such that the pseudo-weight of K at x is at least κ, for
every x ∈ K. In particular, if B is any local basis for the topology of K at any x ∈ K,
then |B| > κ.

Before we proceed, introducing a bit of notation is in order. If A ∈ K and F and G
are finite subsets of A and S \ A respectively, then we shall denote by

UA(F, G) := {B ∈ K : F ⊆ B ⊆ S \ G},

a neighbourhood of A in K. A particular case of this piece of notation is that

UA(F, ∅) := {B ∈ K : F ⊆ B}.

Plainly, {
UA(F, G) : F ∈ [A]<ω, G ∈ [S \ A]<ω

}
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is a local basis for the topology of K at A.
We now note that K may also be considered as a partially ordered set, with respect

to set inclusion. When such partial order is considered, then every chain in K admits
an upper bound in K; in fact, the union of the chain belongs to K, K being closed in the
pointwise topology. An appeal to Zorn’s lemma allows us to deduce that there exist in
K maximal elements with respect to inclusion.
Claim. If M ∈ K is any maximal element, then a local basis for the topology of K at M
is given by

B :=
{
UM(F, ∅) : F ∈ [M]<ω

}
.

Since clearly |B| 6 |M|, our previous considerations allow us to conclude that, if
M ∈ K is any maximal element, then |M| > κ. If we select any such maximal element–
whose existence we noted above–then Fact 2.5.1 assures us that M is the set we were
looking for. Therefore, in order to conclude the proof, we only need to establish the
claim.

Proof of the claim. Assume by contradiction that B is not a local basis. Then there exist
finite sets F̃ and G̃ with F̃ ⊆ M and G̃ ⊆ S \M such that no element of B is contained
in UM(F̃, G̃). In particular, for every finite set I with F̃ ⊆ I ⊆ M there exists an element
AI ∈ K with AI ∈ UM(I, ∅) \ UM(F̃, G̃). Being F̃ ⊆ I, this is equivalent to the fact that
I ⊆ AI and AI ∩ G̃ 6= ∅.

Let us denote by I the directed set I := {I ∈ [M]<ω : F̃ ⊆ I}; we therefore have a net
(AI)I∈I in K such that I ⊆ AI and AI ∩ G̃ 6= ∅, for every I ∈ I . By compactness of K,
such a net clusters at some Ã ∈ K. A simple argument, whose details we include below
for the sake of completeness, then implies that M ⊆ Ã and Ã∩ G̃ 6= ∅. Consequently, Ã
is a proper extension of M (recall that M∩ G̃ = ∅), thereby contradicting the maximality
of M and thus concluding the proof.

In order to check that M ⊆ Ã, fix any finite set F with F̃ ⊆ F ⊆ M and consider the
neighbourhood UÃ(F ∩ Ã, F \ Ã) of Ã. By definition, there must exist I ∈ I with F ⊆ I
such that AI ∈ UÃ(F ∩ Ã, F \ Ã); it follows, in particular, that AI ⊆ (F \ Ã){ = Ã ∪ F{.
Therefore, F ⊆ I ⊆ AI ⊆ Ã ∪ F{ yields F ⊆ Ã and M ⊆ Ã follows.

Finally, for the second assertion, we consider the neighbourhood UÃ(G̃ ∩ Ã, G̃ \ Ã)
of Ã. By definition, some AI belongs to such neighbourhood and it follows that AI ⊆
Ã ∪ G̃{. Consequently, ∅ 6= AI ∩ G̃ ⊆ (Ã ∪ G̃{) ∩ G̃ = Ã ∩ G̃, and we are done. �

�

In conclusion to the chapter, we shall add a few comments on Haydon’s result, Theo-
rem 2.5.8. At the appearance of [Hay77] it was unknown whether the equivalence stated
in Theorem 2.5.8 (or, more generally, the equivalence between the assertions in [Hay77,
Remark 2.5]) could possibly hold under more general assumptions on κ. The sufficient
condition holding true for every cardinal κ, Haydon himself (unpublished) later noted
that the necessary condition fails to hold for κ = ω1, under the Continuum Hypothesis.
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One such example was also obtained by N. Kalamidas, in his Doctoral dissertation (cf.
[Neg84, Example 1.3]).

Incidentally, this is also a consequence of our results about Pták’s lemma, since the
unique point where the proof of Theorem 2.4.5 depends on some cardinality assumption
is the appeal to Theorem 2.5.8; in particular, Pták’s lemma actually holds true for every
cardinal number for which the equivalence in Theorem 2.5.8 holds. Theorem 2.4.4(ii)
then yields the desired counterexample.

In accordance with Argyros’ results on Pełczyński’s conjecture that we mentioned
above, it is natural to conjecture that Haydon’s equivalence may actually be valid for
every cardinal number κ > ω2. This would, of course, imply the validity of Pták’s
lemma for every κ > ω2.

In case that the conjecture were true, it would also lead to a negative answer to the
following question.

Problem 2.5.9. Is the existence of a Corson compact K such that `1(ω2) ↪→ C(K) consis-
tent with ZFC?

Let us just note that, under CH, such a compact space can not exist, in light of Theo-
rem 2.5.8 and the fact that continuous images of Corson compacta are Corson compacta
([Gul77, MiRu77]), while [0, 1]ω2 is not Corson. Such a compact space also fails to exist
under MAω1 , according to the results we recorded at the beginning of Section 2.5.2.
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Chapter 3

Symmetrically separated sequences

The chapter is dedicated to the study of some results on distances between unit vectors,
in particular to the construction of symmetrically separated sequences in the unit ball of
a Banach space. This is a variant of a well-known field of investigation that originated
from the classical Riesz lemma and which has been studied in detail in the last century.
In the first section of the chapter we will describe a few results in this area, introduce
the notion of symmetric separation and state our main results. The remaining sections
contain the proofs of these results as well as of some their consequences.

3.1 Kottman’s constant

The study of distances between unit vectors is a main topic in Banach space theory, that
originates perhaps with the classical Riesz’ lemma, [Rie16]. This celebrated result is
proved in almost every book in Functional Analysis, as a witness that the closed unit
ball of an infinite-dimensional normed space is never compact. In this sense, the lemma
can be considered at the origin of infinite-dimensional Analysis; being such a seminal
result, it has been extended and improved in various directions, a few of which are the
content of the present chapter. Let us start with the following formal definition.

Definition 3.1.1. A subset A of a normed space X is said to be δ-separated (respectively,
(δ+)-separated) if ‖x− y‖ > δ (respectively, ‖x− y‖ > δ) for distinct x, y ∈ A.

With a very minor abuse of notation, it is also said that a sequence (xn)∞
n=1 is δ-

separated if ‖xn − xk‖ > δ for n 6= k. Following this notation, we may state Riesz’
lemma as the claim that the unit sphere of every infinite-dimensional normed space
contains a 1-separated sequence. For example, in the Banach space `p (1 6 p < ∞), the
canonical basis is an example of a 21/p-separated sequence, thereby giving an example
where it is possible to find a (1 + ε)-separated sequence, for some ε > 0. Interestingly,
in the case of `p-spaces, this choice is, in a sense to be made more precise in a moment,
the optimal one; actually, it is frequently the case that ‘disjointly supported’ sequences
are already (1 + ε)-separated sets. On the other hand, this is far from being true in

91
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general, as witnessed by the space c0: even though every two disjointly supported unit
vectors in c0 have distance 1, it is easy to find 2-separated sequences in the unit ball of
c0. This shows that, in general, combinatorial arguments involving the intersection of
the supports play a crucial rôle; this point will be evident in this chapter and even more
in Chapter 4.

Kottman’s theorem [Kot75], asserting that the unit sphere of an infinite-dimensional
normed space contains a (1+)-separated sequence, then sparked a new insight on the
non-compactness of the unit ball in infinite dimensions. Even though the original ar-
gument of Kottman already contained some combinatorial features, in the form of an
appeal to Ramsey theorem, the argument has been greatly simplified over time and sim-
ple Riesz-type proofs are available. We will offer two of them, together with a discussion
of Kottman’s argument, at the beginning of Section 3.2.

In their famous paper [ElOd81], Elton and Odell employed methods of infinite Ram-
sey theory to improve Kottman’s theorem significantly by showing that the unit sphere
of an infinite-dimensional normed space contains a (1 + ε)-separated sequence, for
some ε > 0. Unlike the proof of Kottman’s theorem, it was only recently when a second
proof of the Elton–Odell theorem was obtained ([FOSZ18]); however, this argument is
still Ramsey-theoretic and it is by no way a simpler proof. One more elaboration over
the same ideas, that uses in particular results from [FOSZ18], allows to obtain a stronger
version of the Elton–Odell theorem, [GlMe19].

It is perhaps no surprise that the ε appearing in the statement of the Elton–Odell the-
orem is intimately related to the geometry of the underlying space. For example, in the
case of the space `p (1 6 p < ∞) it cannot be greater than the attained bound 21/p − 1
(cf. Section 3.1.2 for a discussion of this). Thus, studying geometric or structural prop-
erties of the space will often help in identifying possible lower bounds for separation
constants of sequences in the unit sphere of the space. In order to achieve this it is nat-
ural to consider a constant which keeps track of the best possible ε in the conclusion of
the Elton–Odell theorem. Such constant, nowadays known as Kottman constant, was
probably first considered explicitly in [Kot75].

Definition 3.1.2 ([Kot75]). The Kottman constant K(X) of a normed space X is

K(X) := sup
{

σ > 0 : ∃(xn)
∞
n=1 ⊂ SX : ‖xn − xk‖ > σ ∀n 6= k

}
.

Obviously, a normed space X is finite-dimensional if and only if K(X) = 0; more-
over, the Elton–Odell theorem may now be restated as the claim that K(X) > 1, when-
ever X is an infinite-dimensional normed space. Moreover, an easy but important obser-
vation is that the definition of K(X) would not be altered if one replaced SX by BX; for
a proof, see Section 3.1.1. As a sample of results for classical Banach spaces, we already
observed that K(`p) = 21/p, whenever 1 6 p < ∞; moreover, K(c0) = 2, as witnessed
by the sequence −en+1 + ∑n

k=1 ek (n ∈N).
It is a quite remarkable result due to Kryczka and Prus [KrPr00] that for every non-

reflexive Banach space X one has K(X) > 5
√

4. Their result is an ingenious and sur-
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prisingly simple combination of a result of James [Jam64b], with a spreading model
technique. In the same paper, the authors also conjecture that the constant K(X) > 5

√
4

may even be improved and offer an upper bound for such possible improvements.
More precisely, they show that for the generalised James space Jp ([Jam51]) one has
K(Jp) = (1 + 2p−1)1/p (1 < p < ∞).

This latter argument has later been generalised in [CGP17, §5] to construct the first
example of a (obviously, non-reflexive) Banach space whose Kottman constant is dif-
ferent from that of its bidual, thus answering a problem from their previous paper
[CaPa11]. More precisely, they show that for a certain J-sum Jp(`n

1) of finite dimen-
sional Banach spaces, introduced in [Bel82], one has K(Jp(`n

1)) = (1 + 2p−1)1/p, while
K(Jp(`n

1)
∗∗) = 2. Observe that this also offers an example of a non-reflexive Banach

space X for which K(X) < 2 (a completely opposite phenomenon, a reflexive Banach
space every whose renorming has Kottman constant equal to 2, will be discussed in
Section 3.4.2).

Obviously, there is no analogue of the result by Kryczka and Prus in the class of
reflexive Banach spaces, as witnessed by the space `p (1 < p < ∞). What’s more, it
happens that some geometric properties can be used in upper bounds for the Kottman
constant; this is already present in Kottman’s work, where it is shown that K(X) <
2, provided X is uniformly convex or uniformly smooth ([Kot70, Theorems 3.6, 3.7]).
An alternative and shorter proof may be found in [NaSa78, §1]. It was later noted by
Maluta and Papini that these results have a quantitative counterpart, more precisely the
following estimates hold true, [MaPa09, Theorem 2.6 and Corollary 2.10]:

K(X) 6 2(1− δX(1)) and K(X) 6 1 + 2ρX(1).

In the other direction, the moduli of uniform convexity and uniform smoothness
can also be used for lower estimates of the Kottman constant. The first result in this
direction is perhaps due to van Neerven [vNe05], who proved the inequality

K(X) > 1 +
1
2

δX(2/3).

As it turns out, this estimate is rather weak and several improvements are possible; let
us just mention here two of them and refer to [MaPa09] for a more complete discussion
over some those inequalities. Delpech [Del10] gave a much simpler proof of a result,
which implies in particular the estimate

K(X) > 1 + δX(1);

we will say more on his result in a moment. The other estimate we wish to record, also
due to [MaPa09, Corollary 2.15] is that

K(X) > 1 +
√

2 · δX(
√

2).

Further quantitative estimates of Kottman’s constant expressed in terms of various
moduli of convexity and related results may be found, e.g., in [CGP17, DrOl06, Pru10];
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let us also refer to [CaPa11] for an extensive bibliography where several additional re-
sults can be found.

We will now conclude this introduction to the Kottman constant by briefly mention-
ing two of its applications in different areas. The first area we wish to mention is the
topic of extension of Lipschitz mappings between metric spaces. One seminal result
here is due to Kirszbraun [Kir34] who proved that if A is any subset of a Hilbert space
H1 and f is a Lipschitz function from A to a Hilbert space H2, then f admits an exten-
sion f̃ : H1 → H2 with Lip( f ) = Lip( f̃ ). This problem has been investigated by several
authors in the last years and we shall refer to [Kal08, §3.3, 3.4] for a presentation of some
results in the area. The case where the range space is a C(K) space has been investigated
by Kalton [Kal07a, Kal07b], and previously in [LaRa05]. Kalton, in particular, related
the Kottman constant of a Banach space with the extendability of Lipschitz functions
with values in c0; we need one definition to explain this.

Definition 3.1.3. Let X and Y be metric spaces. e(X, Y) denotes the infimum of all
constants λ such that every Lipschitz function f from a subset of X into Y admits a
Lipschitz extension f̃ : X → Y with Lip( f̃ ) 6 λ · Lip( f ).

Kalton’s result [Kal07a, Proposition 5.8] can be now stated as follows; a direct proof
of one inequality may be found in [CaPa11, §4].

Theorem 3.1.4 ([Kal07a]). For an infinite-dimensional Banach space X one has K(X) =
e(X, c0).

The second application we briefly mention is the notion of a measure of noncompact-
ness, a very important tool in metric fixed point theory; for information, consult, e.g.,
[AKPRS92, ADL97, BaGo80]. The very rough idea is that one wishes to have a notion to
measure ‘how far’ a set is from being compact and then consider maps that increase the
compactness of sets for fixed point results. Let us just give the definition of measure of
noncompactness and a few examples; for a more complete discussion and some uses,
we refer to [ADL97, Chapter II].

Definition 3.1.5. Let (X, d) be a complete metric space and B be the family of bounded
subsets of X. A measure of noncompactness on X is a map φ : B → [0, ∞) with the follow-
ing properties:

(i) φ(B) = 0 iff B is relatively compact;

(ii) φ(B) = φ(B);

(iii) φ(A ∪ B) = max{φ(A), φ(B)}.

For example, it is simple to prove the following interesting generalisation of the
Cantor intersection theorem: if (Bn)∞

n=1 is a decreasing sequence of non-empty, closed
and bounded subsets of X, then φ(Bn)→ 0 implies that ∩Bn is non-empty and compact.

Example 3.1.6. Let us present the main examples of measures of noncompactness; in all
them B denotes the family of bounded subsets of a metric space (X, d).
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1. The discrete measure of noncompactness:

φ(B) :=

{
0 if B is relatively compact
1 otherwise.

2. The Kuratowski measure of noncompactness:

α(B) := inf{ε > 0 : B is covered by finitely many sets of diameter at most ε}.

3. The Hausdorff measure of noncompactness:

χ(B) := inf{ε > 0 : B has a finite ε-net}.

4. The separation measure of noncompactness:

β(B) := sup{σ > 0 : B contains an infinite σ-separated subset}.

The fact that all these examples constitute measures of non-compactness is immedi-
ate; equally immediate is that, for a Banach space X, β(BX) is the Kottman constant. In
the context of Banach space theory, the separation measure is perhaps even more natu-
ral than the Hausdorff and Kuratowski ones, since α and χ do not distinguish the unit
balls of different Banach spaces. More precisely, for every infinite-dimensional Banach
space X one has α(BX) = 2 and χ(BX) = 1, cf. [ADL97, Theorem II.2.5].

The main objective of the chapter is to revisit and investigate the above-mentioned
results in the setting of symmetric separation; let us start with the definition of such
notion.

Definition 3.1.7. A subset A of a normed space is symmetrically δ-separated (respectively,
symmetrically (δ+)-separated) when ‖x ± y‖ > δ (respectively, ‖x ± y‖ > δ) for any
distinct elements x, y ∈ A.

The study of this notion was probably undertaken explicitly for the first time by
J. M. F. Castillo and P. L. Papini in [CaPa11] and prosecuted in the paper [CGP17].
In the former work, the authors asked whether there is a symmetric version of the
Elton–Odell theorem ([CaPa11, Problem 1]); however according to Castillo ([Cas17])
prior to the research in [HKR18], it has not been known whether the unit sphere of an
infinite-dimensional Banach space contains a symmetrically (1+)-separated sequence.
This question was the main motivation of our investigation in [HKR18], that we will
describe in this chapter.

Castillo and Papini [CaPa11] gave some partial answers to the problem in their pa-
per; in particular, they proved that the answer is affirmative for uniformly non-square
spaces and for L∞-spaces. We shall discuss later their result concerning L∞-spaces, in
Section 3.4, while we will largely extend the result concerning uniformly non square
to reflexive Banach spaces, with a completely different proof, cf. Section 3.3. Their re-
sults also contain some quantitative features, that we discuss in some detail here; these
results require the introduction of the symmetric variation of Kottman constant.
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Definition 3.1.8 ([CaPa11]). The symmetric Kottman constant of a Banach space X is

Ks(X) := sup
{

σ > 0 : ∃(xn)
∞
n=1 ⊂ SX : ‖xn ± xk‖ > σ ∀n 6= k

}
.

Let us notice here that, just as for K(X), the definition of Ks(X) would be the same
replacing SX with BX, as we note in Section 3.1.1.

Let us now discuss in some detail some results on Ks(X), for uniformly non square
Banach spaces X; we start with the definition of uniform non squareness, introduced
by James in [Jam64a], also see [Bea85, §4.III.1]. The constant J(X) was not explicitly
defined in James’ paper and it was studied, e.g., in [Cas86].

Definition 3.1.9. The James constant J(X) of a normed space X is defined to be

J(X) := sup
x,y∈BX

min
{
‖x− y‖, ‖x + y‖

}
.

A normed space is uniformly non square (UNS, in short) if J(X) < 2.

With this definition, we may now state the result by Castillo and Papini [CaPa11,
Lemma 2.2] that

2
J(X)

6 Ks(X) 6 J(X),

for every infinite-dimensional Banach space. (Let us notice that the right-hand-side in-
equality is an immediate consequence of the definitions.) One immediate consequence
is that every uniformly non square space X satisfies 1 < Ks(X) < 2, hence it offers a
sufficient condition for the validity of the symmetric analogue to the Elton–Odell theo-
rem.

This result is also very interesting since it allows us to answer a very natural ques-
tion, by offering an example of a Banach space X for which the symmetric Kottman
constant differs from K(X), [NaSa78, Example 3.2].

Example 3.1.10. There exists a (uniformly non square) Banach space X for which K(X) =
2 and Ks(X) < 2.

Let us consider the equivalent norm on (`p, ‖·‖p) defined by

‖x‖ := max
{
‖x‖p, max

i,j
|x(i)− x(j)|

}
.

Obviously, the canonical basis is a 2-separated sequence (which is not symmetrically
2-separated). It is not hard to see that for log 3

log 2 < p < 2, the space X := (`p, ‖·‖)
is uniformly non square, whence Ks(X) < 2. An heuristic motivation for this may
be found in the fact that the unit ball of a 2-dimensional subspace generated by two
vectors of the canonical basis is very far from a square; however, the case of the general
subspace is not equally obvious, as it depends on Clarkson’s inequality.
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Moreover, although not stated explicitly, it follows from the proof of the main re-
sult of [Del10] that Ks(X) > 1 for asymptotically uniformly convex spaces X in which
case the lower bound for the symmetric separation constant is expressed in terms of the
so-called modulus of asymptotic uniform convexity (see Section 3.4 for more informa-
tion). Certainly the unit spheres of both `1 and c0 contain symmetrically 2-separated
sequences (in the former case plainly the standard vector basis is an example of such
sequence, in the latter case one may take xn = −en+1 + ∑n

k=1 ek (n ∈N)). Consequently,
if X contains an isomorphic copy of either space, by the James distortion theorem one
concludes that Ks(X) = 2. (This simple observation will be formally recorded in Section
3.1.1.)

Let us then pass to state and discuss our contributions in the area of symmetric sep-
aration and refer to later sections in this chapter for the proofs of the stated results and
further information. Our first main result is a positive answer to Castillo’s problem,
namely, we obtain an extension of Kottman’s theorem to symmetrically separated se-
quences. The formal statement of our first result therefore reads as follows.

Theorem 3.1.11 (Symmetric version of Kottman’s theorem, [HKR18, Theorem A]). Let
X be an infinite-dimensional Banach space. Then the unit sphere of X contains a symmetrically
(1+)-separated sequence.

The proof of this result will be presented in Section 3.2. It is important to observe that
our argument is not of combinatorial nature, in the spirit of Kottman original proof, but
it involves induction and a dichotomy concerning a geometric property. Moreover, such
approach also permits, to some extent, to continue the induction argument beyond the
countable setting and construct uncountable symmetrically (1+)-separated sets, when
the underlying Banach space is non-separable; cf. Theorem 4.3.5. Let us also mention
here two other instances where a version of Kottman theorem was pushed to the non-
separable setting, namely [KaKo16, Theorems 3.1 and 3.8].

Subsequently, we identify several classes of Banach spaces for which a symmetric
version of the Elton–Odell theorem holds true. In particular, we prove that spaces con-
taining boundedly complete basic sequences satisfy a symmetric version of the Elton–
Odell theorem; this theorem will be the main result presented and proved in Section
3.3.

Theorem 3.1.12 ([HKR18, Theorem 1.1]). Let X be a Banach space that contains a boundedly
complete basic sequence. Then for some ε > 0, the unit sphere of X contains a symmetrically
(1 + ε)-separated sequence.

Of course, this result applies when the Banach space is an infinite-dimensional re-
flexive Banach space; in the same section we will also combine our condition with vari-
ous results from the literature in order to extend this assertion to more classes of Banach
spaces. For example, we are able to obtain the same conclusion if the Banach space has
the Radon–Nikodym property, or it contains an unconditional basic sequence.
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Subsequently, we turn our attention to classes of spaces where a lower bound for
the ε appearing in the statement of the Theorem may be computed explicitly. To wit, we
dedicate Section 3.4, to some quantitative estimates on the symmetric Kottman constant.
Perhaps the main result we prove is the following theorem.

Theorem 3.1.13 ([HKR18, Theorem C]). Let X be an infinite-dimensional Banach space. Sup-
pose that either

(i) X contains a normalised basic sequence satisfying a lower q-estimate for some q < ∞,

(ii) or X has finite cotype q.
Then for every ε > 0 the unit sphere of X contains a symmetrically (21/q − ε)-separated se-
quence.

Section 3.4 also contains further quantitative results, in particular involving spread-
ing models and constructions, via biorthogonal systems, of renormings whose unit balls
have optimal separation properties. We will also collect some further estimates present
in the literature, with a description of some their proofs. A few more such results from
the literature are proved in detail in the next two parts, Sections 3.1.1 and 3.1.2. The for-
mer comprises basically obvious comments, that are however useful in several places
in the chapter, while the latter is dedicated to the Kottman constant of `p direct sums.

3.1.1 A few useful observations

This part is dedicated to a few simple inequalities in normed spaces and their conse-
quences involving the Kottman constant. The results recorded here are all essentially
obvious, but we state them here since we will make frequent use of them (tacitly, in
most cases) throughout the chapter.

The first lemma that we present is an upper estimate for the mutual distance of
distinct elements of a sequence, in term of the Kottman constant. It implies, in particular,
that for every infinite-dimensional Banach space X we may find a sequence in the unit
ball the mutual distances of whose elements are almost equal to K(X). Not surprisingly,
this stabilisation result depends on Ramsey theorem.

Lemma 3.1.14. Let X be a normed space and (xn)∞
n=1 be a sequence in BX. Then, for every

ε > 0, there exists a subsequence (xnk)
∞
k=1 such that

‖xnk − xnj‖ 6 K(X) + ε (k, j ∈N).

Proof. Let us consider the colouring

{n, k} 7→
{
(>) ‖xn − xk‖ > K(X) + ε

(6) ‖xn − xk‖ 6 K(X) + ε

of [N]2. An appeal to Ramsey’s theorem [Ram29] yields an infinite monochromatic
subset M of N. If the colour of such a set were (>), then (xn)n∈M would be an infinite
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(K(X) + ε)-separated set, which is obviously impossible; consequently, (xn)n∈M is the
desired subsequence. �

We shall make frequent use of the following well-known folklore inequality, which
can be found for instance in [KaKo16, Lemma 2.2] or (in a slightly weaker formulation)
in [MSW01, Lemma 6]. On the other hand, the present formulation or similar estimates
can surely be found in older papers scattered throughout the literature. As a sample, let
us just mention [MaPa93, Lemma 3.1], where a very similar statement (actually, under
slightly more general assumptions) can be found.

Lemma 3.1.15. Let X be a normed space. Suppose that x, y are non-zero vectors in the unit ball
of X. If ‖x− y‖ > 1, then ∥∥∥∥ x

‖x‖ −
y
‖y‖

∥∥∥∥ > ‖x− y‖.

Proof. Without loss of generality, we may assume that ‖x‖ > ‖y‖; we then consider the
convex function R 3 t 7→ g(t) := ‖x− ty‖. Since g(1) = ‖x− y‖ > 1 > ‖x‖ = g(0), the
convexity of g yields g(‖x‖/‖y‖) > g(1). Therefore,

‖x− y‖ 6 g
(
‖x‖
‖y‖

)
= ‖x‖

∥∥∥∥ x
‖x‖ −

y
‖y‖

∥∥∥∥ 6 ∥∥∥∥ x
‖x‖ −

y
‖y‖

∥∥∥∥ .

�

The lemma implies, in particular, that, if
∥∥∥ x
‖x‖ −

y
‖y‖

∥∥∥ 6 1, then ‖x− y‖ 6 1 too.
One further important consequence is that in order to find a (symmetrically) (1+)-

separated (or (1 + ε)-separated) sequence of unit vectors it is in fact sufficient to find
such a sequence in the unit ball, with no need to insist that all vectors are normalised.
This property is particularly convenient and we will use it tacitly throughout this and
the next chapter. A particular case of it is found the following equivalent definition of
the (symmetric) Kottman constant.

Corollary 3.1.16. For every infinite-dimensional Banach space,

K(X) := sup
{

σ > 0 : ∃(xn)
∞
n=1 ⊂ BX : ‖xn − xk‖ > σ ∀n 6= k

}
.

Analogously for Ks(X).

Let us mention that the above corollary is a particular case of a general result per-
taining to the separation measure of non-compactness, namely, the equality β(B) =
β(conv B), for every bounded subset B of a Banach space X, [Ari91]. The proof of this
general case is, however, much more complicated; one alternative, still technical, such
proof may be found in [ADL97, Theorem II.3.6].

One more consequence we may record is an estimate of the (symmetric) Kottman
constant of a Banach space in terms of the corresponding constant of its quotients; this
was formally recorded, e.g., in [KaKo16, Proposition 2.3].
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Corollary 3.1.17. Let X be a Banach space and let Y be isometric to a quotient of X. Then
K(X) > K(Y) and Ks(X) > Ks(Y).

Proof. Let us fix δ > 0 and select a (K(Y)− δ)-separated sequence (yn)∞
n=1 in the unit

sphere of Y (we can assume that Y is infinite-dimensional, the conclusion being other-
wise trivial). We also choose a representative xn for yn with ‖xn‖ 6 1 + δ. Therefore,∥∥∥∥ xn

1 + δ
− xk

1 + δ

∥∥∥∥ > 1
1 + δ

‖yn − yk‖ >
K(Y)− δ

1 + δ

and the previous corollary then yields K(X) > K(Y)−δ
1+δ , whence the first part of the

conclusion follows. In the case of the symmetric separation, the proof is the same. �

The last observation in this section is devoted to the justification of the observation
made in the introduction asserting that if X contains an isomorphic copy of either c0
or `1, then for every ε ∈ (0, 1) the unit sphere of X contains a symmetrically (2− ε)-
separated subset.

Lemma 3.1.18. Let (X, ‖·‖X) and (Y, ‖·‖Y) be normed spaces and let A ⊆ SX be a (symmetri-
cally) (1 + ε)-separated set (ε > 0). Suppose that T : X → Y is an isomorphic embedding such
that ‖T‖ · ‖T−1‖ 6 1 + δ (δ > 0). If δ 6 ε, then the set

Ã :=
{

Tx
‖Tx‖Y

: x ∈ A
}
⊆ SY

is (symmetrically) 1+ε
1+δ -separated.

Proof. Up to a scaling, we may assume without the loss of generality that for all x ∈ X
we have ‖x‖X 6 ‖Tx‖Y 6 (1 + δ)‖x‖X. Consequently, (1 + δ)−1 · Tx ∈ BY for x ∈ A.
Moreover, for distinct x, y ∈ A we have∥∥∥∥ Tx

1 + δ
− Ty

1 + δ

∥∥∥∥
Y
>

1
1 + δ

· ‖x− y‖X >
1 + ε

1 + δ
> 1.

Therefore, Lemma 3.1.15 applied to the vectors (1 + δ)−1Tx and (1 + δ)−1Ty gives∥∥∥∥ Tx
‖Tx‖Y

− Ty
‖Ty‖Y

∥∥∥∥
Y
>

∥∥∥∥ Tx
1 + δ

− Ty
1 + δ

∥∥∥∥
Y
>

1 + ε

1 + δ
.

The symmetric assertion is proved in the same way. �

Let us mention that the unique motivation to employ Lemma 3.1.15 in the above
proof was to obtain a slightly better estimate for the separation. The, even more trivial,
proof only involving the triangle inequality would have led to separation 1 + ε− 2δ.

A direct consequence of the result and of James’ non distortion theorem is the first
clause of the following corollary. Its second part, in turn, follows from the first one and
Corollary 3.1.17.

Corollary 3.1.19. If a Banach space X contains an isomorphic copy of c0 or `1, then Ks(X) = 2.
Therefore, Ks(X) = 2 whenever X admits a quotient isomorphic to c0 or `1.
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3.1.2 `p-spaces and direct sums

In this part, we present the elementary proof of some classical exact computations of the
Kottman constant, more precisely, we prove the fact mentioned above that the Kottman
constant of the space `p is 21/p (1 6 p < ∞). We also extend this result (and its method
of proof) to discuss `p-sums of Banach spaces.

The computation of K(`p) can be traced back at least to Kottman’s paper [Kot70,
Lemma 1.5]; analogous previous results in terms of packing spheres are present, e.g., in
[BRR58, Spe70]. Since then the result appears in many textbooks, for example [ADL97,
Theorem 3.13] or [WeWi75, Theorem 16.9].

Proposition 3.1.20. K(`p) = 21/p, for every p ∈ [1, ∞).

Prior to the proof, let us recall the following well-known fact, which is proved via a
very simple sliding hump argument. If (yn)∞

n=1 is any weakly null sequence in `p (1 6
p < ∞) and y ∈ `p, then ‖y‖p + lim supn→∞ ‖yn‖p = lim supn→∞ ‖yn + y‖p.

Proof. As we already noted, the canonical unit vector basis of `p is 21/p-separated; con-
sequently, we only need to prove the upper bound K(`p) 6 21/p. This estimate being
trivial for p = 1, we may additionally assume that p ∈ (1, ∞).

Let us therefore assume that (xn)∞
n=1 is an r-separated sequence in the unit ball of `p.

Up to passing to a subsequence, we can assume that (xn)∞
n=1 is weakly convergent to a

vector, say x. Let us now fix arbitrarily ε > 0 and find N ∈N such that ‖x�[N+1,∞)‖ 6 ε;
since xn → x weakly, we also have ‖(xn − xk)�[1,N]‖ 6 ε, whenever n, k are sufficiently
large. For all such n we thus have:

rp 6 lim sup
k→∞

‖xn − xk‖p = lim sup
k→∞

(
‖(xn − xk)�[1,N]‖p + ‖(xn − xk)�[N+1,∞)‖p

)
6 εp + lim sup

k→∞
‖(xn − x)�[N+1,∞) + (x− xk)�[N+1,∞)‖p

= εp + ‖(xn − x)�[N+1,∞)‖p + lim sup
k→∞

‖(x− xk)�[N+1,∞)‖p 6 εp + 2(1 + ε)p.

Letting ε→ 0 concludes the proof. �

Of course, this result implies the same conclusion for the non-separable spaces `p(Γ),
i.e., K(`p(Γ)) = 21/p, whenever Γ is an infinite set.

Moreover, essentially the same proof shows that if (Xn)∞
n=1 are finite-dimensional

normed spaces, then (∑ Xn)`p also has Kottman’s constant equal to 21/p. This is for-
mally noted in [Kot70, Remark 1.5] and motivated the study of the Kottman constant
of `p-direct sums of arbitrary Banach spaces; such issue was then undertaken in [Kot75,
Lemma 8].

A much shorter proof, together with a slight improvement, was later given in [CaPa11,
Proposition 1.1]. This argument is however slightly flawed, since it is not clear why the
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two cases given there cover all the possibilities. On the other hand, these two cases il-
lustrate the two parts of the argument: a stabilisation argument on a finite initial part
plus a sliding hump to control the tail part. The proof in [CaPa11] is therefore a clear
indication of what a detailed proof would consist of; such detailed proof follows.

Theorem 3.1.21. For a sequence (Xn)∞
n=1 of Banach spaces one has:

K

( N

∑
n=1

Xn

)
`p

 = max{K(Xn)}N
n=1

K

( ∞

∑
n=1

Xn

)
`p

 = sup{K(Xn), 21/p}.

Proof. Clearly, both the right-hand sides are lower or equal to the corresponding left-
hand sides; consequently, we only need to prove the upper estimates.

For what concerns the first assertion, it is obviously sufficient to prove it for N = 2,
namely to prove that K(X ⊕p Y) 6 max{K(X), K(Y)}. Let therefore (xn, yn)∞

n=1 be an
r-separated sequence in the unit ball of X ⊕p Y; fix ε > 0 and assume, up to passing
to a subsequence and relabeling, that

∣∣‖xn‖p − ‖xk‖p
∣∣ 6 ε and

∣∣‖yn‖p − ‖yk‖p
∣∣ 6 ε

for every n, k ∈ N. Setting α := sup ‖xn‖ and β := sup ‖yn‖, we consequently obtain
αp 6 ‖xn‖p + ε and βp 6 ‖yn‖p + ε, for every n ∈N; this in turn yields αp + βp 6 1+ 2ε.
Up to one more subsequence, Lemma 3.1.14 allows us to assume that ‖xn − xk‖p 6
αp · K(X)p + ε and ‖yn − yk‖p 6 αp · K(Y)p + ε, for every n, k ∈ N. We may then
conclude that

rp 6 ‖(xn, yn)− (xk, yk)‖p = ‖xn − xk‖p + ‖yn − yk‖p 6 αp · K(X)p + ε + βp · K(Y)p + ε

6 (αp + βp) ·max{K(X), K(Y)}p + 2ε 6 (1 + 2ε) ·max{K(X), K(Y)}p + 2ε.

Letting ε→ 0 concludes the proof of the first assertion.

For the proof of the second claim, we shall start by fixing one piece of notation. For
a vector x ∈ (∑ Xn)`p , we shall write x = (x(n))∞

n=1 and we understand that x(n) ∈ Xn

for every n ∈ N. In this case, we will, as usual, refer to the set {n ∈ N : x(n) 6= 0} as
the support of x. We shall also denote by x�[1,N] the vector whose first N components
are equal to those of x and the remaining ones are equal to 0, in other words, x�[1,N] =

(x(1), . . . , x(N), 0, . . . ). (x�[N,∞) is defined similarly.) Finally, we shall use the shorthand
notation K := K((∑ Xn)`p) and R := sup{K(Xn), 21/p}.

Let us fix arbitrarily ε > 0 and select a (K− ε)-separated sequence (xk)
∞
k=1 in the unit

ball of (∑ Xn)`p ; up to a small perturbation, we may assume without loss of generality
that the support of every xk is a finite set. Since, for fixed N ∈ N, ‖xk�[1,N]‖ 6 1, we
may pass to a subsequence and assume that (‖xk�[1,N]‖)∞

k=1 converges to a limit αN. By



3.1. KOTTMAN’S CONSTANT 103

diagonalisation and relabeling, we may assume that the above limit exists for every N,
namely

lim
k→∞
‖xk�[1,N]‖ = αN (N ∈N).

The sequence (αN)
∞
N=1 is plainly non decreasing and, therefore, it admits a limit, α∞ ∈

[0, 1]. Let us select a natural number N so large that α
p
N
> α

p
∞ − ε. As ‖xk�[1,N]‖p → α

p
N

when k→ ∞, up to discarding finitely many terms, we may additionally assume that

α
p
∞ − ε 6 ‖xk�[1,N]‖

p 6 α
p
∞ + ε (k ∈N). (3.1.1)

As a consequence of this inequality and the first part of the result, Lemma 3.1.14
assures us that (up to passing to a further subsequence)

‖xk�[1,N] − xn�[1,N]‖
p 6 (α

p
∞ + ε) ·max{K(X1), . . . , K(XN)}

p + ε 6 (α
p
∞ + ε) · Rp + ε.

(3.1.2)
We shall now treat the tail part of the vectors, and we shall exploit once more a

sliding hump argument. Let us, for notational simplicity, denote x̃k := xk�[N+1,∞); as a
consequence of the above inequality (3.1.1) one has ‖x̃k‖p 6 1 + ε− α

p
∞. Moreover, for

every N > N + 1, one has

‖x̃k�[1,N]‖p = ‖xk�[1,N]‖p − ‖xk�[1,N]‖
p → α

p
N − α

p
N
< ε.

Let now N1 ∈ N be such that supp(x̃1) ⊆ [1, N1]; let, moreover, k1 := 1 and y1 :=
x̃1. Since limk ‖x̃k�[1,N1]

‖p < ε, we may select an index k2 such that ‖x̃k2�[1,N1]
‖p < ε

and we shall set y2 := x̃k2 − x̃k2�[1,N1]
; note that ‖y2‖p 6 ‖x̃k2‖p 6 1 + ε − α

p
∞ and

‖y2− x̃k2‖p < ε. If we continue by induction in the same way, we then obtain a disjointly
supported sequence (yj)

∞
j=1 and a subsequence (x̃kj)

∞
j=1 of (x̃k)

∞
k=1 with the properties

that ‖yj‖p 6 1 + ε− α
p
∞ and ‖yj − x̃kj‖

p < ε for every j ∈N.

In light of the fact that (yj)
∞
j=1 is a disjointly supported sequence, we immediately

obtain that ‖yj − yn‖p 6 2 · (1 + ε− α
p
∞); in turn, this yields

‖x̃kj − x̃kn‖ 6 21/p · (1 + ε− α
p
∞)1/p + 2ε1/p 6 R · (1 + ε− α

p
∞)1/p + 2ε1/p.

Finally, when we combine this inequality with (3.1.2), we obtain

(K− ε)p 6 ‖xkj − xkn‖
p = ‖xkj�[1,N] − xkn�[1,N]‖

p + ‖x̃kj − x̃kn‖
p

6 (α
p
∞ + ε) · Rp + ε +

(
R · (1 + ε− α

p
∞)1/p + 2ε1/p

)p
;

letting ε→ 0 then gives

Kp 6 α
p
∞ · Rp + Rp · (1− α

p
∞) = Rp.

�
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3.2 A symmetric version of Kottman’s theorem

In this section, we present our solution to Castillo’s question of the validity of a sym-
metric analogue of Kottman’s theorem; to wit, we prove Theorem 3.1.11, asserting that
the unit ball of every infinite-dimensional Banach space contains a symmetrically (1+)-
separated sequence. Let us observe in passing that the argument actually applies to
every infinite-dimensional normed space.

Prior to the presentation of our result, we shall open the section with a discussion
of the proof of Kottman’s result itself; as we already mentioned, we will only describe
Kottman’s proof and we will then present more recent and simpler proofs.

The main step in Kottman’s proof, from [Kot75], consists is a combinatorial lemma
[Kot75, Lemma 1], nowadays known as Kottman’s lemma, which depends on Ramsey
theorem. As we already hinted at, simpler and non-combinatorial proofs of Kottman’s
theorem are now available, but such combinatorial features are present in the Elton–
Odell theorem and their presence will be even more pervasive when passing to the
non-separable setting, in Chapter 4.

For the statement of Kottman’s lemma, we need to fix one notation. Let U comprise
all sequences in c00 with values in {0,±1}; moreover, we shall denote by (ei)

∞
i=1 the

canonical basis of c00.

Lemma 3.2.1 (Kottman’s lemma, [Kot75]). Let A be a subset of U such that A is symmetric
and (ei)

∞
i=1 ⊆ A. Then there exists an infinite subset B of A such that for distinct x, y ∈ B one

has x− y /∈ A.

Let us now show how to deduce Kottman’s theorem from this lemma.

First proof of Kottman’s theorem, [Kot75]. Let X be an infinite dimensional Banach space
and select an infinite Auerbach system {ei; e∗i }∞

i=1 in X ([Day62]). We then consider the
set

E :=

{
x =

n

∑
i=1

aiei ∈ X : ai ∈ {0,±1} and ‖x‖ = 1

}
;

it is immediate to see that if distinct x, y ∈ E satisfy ‖x − y‖ 6 1, then x − y ∈ E.
Let us then consider the non-expansive linear operator T : span E → c00 defined by
T(x) := (〈e∗i , x〉)∞

i=1; the set A := T(E) ⊆ U plainly satisfies the assumptions of
Kottman’s lemma.

If every infinite subset of E contains two distinct points x, y with mutual distance
‖x − y‖ 6 1, then such points satisfy x − y ∈ E; consequently, every infinite subset of
A contains two distinct points whose difference belongs to A, which is in contradiction
with Kottman’s lemma. Consequently, E contains a (1+)-separated sequence. �

This argument has been carefully investigated and improved by Glakousakis and
Mercourakis, [GlMe15]. In particular, the authors have found a finite-dimensional ver-
sion of Kottman’s lemma, whence the same argument as above leads them to the fol-
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lowing result: every finite-dimensional normed space of dimension n contains a (1+)-
separated subset of its unit sphere, with cardinality n + 1 [GlMe15, Theorem 0.2]. In the
case of complex Banach spaces of (complex) dimension n, it is also possible to improve
the result and obtain a (1+)-separated collection of unit vectors of cardinality 2n + 2,
[GlMe15, Theorem 2.10].

Let us state here this finite-dimensional analogue of Kottman’s lemma.

Lemma 3.2.2 ([GlMe15, Theorem 0.1]). Let Cn be the cube Cn := {0,±1}n and let A ⊆ Cn be
a symmetric subset which contains e1, . . . , en. Then there exists a subset B of A, with cardinality
n + 1 such that for distinct x, y ∈ B, one has x− y /∈ A.

It is interesting to observe that this finite-dimensional counterpart actually subsumes
the original Kottman’s statement, [GlMe15, Proposition 1.10]; on the other hand, part of
the proof of this lemma may be, in turn, deduced from Kottman’s lemma, see Proposi-
tion 1.9 there.

We shall next present a simpler and non-combinatorial proof of Kottman’s theorem;
this argument may be found in [Die84, pp. 7–8], where it is given credit to Tom Starbird.

Second proof of Kottman’s theorem, [Die84]. We are going to construct by induction two
normalised sequences (xn)∞

n=1 ⊆ SX and (ϕn)∞
n=1 ⊆ SX∗ with the following properties:

(i) 〈ϕn, xn〉 = 1;

(ii) 〈ϕi, xn〉 < 0 for i < n;

(iii) {ϕn}∞
n=1 is a linearly independent set.

Once this is achieved, for i < n we clearly have

‖xi − xn‖ > 〈ϕi, xi − xn〉 = 1− 〈ϕi, xn〉 > 1,

and we are done. Assume that, for some n > 1, we have already found unit vectors
x1, . . . , xn and norm-one functionals ϕ1, . . . , ϕn with the above properties (for n = 1 this
is trivially possible). Let us then recall that y∗ ∈ span{y∗1 , . . . , y∗n} if and only if ker y∗ ⊆
∩ ker y∗i , whence (iii) implies that for every i = 1, . . . , n there exists yi ∈ ∩j 6=i ker ϕj such
that 〈ϕi, yi〉 < 0. Therefore, the vector y := ∑ yi satisfies 〈ϕi, y〉 < 0 for i = 1, . . . , n.

This vector y is not yet what we are looking for, so we first choose z ∈ ∩ ker ϕi such
that ‖y‖ < ‖y + z‖. We may finally set xn+1 := y+z

‖y+z‖ and pick a norming functional
ϕn+1 for xn+1; in this way, the first two properties are trivially satisfied. Finally, if it
were that ϕn+1 is a linear combination of the previous functionals ϕi’s, then we would
have 〈ϕn+1, z〉 = 0 too. However, this results in a contradiction since

1 = 〈ϕn+1, xn+1〉 =
〈ϕn+1, y〉
‖y + z‖ 6

‖y‖
‖y + z‖ < 1.

�
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The third, and last, proof of Kottman’s theorem that we shall give, a modification
of the proof given in [SWWY15, Theorem 1.1], is perhaps less short than Starbird’s ar-
gument above, but in a sense more natural. The rough idea is that we follow Riesz’
inductive argument and at each step we check whether the initial string actually is (1+)-
separated. In case it is, we pass to the subsequent step, if not, we suitably modify the
last selected vector.

Third proof of Kottman’s theorem, [SWWY15]. It suffices to prove the following lemma, a
variation of Riesz’ lemma, and argue by induction.

Lemma 3.2.3. Let X be an infinite-dimensional normed space and let (xi)
n
i=1 ⊆ SX be a finite

sequence, which is a (1+)-separated set and such that

dist(xj, span{x1, . . . , xj−1}) = 1 j = 1, . . . , n.

Then there exists a unit vector x ∈ X with

dist(x, span{x1, . . . , xn}) = 1

and such that (xi)
n
i=1 ∪ {x} is (1+)-separated.

Proof of the Lemma. Let us assume, by contradiction, that no such x exists. According to
Riesz’ lemma, we may find a unit vector y ∈ SX such that

dist(y, span{x1, . . . , xn}) = 1.

By our assumption, there exists an index i1 ∈ {1, . . . , n} such that ‖y − xi1‖ 6 1; evi-
dently,

dist(y− xi1 , span{x1, . . . , xn}) = 1,

whence in particular y1 := y− xi1 is a unit vector.
Once more, our assumption implies that (xi)

n
i=1 ∪ {y1} is not (1+)-separated; hence,

there exists i2 ∈ {1, . . . , n} such that ‖y1 − xi2‖ 6 1; we set y2 := y1 − xi2 = y− xi1 − xi2
and we continue.

We have thus found a sequence (yk)
∞
k=1 consisting of unit vectors, of the form

yk = y−
n

∑
i=1

ai
kxi,

where the numbers ai
k are natural numbers and ∑n

i=1 ai
k = k, for every k. This is, how-

ever, impossible. In fact, (xi)
n
i=1 ∪ {y} is a basis for its linear span, whence there is δ > 0

such that ∥∥∥∥∥αy +
n

∑
i=1

αixi

∥∥∥∥∥ > δ ·
(
|α|+

n

∑
i=1
|αi|
)

,

for every choice of the scalars α, (αi)
n
i=1. Since yk belongs to such linear span for every

k, we then conclude ‖yk‖ > δ(1 + k), for every k ∈N, a contradiction. �
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�

Let us then pass to the proof of Theorem 3.1.11.

Proof of Theorem 3.1.11. Let X be an infinite-dimensional Banach space. We consider the
following property of an infinite-dimensional subspace X̃ of X: X̃ has property (�) if
there exist a unit vector x ∈ SX̃ and an infinite-dimensional subspace Y of X̃ such that
‖x + y‖ > 1 for every unit vector y ∈ SY. In symbols,

X̃ has (�) if: ∃x ∈ SX̃, ∃Y ⊆ X̃ infinite-dimensional subspace: ∀y ∈ SY ‖x + y‖ > 1.

Then we have the following dichotomy: either every infinite-dimensional subspace of
X has (�) or some infinite-dimensional subspace has (¬�).

The proof of the result in the first alternative of the dichotomy is very simple: in fact,
the assumption that X has (�) yields a unit vector x1 ∈ X and an infinite-dimensional
subspace X1 of X such that ‖x1 + y‖ > 1 for every y ∈ SX1 . Since X1 has (�) too,
we can find a unit vector x2 in X1 and an infinite-dimensional subspace X2 of X1 such
that ‖x2 + y‖ > 1 for every y ∈ SX2 . We proceed by induction in the obvious way and
we find a sequence (xn)∞

n=1 of unit vectors in X and a decreasing sequence (Xn)∞
n=1 of

infinite-dimensional subspaces of X such that, for every n ∈N

(i) xn+1 ∈ Xn and

(ii) ‖xn + y‖ > 1 for every y ∈ SXn .
The sequence (xn)∞

n=1 ⊆ SX is then the desired symmetrically (1+)-separated sequence
since for 1 6 k < n we have ±xn ∈ Xn−1 ⊆ Xk; hence ‖xk ± xn‖ > 1.

In the second alternative, there exists an infinite-dimensional subspace X̃ of X with
property (¬�); since we shall construct the desired sequence in the subspace X̃, we
can assume without loss of generality that X̃ = X. We first note that the assumption X
to admit property (¬�) is equivalent to the formally stronger property

(�) ∀x ∈ BX, ∀Y ⊆ X infinite-dimensional subspace ∃y ∈ SY : ‖x + y‖ 6 1.

In fact, for x ∈ SX, (�) is exactly the negation of (�), while for x = 0 it is trivially
true. Given a non-zero x ∈ BX and an infinite-dimensional subspace Y of X, (¬�)
provides us with a vector y ∈ SY with

∥∥∥ x
‖x‖ + y

∥∥∥ 6 1; consequently ‖x + y‖ 6 1, by
Lemma 3.1.15.

We finally prove the result under the additional assumption that X has property
(�). Fix a decreasing sequence (δn)∞

n=1 of positive reals with ∑∞
n=1 δn 6 1/4, say δn =

2−(n+2). Also, choose any z ∈ X with ‖z‖ = 3/4 and find a norming functional ψ ∈ SX∗

for z.
We now construct by induction two sequences (yn)∞

n=1 in SX and (ϕn)∞
n=1 in SX∗ such

that:
(i) 〈ϕn, yn〉 = 1 (n ∈N);
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(ii) y1 ∈ ker ψ and yn+1 ∈ ker ψ ∩⋂n
i=1 ker ϕi (n ∈N);

(iii) ‖z + y1‖ 6 1 and ‖z− δ1y1 − . . .− δnyn + yn+1‖ 6 1 (n ∈N).
In fact, by (�), there exists a unit vector y1 ∈ ker ψ such that ‖z + y1‖ 6 1; we also
find a norming functional ϕ1 for y1. Assume that we have already found y1, . . . , yn and
ϕ1, . . . , ϕn for some n > 1. Of course, the triangle inequality and our choice of (δn)∞

n=1
imply

‖z− δ1y1 − . . .− δnyn‖ 6 1,

thus (�) ensures us of the existence of a unit vector yn+1 in ker ψ ∩ ⋂n
i=1 ker ϕi such

that
‖z− δ1y1 − . . .− δnyn + yn+1‖ 6 1.

To complete the induction step it is then sufficient to take a norming functional ϕn+1 for
yn+1.

We now define x1 := z + y1 and xn+1 := z− δ1y1 − . . .− δnyn + yn+1 (n ∈ N). Fix
two natural numbers k < n. By the very construction, each yi lies in ker ψ, so we have

‖xn + xk‖ > 〈ψ, xn + xk〉 = 〈ψ, 2z〉 = 2‖z‖ > 1.

Moreover, yi ∈ ker ϕk for every i > k, whence

‖xk− xn‖ > 〈ϕk, xk− xn〉 = 〈ϕk, yk + δkyk + . . .+ δn−1yn−1− yn〉 = 〈ϕk, (1+ δk)yk〉 = 1+ δk > 1.

Consequently, (xn)∞
n=1 is a symmetrically (1+)-separated sequence and the vectors xn

are contained in BX, due to (iii). It thus follows from Lemma 3.1.15 that the unit sphere
of X contains a symmetrically (1+)-separated sequence. �

3.3 Symmetrically (1 + ε)-separated sequences

The aim of this section is to present the proof of Theorem 3.1.12, concerning the exis-
tence of symmetrically (1 + ε)-separated sequences in the unit ball of Banach spaces
with boundedly complete basic sequences. In the second part of the section, we shall
combine this result with known results from the literature and derive the same conclu-
sion for a quite large class of Banach spaces, which includes, in particular, all classical
Banach spaces.

For convenience of the reader, we start recalling the relevant definitions and a few
properties of boundedly complete sequences. A basic sequence (ej)

∞
j=1 in a Banach space

X is boundedly complete if the series ∑∞
j=1 ajej converges in X for every choice of the scalars

(aj)∞
j=1 such that

sup
k∈N

∥∥∥∥∥ k

∑
j=1

ajej

∥∥∥∥∥ < ∞.
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It is very simple to verify that if (ej)
∞
j=1 is a boundedly complete basic sequence, then so

is every block basic sequence of (ej)
∞
j=1.

We shall require a small refinement of the classical Mazur technique of constructing
basic sequences (see, e.g., [LiTz77, Theorem 1.a.5]). In particular, we shall exploit along
the way the following well-known lemma due to Mazur.

Lemma 3.3.1 (Mazur’s lemma). Let E be a finite-dimensional subspace of a Banach space X
and ε > 0. Then there exists a finite-codimensional subspace F of X such that for every x ∈ E
and v ∈ F

‖x‖ 6 (1 + ε)‖x + v‖.

The formulation given here is not formally identical to the more usual statement of
the lemma, [LiTz77, Lemma 1.a.6], and it can be found, e.g., in [HáJo14, Lemma 4.66]. On
the other hand, the proof is verbatim the same: fixed a finite ε/2-net {yi}n

i=1 for the unit
ball of E and norming functionals y∗i ∈ X∗ for yi (i = 1, . . . , n), the finite-codimensional
subspace F := ∩ ker y∗i is as desired.

Lemma 3.3.2. Let X be an infinite-dimensional Banach space and let (ej)
∞
j=1 be a basic sequence

in X. Suppose that (ε j)
∞
j=1 is a sequence of positive real numbers that converges to 0. Then there

exists a block basic sequence (xj)
∞
j=1 of (ej)

∞
j=1, such that

‖Pj‖ 6 1 + ε j (j ∈N),

where Pj : span{xj}∞
j=1 → span{xj}∞

j=1 denotes the j-th canonical projection associated to the
basic sequence (xj)

∞
j=1.

In particular, if (ej)
∞
j=1 is boundedly complete, then so is (xj)

∞
j=1.

Proof. Fix a sequence (δj)
∞
j=1 ↘ 0 such that ∏∞

j=n(1 + δj) 6 1 + εn for every n. We start
choosing a unit vector x1 ∈ span{ej}∞

j=1. We then find a finite-codimensional subspace
F1 of X, obtained applying Mazur’s lemma to span{x1} and δ1. For n1 sufficiently large,
we have x1 ∈ span{ej}n1−1

j=1 ; since F1 is finite-codimensional, we can choose a unit vector
x2 in F1 ∩ span{ej}∞

j=n1
. By Mazur’s lemma, for all scalars α1, α2 such x2 satisfies

‖α1x1‖ 6 (1 + δ1)‖α1x1 + α2x2‖.

We proceed analogously by induction: assume that we have already found a finite
block sequence (xj)

n
j=1 of (ej)

∞
j=1 such that∥∥∥∥∥ k

∑
j=1

αjxj

∥∥∥∥∥ 6 (1 + δk)

∥∥∥∥∥k+1

∑
j=1

αjxj

∥∥∥∥∥
for every k = 1, . . . , n− 1 and scalars α1, . . . , αn. Let Fn be a finite-codimensional sub-
space of X as in the conclusion of Mazur’s lemma, applied to span{x1, . . . , xn} and δn.
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Moreover let N ∈ N be so large that x1, . . . , xn ∈ span{ej}N−1
j=1 . We can then choose a

unit vector xn+1 in Fn ∩ span{ej}∞
j=N and such a choice ensures us that∥∥∥∥∥ n

∑
j=1

αjxj

∥∥∥∥∥ 6 (1 + δn)

∥∥∥∥∥n+1

∑
j=1

αjxj

∥∥∥∥∥ (3.3.1)

for every choice of the scalars α1, . . . , αn+1. This concludes the inductive procedure.
From (3.3.1) it is clear that for every n, k ∈N∥∥∥∥∥ n

∑
j=1

αjxj

∥∥∥∥∥ 6 ∞

∏
j=n

(1 + δj)

∥∥∥∥∥n+k

∑
j=1

αjxj

∥∥∥∥∥ 6 (1 + εn)

∥∥∥∥∥n+k

∑
j=1

αjxj

∥∥∥∥∥ ,

hence ‖Pn‖ 6 1 + εn. It is also clear from the construction that (xj)
∞
j=1 is a block basic

sequence of (ej)
∞
j=1. Finally, the last assertion of the lemma follows from the already

mentioned observation that block sequences of boundedly complete basic sequences
are boundedly complete. �

We are ready to enter the proof of the main theorem and we start introducing a bit of
terminology. Given a basic sequence (ej)

∞
j=1, by a block we mean a vector in span{ej}∞

j=1,
and we also say that a block is a finitely supported vector. A unit block is of course a block
which is also a norm one vector. Two blocks b1, b2 are consecutive if b1 ∈ span{ej}N

j=1 and
b2 ∈ span{ej}∞

j=N+1; in this case we write b1 < b2. We also write N < b, where N ∈ N,
if b ∈ span{ej}∞

j=N+1, namely ‘the support of b begins after N’ (and analogously for
N 6 b, b < N or b 6 N). An extension of a finite set of blocks b1 < b2 < · · · < bn is the
choice of a block b with bn < b.

Proof of Theorem 3.1.12. Fix a boundedly complete basic sequence (ej)
∞
j=1 in X and a de-

creasing sequence (ε j)
∞
j=1 of numbers in the interval (0, 1) with ∑∞

j=1 ε j < ∞. Accord-
ing to Lemma 3.3.2 we can assume that the canonical projections (Pj)

∞
j=1 associated to

(ej)
∞
j=1 satisfy ‖Pj‖ 6 1 + ε j. We are going to construct the desired symmetrically sep-

arated sequence as a block basic sequence of (ej)
∞
j=1, so we can safely assume without

loss of generality that X = span{ej}∞
j=1. In other words, our actual assumptions are

that X admits a boundedly complete Schauder basis (ej)
∞
j=1, whose associated canonical

projections satisfy ‖Pj‖ 6 1 + ε j.
We now begin with the construction. Either every symmetrically (1 + ε1)-separated

finite family of unit blocks b1 < b2 < · · · < bn admits a symmetrically (1+ ε1)-separated
extension b1 < b2 < · · · < bn < b, with b a unit block, or there exists a symmetrically
(1 + ε1)-separated finite family of unit blocks b1 < b2 < · · · < bn that admits no such
extension. In the first case we start with a family with cardinality 1 and we can easily
produce by induction a symmetrically (1 + ε1)-separated sequence b1 < b2 < · · · <
bn < . . . consisting of unit blocks. In this case the proof is complete. Alternatively, we
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have found a finite family of unit blocks B1 := (b(1)i )N1
i=1 which is symmetrically (1+ ε1)-

separated and admits no extension with the same property. In other words, the family
B1 satisfies:

b(1)1 < b(1)2 < · · · < b(1)N1
, ‖b(1)i ‖ = 1, ‖b(1)i ± b(1)j ‖ > 1 + ε1 (i, j ∈ {1, . . . , N1}, i 6= j)

and for every unit block b > b(1)N1
there are i = 1, . . . , N1 and σ = ±1 with ‖σb(1)i + b‖ <

1 + ε1.
We next repeat the same alternative, but now we are in search of symmetrically

(1 + ε2)-separated families of unit blocks and we only look for blocks b > b(1)N1
. Hence,

either every symmetrically (1 + ε2)-separated finite family of unit blocks b1 < b2 <

· · · < bn with b(1)N1
< b1 admits a symmetrically (1 + ε2)-separated extension b1 < b2 <

· · · < bn < b, with b a unit block, or there exists a symmetrically (1 + ε2)-separated
finite family of unit blocks b1 < b2 < · · · < bn that admits no such extension. In the first
case, the proof is completed by the simple induction argument, while in the second one
we have obtained a family B2 := (b(2)i )N2

i=1 such that

b(1)N1
< b(2)1 < b(2)2 < · · · < b(2)N2

, ‖b(2)i ‖ = 1 ‖b(2)i ± b(2)j ‖ > 1+ ε2 (i, j ∈ {1, . . . , N2}, i 6= j)

and for every unit block b > b(2)N2
there are i = 1, . . . , N2 and σ = ±1 with ‖σb(2)i + b‖ <

1 + ε2.
We proceed by induction in the obvious way: if at some step, say step n, we fall in

the first of the two alternatives, then we easily conclude the existence of a symmetrically
(1 + εn)-separated sequence of unit vectors. In this case the proof is concluded and, of
course, we stop our construction. In the other case, we tenaciously proceed for every n
and we consequently find families Bn := (b(n)i )Nn

i=1 such that for every n ∈N:

(i) ‖b(n)i ‖ = 1 (i = 1, . . . , Nn);

(ii) b(n)1 < b(n)2 < · · · < b(n)Nn
< b(n+1)

1 ;

(iii) ‖b(n)i ± b(n)j ‖ > 1 + εn (i, j ∈ {1, . . . , Nn}, i 6= j);

(iv) for any unit block b > b(n)Nn
there are i = 1, . . . , Nn and σ = ±1 with ‖σb(n)i + b‖ <

1 + εn.

Our plan now is to show that the existence of such families (Bn)∞
n=1 is in contra-

diction with the assumption that (ej)
∞
j=1 is a boundedly complete Schauder basis. This

implies that at some step we actually fall in the first alternative, and in turn concludes
the proof. The basic idea we exploit to implement our plan is to use elements of Bn+1 to
witness the non-extendability of Bn. We will also use the following obvious inequality1:

1We record it explicitly here only because below we will use it with some slightly complicated expres-
sions and it would perhaps be not immediate to see how trivial the estimate is.
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if a, b are vectors in a normed space X and 1− ε 6 ‖b‖ 6 1 + ε, then

‖a + b‖ 6
∥∥∥∥a +

b
‖b‖

∥∥∥∥+ ε. (3.3.2)

Fix any natural number k > 2 and choose arbitrarily one index nk(k) ∈ {1, . . . , Nk};
by condition (iv) there exist an index nk−1(k) ∈ {1, . . . , Nk−1} and a sign σk−1(k) = ±1
such that ∥∥∥σk−1(k)b

(k−1)
nk−1(k)

+ b(k)nk(k)

∥∥∥ < 1 + εk−1.

Moreover, we can find an index n with b(k−1)
nk−1(k)

6 n < b(k)nk(k)
and clearly such n satisfies

n > k− 1. Hence

1 =
∥∥∥b(k−1)

nk−1(k)

∥∥∥ =
∥∥∥Pn

(
σk−1(k)b

(k−1)
nk−1(k)

+ b(k)nk(k)

)∥∥∥ 6 (1 + εk−1)
∥∥∥σk−1(k)b

(k−1)
nk−1(k)

+ b(k)nk(k)

∥∥∥ .

Consequently,
1− εk−1 6

∥∥∥σk−1(k)b
(k−1)
nk−1(k)

+ b(k)nk(k)

∥∥∥ < 1 + εk−1.

The vector

b :=
σk−1(k)b

(k−1)
nk−1(k)

+ b(k)nk(k)∥∥∥σk−1(k)b
(k−1)
nk−1(k)

+ b(k)nk(k)

∥∥∥
is, of course, a unit block with b > b(k−2)

Nk−2
and we can now use it to witness the maxi-

mality of Bk−2. By condition (iv), there must exist an index nk−2(k) ∈ {1, . . . , Nk−2} and
a sign σk−2(k) = ±1 such that∥∥∥σk−2(k)b

(k−2)
nk−2(k)

+ b
∥∥∥ < 1 + εk−2.

By the inequality (3.3.2) it then follows

1− εk−2 6
∥∥∥σk−2(k)b

(k−2)
nk−2(k)

+ σk−1(k)b
(k−1)
nk−1(k)

+ b(k)nk(k)

∥∥∥ < 1 + εk−2 + εk−1.

(where the lower bound is obtained applying a suitable projection Pn, as we have al-
ready done above). We proceed by going backwards in a similar way: the normalisa-
tion of the vector σk−2(k)b

(k−2)
nk−2(k)

+ σk−1(k)b
(k−1)
nk−1(k)

+ b(k)nk(k)
is a unit block, which we use

to witness the maximality of Bk−3, and so on. In particular, we have proved the exis-
tence of a string of indices and signs {n1(k), σ1(k), . . . , nk(k), σk(k)}, where σk(k) = +1,
such that ∥∥∥σ1(k)b

(1)
n1(k)

+ · · ·+ σk(k)b
(k)
nk(k)

∥∥∥ < 1 + ε1 + · · ·+ εk−1.

If we apply again a suitable projection Pn, we also deduce the validity of the fol-
lowing stronger assertion: for every k ∈ N there exists a string of indices and signs
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Ik = {ni(k), σi(k)}k
i=1, where σi(k) = ±1 and ni(k) ∈ {1, . . . , Ni} for i = 1, . . . , k, such

that for every ` ∈N, ` 6 k we have∥∥∥∥∥ `

∑
i=1

σi(k)b
(i)
ni(k)

∥∥∥∥∥ 6 (1 + ε1) ·
(

1 +
∞

∑
j=1

ε j

)
=: C < ∞. (3.3.3)

Of course, there are only finitely many possibilities for the first two items of the
strings (Ik)

∞
k=1, so by the pigeonhole principle we may find an index n1 ∈ {1, . . . , N1}

and a sign σ1 = ±1 such that infinitely many strings begin with the pattern {n1, σ1}.
Analogously, there are n2, σ2 such that an infinite subset of those strings begins with
the pattern {n1, σ1, n2, σ2}. Continuing inductively, we find an infinite string {ni, σi}∞

i=1
such that every its initial substring {ni, σi}`i=1 is the initial part of infinitely many Ik’s.
In particular, equation (3.3.3) then implies that for every ` ∈N∥∥∥∥∥ `

∑
i=1

σib
(i)
ni

∥∥∥∥∥ 6 C.

Finally, if we set bi := σib
(i)
ni , the sequence (bi)

∞
i=1 is a block basic sequence of (ej)

∞
j=1,

hence it is boundedly complete. Moreover, the last inequality now reads

sup
`

∥∥∥∥∥ l

∑
i=1

bi

∥∥∥∥∥ 6 C.

It follows that the series ∑∞
i=1 bi converges in X, which is a blatant contradiction with

the fact that the bi’s are unit vectors. �

We now pass to the second part of the section and we conclude the validity of a sym-
metric version of the Elton–Odell theorem, for a large class of Banach spaces. Our first,
immediate, deduction is based on the well-known fact that, in a reflexive Banach space,
every basic sequence is boundedly complete ([Jam50, Theorem 1]; see also [AlKa06,
Theorem 3.2.13]). We therefore arrive at the following corollary.

Corollary 3.3.3 ([HKR18, Corollary 1.2]). Let X be an infinite-dimensional reflexive Banach
space. Then for some ε > 0 the unit sphere of X contains a symmetrically (1 + ε)-separated
sequence.

The above observation may be extended to more general spaces, as Johnson and
Rosenthal proved that if X is isomorphic to an infinite-dimensional subspace of a sepa-
rable dual space, then it contains a boundedly complete basic sequence ([JoRo72, The-
orem IV.1.(ii)]). As a consequence, the unit sphere of a Banach space X contains a
symmetrically (1 + ε)-separated sequence, whenever the Banach space X contains an
infinite-dimensional subspace isomorphic to a dual Banach space.

Notably, spaces with the Radon–Nikodym property, or more generally, spaces with
the so-called point-of-continuity property (in short, PCP) contain separable dual Banach
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spaces. Let us record a few definitions here to explain this point. A Banach space X
has the point-of-continuity property if every of its weakly closed and bounded subset C
admits a point y of weak-to-norm continuity, i.e., the identity is continuous at y as a map
from C with its weak topology into C with the norm topology. The proof that Banach
spaces with PCP contain infinite-dimensional dual space may be found in [GhMa85,
Corollary II.1].

Moreover, let us recall that a point y is a denting point for a bounded subset C of a
Banach space, if x is contained in slices of C of arbitrarily small diameter. In this case,
it is immediate that x is a point of weak-to-norm continuity for C. This observation
combines with well-known results on the existence of denting points in Banach spaces
with the RNP [BeLi00, §5.2], to conclude that every Banach space with the RNP admits
the PCP.

We may record then the following corollary to Theorem 3.1.12.

Corollary 3.3.4 ([HKR18, Corollary 1.3]). Suppose that X contains a subspace isomorphic
to a subspace of a separable dual space. Then for some ε > 0 the unit sphere of X contains a
symmetrically (1 + ε)-separated sequence.

Consequently, the assertion holds true in the case where X has the Radon–Nikodym property
(or more generally, PCP).

Of course the prototypical example of Banach space which is not included in the
previous considerations is the space c0; on the other hand, we already discussed in
the first section how to use James non distortion theorem and obtain a symmetrically
(1+ ε)-separated sequence in the unit sphere of every Banach space that contains a copy
of c0.

This observation combines with James’ dichotomy [Jam50] for Banach spaces with
unconditional basis to give a symmetric version of the Elton–Odell theorem for every
Banach space with unconditional basis. This argument can be extended to the class of
Banach lattices, since for (a space isomorphic to) a Banach lattice X we have the follow-
ing three, not necessarily exclusive, possibilities: X is reflexive, X contains a subspace
isomorphic to c0 or X contains a subspace isomorphic to `1 (cf. [LiTz79, Theorem 1.c.5]).
By Theorem 3.1.12 we thus obtain the following result.

Theorem 3.3.5 ([HKR18, Theorem B]). Suppose that X is a Banach space that contains an
infinite-dimensional subspace isomorphic to a Banach lattice (for example, a space with an un-
conditional basis). Then for some ε > 0 the unit sphere of X contains a symmetrically (1 + ε)-
separated sequence.

At this stage, we came across a famous problem which has been open for decades,
namely whether every infinite-dimensional Banach space contains an unconditional ba-
sic sequence; this problem seems to have been explicitly stated in [BePe58, Problem 5.1]
for the first time, but most likely it was known before. Of course, a positive answer to
this problem would then imply the validity of a symmetric analogue to the Elton–Odell
theorem; on the other hand, the negative solution to the unconditional basic sequence
problem, due to Gowers and Maurey [GoMa93], is by now a very famous result.
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At the appearance of such counterexample XGM, Johnson observed that the space
XGM has the stronger property to be hereditarily indecomposable. An infinite-dimensional
Banach space is decomposable if it can be decomposed as a topological sum of two its
closed, infinite-dimensional subspaces; it is indecomposable if it is not decomposable.
Moreover, an infinite-dimensional Banach space is hereditarily indecomposable (for short,
HI) when every its infinite-dimensional subspace is indecomposable. Certainly, heredi-
tarily indecomposable spaces do not contain unconditional basic sequences; in a sense,
a converse of this assertion is also valid. More precisely, the celebrated Gowers’ Di-
chotomy Theorem ([Gow96]) asserts that an infinite-dimensional Banach space contains
an infinite-dimensional subspace with an unconditional basis or a hereditarily indecom-
posable subspace.

For a presentation of some parts of this theory, we refer to the Handbook articles,
authored by the Gowers and Maurey themselves, [Gow03], [Mau03]; let us mention
that one ancestor of the first HI space, Schlumprecht’s space [Sch91], is also at the basis
of the solution of the distortion problem [OdSc93, OdSc94]. Moreover, HI spaces were
also used for a solution to the scalar-plus-compact problem, [ArHa11].

On the other hand, the original example of a hereditarily indecomposable space
XGM was reflexive, which immediately implies the existence of a symmetrically (1+ ε)-
separated sequence of unit vectors in XGM, in light of Corollary 3.3.3. In fact, there
exist hereditarily indecomposable spaces without reflexive subspaces; the first example
is due to Gowers [Gow94]. However, Gowers’ space admits an equivalent uniformly
Kadets–Klee norm ([DGK94, Corollary 10]), so it has PCP since it does not contain `1
([DGK94, Proposition 2]). Consequently, Corollary 3.3.4 applies to any renorming of
Gowers’ space.

More recently, Argyros and Motakis ([ArMo19]) constructed a L∞-space XAM with-
out reflexive subspaces whose dual is isomorphic to `1. In particular, XAM is an Asplund
space containing weakly Cauchy sequences that do not converge weakly, so the unit ball
of XAM is not completely metrisable in the relative weak topology. By [EdWh84, The-
orem A], XAM fails PCP; the same reasoning applies to any closed subspace of XAM.
(We are indebted to Pavlos Motakis for having explained this to us.) Nevertheless, XAM
being a L∞-space, by a result of Castillo and Papini, contains a symmetrically (1 + ε)-
separated sequence in the unit sphere for some ε > 0.

As a consequence of this discussion, even in the absence of unconditional bases, the
conjunction of the corollaries to our main result seems to apply to a wide range of HI
Banach spaces. Actually, we do not know of any explicit example of Banach space none
of the above corollaries applies to. However, it its full generality, the following problem
is still open to us.

Problem 3.3.6. Is the symmetric version of the Elton–Odell theorem valid for every
Banach space? Namely, is it true that for every Banach space there are ε > 0 and a
symmetrically (1 + ε)-separated sequence of unit vectors?

From our results it follows that it would be sufficient to prove the result under the
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additional assumption that X is hereditarily indecomposable or non-reflexive. In par-
ticular, a way to solve Problem 3.3.6 would be to find a symmetric version of the result
by Kryczka and Prus. For this reason, we can also ask the following:

Problem 3.3.7. Is there a constant c > 1 such that the unit ball of every non-reflexive
Banach space contains a symmetrically c-separated sequence?

One immediate property that we noted in Corollary 3.1.17 is that if Z is an isomet-
ric quotient of a Banach space X, then Ks(X) > Ks(Z). In particular, every Banach
space with an infinite-dimensional reflexive quotient contains a symmetrically (1 + ε)-
separated sequence of unit vectors, for some ε > 0. If we combine this with the, already
mentioned more than once, fact that every infinite-dimensional L∞-space X satisfies
Ks(X) = 2, we infer that a positive answer to the following problem would solve in the
positive the main Problem 3.3.6.

Problem 3.3.8. Does every infinite-dimensional Banach space either contain an infinite-
dimensional L∞-space or admit an infinite-dimensional reflexive quotient?

3.4 Estimates for the symmetric Kottman constant

In this last section of the chapter, we shall present quantitative results in which it is pos-
sible to provide explicit estimates on the symmetric separation constant. Let us record
formally here the definition of the constant subject of the investigation of this section
(which was actually already defined in the first section).

Definition 3.4.1 ([CaPa11]). The symmetric Kottman constant of a Banach space X is

Ks(X) := sup
{

σ > 0 : ∃(xn)
∞
n=1 ⊂ BX : ‖xn ± xk‖ > σ ∀n 6= k

}
.

Let us start, for the sake of completeness, restating a few results already present in
the literature concerning this constant. First, we restate a few immediate consequences
of the elementary observations in Section 3.1.1: a Banach space X satisfies Ks(X) = 2,
whenever it contains an isomorphic copy of c0 or `1, or it admits a quotient isomorphic
to one of these spaces.

The first non entirely obvious claim is probably a well known folklore fact, but we
were not able to find it explicitly stated in the literature: if a Banach space X admits a
spreading model isomorphic to `1, then Ks(X) = 2. We shall say more on this in Section
3.4.2, where we will in particular briefly recall the notion of a spreading model and give
a proof of such result.

As we have already hinted at in the introduction, Castillo and Papini [CaPa11, Propo-
sition 3.4] proved that if X is a L∞-space, then Ks(X) = 2; below, we will record this
result and shortly discuss its proof.

Delpech [Del10] proved that every asymptotically uniformly convex Banach space X
satisfies Ks(X) > 1 + δX(1), where δX is the modulus of asymptotic uniform convexity
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(as we already mentioned, the symmetry assertion is not contained in the statement,
but it follows immediately from inspection of the proof). Let us refer to Section 4.4.1 for
more information on the modulus of asymptotic uniform convexity and on this result.
In particular, in that section we will present a generalisation of Delpech’s argument to
non-separable Banach spaces, which subsumes the result in [Del10] as a particular case.

Prus [Pru10, Corollary 5] proved, among other things, that if X has cotype q < ∞,
then K(X) > 21/q; it is not apparent from the argument whether it should also follow
that Ks(X) > 21/q. Therefore, we offer an alternative shorter proof of Prus’ result which
also provides an estimate for the symmetric Kottman constant (cf. Section 3.4.1).

Let us then record formally the result by Castillo and Papini; we also outline its
proof. For information on Lp-spaces, we shall refer to [LiPe68, LiRo69], or [LiTz73,
Chapter 5].

Theorem 3.4.2 ([CaPa11]). Let X be an L∞-space; then Ks(X) = 2.

Outline of the proof. It follows from a standard ‘closing off’ argument ([LiPe68, Proposi-
tion 7.2]) that every L∞-space contains a separable subspace which is also an L∞-space;
consequently, we may assume that X is a separable Banach space. Moreover, from the
elementary properties of the symmetric Kottman constant that we recorded above, we
see that it is sufficient to verify that X admits a quotient isomorphic to c0. Moreover,
for a separable Banach space X, this condition is equivalent to the requirement that X∗

contains a copy of `1 ([JoRo72], cf. [LiTz77, Proposition 2.e.9]). Finally, that the dual
of every separable L∞-space contains a copy of `1 follows from well-known results
on Lp-spaces: in fact, if X is an L∞-space, then X∗ is an L1-space ([LiRo69, Theorem
III(a)]) and every L1-space contains a (complemented) copy of `1 ([LiPe68, Proposition
7.3]). �

Our results in this area will be presented in the subsequent sections; in particular,
the first one is dedicated to Banach spaces with finite cotype, in the second one we shall
exploit spreading models and the last subsection depends on the use of biorthogonal
systems.

3.4.1 Cotype and symmetric separation

The goal of this part is to prove a counterpart of Prus’ result and relate the symmet-
ric Kottman constant with the cotype of the Banach space; part of the argument to be
presented is based on an idea from [KaKo16].

A normalised basic sequence (xn)∞
n=1 satisfies a lower q-estimate if there is a constant

c > 0 such that

c ·
(

N

∑
i=n
|an|q

)1/q

6

∥∥∥∥∥ N

∑
n=1

anxn

∥∥∥∥∥
for every choice of scalars (an)N

n=1 and every N ∈N.
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Let X be a Banach space with a Schauder basis (xn)∞
n=1 and let us denote Xn :=

span{xi}∞
i=n (n ∈ N). We say that an operator T : X → Y is bounded by a pair (γ, $),

where 0 < γ 6 $ < ∞, if ‖T‖ 6 $ and ‖T|Xn‖ > γ for every n ∈N.

Theorem 3.4.3 ([HKR18, Proposition 4.1]). Let X be a Banach space that contains a nor-
malised basic sequence satisfying a lower q-estimate. Then Ks(X) > 21/q.

Proof. Let (xn)∞
n=1 be a normalised basic sequence with a lower q-estimate. We are going

to construct the separated sequence as a block sequence of the basic sequence, so we can
assume without loss of generality that X = span{xi}∞

i=1. Then the assignment Txn := en
(n ∈N) defines an injective, bounded linear operator T : X → `q.

Set $n = ‖T|Xn‖ (n ∈ N). Clearly, ($n)∞
n=1 is a decreasing sequence with $n > 1

for every n ∈ N. Moreover, T|Xk (k ∈ N) is bounded by the pair (infn>1 $n, $k) and,
of course, $k → infn>1 $n as k → ∞. In other words, up to replacing X with Xk, for k
sufficiently large, we can (and do) assume that T : X → `q is bounded by a pair (γ, $)
with γ

$ as close to 1 as we wish (of course with γ
$ < 1).

Armed with this further information, we may now conclude the proof: let γ̃ < γ

be such that γ̃
$ is still as close to 1 as we wish. Since ‖T‖ > γ̃, we can find a unit

vector y1 in span{xi}∞
i=1 such that ‖Ty1‖ > γ̃. Assume now that we have already found

unit vectors y1, . . . , yn in span{xi}∞
i=1 such that ‖Tyk‖ > γ̃ and the Tyk have mutually

disjoint supports. Then there is N such that y1, . . . , yn ∈ span{xi}N
i=1 and the fact that

‖T|XN+1‖ > γ̃ allows us to find a unit vector yn+1 ∈ span{xi}∞
i=N+1 such that ‖Tyn+1‖ >

γ̃.
Consequently, we have found a sequence (yn)∞

n=1 in SX such that ‖Tyn‖ > γ̃ and the
supports of Tyn are finite and mutually disjoint. Hence for n 6= k we have

$ · ‖yn ± yk‖ > ‖Tyn ± Tyk‖ = (‖Tyn‖q + ‖Tyk‖q)1/q > γ̃ · 21/q.

So
Ks(X) >

γ̃

$
· 21/q

and, since γ̃
$ could be chosen to be as close to 1 as we wish, the proof is complete. �

Recall that for a Banach space X one sets

qX := inf
{

q ∈ [2, ∞] : X has cotype q
}

.

Corollary 3.4.4. Let X be an infinite-dimensional Banach space. Then Ks(X) > 21/qX .

Proof. In the case that qX = ∞, the assertion just reduces to a consequence of Riesz’
lemma; consequently, we shall assume that qX < ∞. Moreover, if X is a Schur space,
then by Rosental’s `1-theorem X contains a copy of `1 and the James’ non-distortion
theorem even implies Ks(X) = 2. In the other case, there exists a weakly null normalised
basic sequence in X; it then follows that for every r > qX such a sequence admits a
subsequence with a lower r-estimate (see, e.g., [HáJo14, Proposition 4.36]). The result
now follows from the previous proposition. �
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3.4.2 Spreading models

The goal of this section is to obtain estimates on the symmetric Kottman constant of a
Banach space by looking at its spreading models. In particular, the idea will be to find
suitable separated sequences in a spreading model of X and then transfer them back to a
separated sequence in the target space X. One instance when we are able to implement
this technique is the case of spreading models isomorphic to `1, which case applies in
particular to Tsirelson’s space.

Let us start by mentioning the motivation behind these results. It was already known
to Kottman that it is possible to enlarge the Kottman constant of a Banach space, via a
suitable renorming; see Section 3.4.3 for more information on this point, in particular
for a symmetric counterpart to the result.

It is therefore natural to try to renorm a Banach space and decrease its Kottman con-
stant. One example where this is possible is [MaPa09, Theorem 2.6], where the authors
show that for every Banach space X one has K(X) 6 2 · (1− δX(1)), δX denoting the
modulus of uniform convexity of X. It follows in particular that every super-reflexive
Banach space X admits a renorming |||·||| such that K ((X, |||·|||)) < 2. This motivated the
authors to ask whether every space which fails to contain c0 or `1, or at least every re-
flexive space, admits a renorming with the Kottman constant smaller than 2. To the best
of our knowledge, and also according to the authors themselves, before the appearance
of [HKR18, §5.2] there seemed to be no published solution to these questions. We will
explicitly record the answers to this question in the present section.

An example of a Banach space which does not contain isomorphic copies of either
c0 or `1 and still has the Kottman constant equal to 2 under every renorming is the
Bourgain–Delbaen space YBD ([BoDe80, Section 5]). YBD is the first example of a L∞-
space that is saturated by reflexive subspaces; in particular, it contains no copy of c0
or `1. Still, every renorming of YBD has the Kottman constant (even Ks) equal to 2 by
[CaPa11, Proposition 3.4] already quoted above. More generally, every predual of `1 is
another example of space for which the symmetric Kottman constant is equal to 2 under
every renorming; we note that the space constructed by Argyros and Motakis is such an
example, which does not contain c0 either.

In order to offer an example of a reflexive Banach space every whose renorming
has (symmetric) Kottman constant equal to 2, thereby answering in the negative the
question by Maluta and Papini, we next observe that if ‖·‖ is any renorming of the
Tsirelson space T, then Ks((T, ‖·‖)) = 2. Let us mention that, as it is now customary,
the space T we consider is the one constructed by Figiel and Johnson [FiJo74], see also
[LiTz77, Example 2.e.1], and it is the isometric dual to the original Tsirelson’s space T∗

[Tsi74].
As we already mentioned, the argument will exploit the construction of spreading

models, which we now pass to briefly discuss (we refer, e.g., to [BeLa84, Ode02] for
detailed discussions of spreading models). The starting point is the following important
result, due to Brunel and Sucheston, [BrSu74, Proposition 1].
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Proposition 3.4.5 ([BrSu74]). Let (xn)∞
n=1 be a bounded sequence in a Banach space X. Then

there exists a subsequence (yn)∞
n=1 of (xn)∞

n=1 such that for every k ∈ N and scalars α1, . . . , αk

the following limit exists:

lim
n1 < · · · < nk

n1 → ∞

∥∥∥∥∥ k

∑
i=1

αiyni

∥∥∥∥∥ .

The proof of this result is actually an elementary argument, based on repeated use
of Ramsey theorem and diagonalisation; let us shortly describe the scheme of the ar-
gument. Fixed scalars α1, . . . , αk, the range of the function [N]k 3 {n1, . . . , nk} 7→
‖∑k

i=1 αixni‖, where n1 < n2 < · · · < nk, is contained in a bounded interval I. If we par-
tition such interval in two disjoint sub-intervals with equal length, an appeal to Ramsey
theorem yields an infinite subset M of N such that ‖∑k

i=1 αixni‖ belongs to the same
sub-interval, whenever {n1, . . . , nk} ∈ [M]k. We may now repeat the same argument
inductively and the diagonal subsequence (yn)∞

n=1 has the property that

lim
n1 < · · · < nk

n1 → ∞

∥∥∥∥∥ k

∑
i=1

αiyni

∥∥∥∥∥ ,

for this specific choice of α1, . . . , αk. We then repeat the same argument for every k-
tuple α1, . . . , αk, consisting of rational scalars, and for every k; the diagonal subsequence
obtained from this procedure has then the desired property, by an immediate density
argument.

We now apply such result for the construction of spreading models of a Banach space
X. Let us fix a Banach space X and a bounded sequence (xn)∞

n=1 in X; let also (yn)∞
n=1

be a subsequence of (xn)∞
n=1 with the property described in the above proposition. For

a vector (α(i))∞
i=1 ∈ c00 with supp (α(i))∞

i=1 6 k denote the above limit by L
(
(α(i))∞

i=1
)
;

it is immediate to check that L defines a seminorm on c00 and that such a seminorm
is actually a norm provided that the sequence (yn)∞

n=1 is not convergent in X. In such
a case, the completion of c00 under the norm L (which we will henceforth denote ‖·‖)
is called a spreading model of X. The canonical basis (en)∞

n=1 of c00, will be called the
fundamental sequence of the spreading model. One its fundamental property, which is
actually an obvious consequence of the definitions, is that the fundamental sequence is
invariant under spreading, i.e., for every choice of natural numbers n1 < · · · < nk∥∥∥∥∥ k

∑
i=1

αiei

∥∥∥∥∥ =

∥∥∥∥∥ k

∑
i=1

αieni

∥∥∥∥∥ .

We will be interested in the question when a Banach space X admits a spreading
model isomorphic to `1. A first very simple consequence of Rosenthal’s `1-theorem and
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the invariance under spreading is the following (see, e.g., [BeLa84, Lemme II.2.1]): if
F is a spreading model of a Banach space X, then F is isomorphic to `1 if and only
if the fundamental sequence of F is equivalent to the canonical basis of `1. The next
characterization is due to Beauzamy, [Bea79, Theorem II.2] (it may also be found in
[BeLa84, Théorème II.2.3]).

Theorem 3.4.6 ([Bea79]). Let X be a Banach space. Then the following are equivalent:
(i) X admits a spreading model isomorphic to `1;

(ii) there are δ > 0 and a bounded sequence (xn)∞
n=1 in X such that, for every k ∈ N,

ε1, . . . , εk = ±1 and n1 < · · · < nk one has

1
k

∥∥∥∥∥ k

∑
i=1

εixni

∥∥∥∥∥ > δ;

(iii) for every η > 0 there is a bounded sequence (xn)∞
n=1 in X such that, for every k ∈ N,

ε1, . . . , εk = ±1 and n1 < · · · < nk one has

1− η 6
1
k

∥∥∥∥∥ k

∑
i=1

εixni

∥∥∥∥∥ 6 1 + η.

The equivalence between conditions (ii) and (iii) above may be understood as a
counterpart of James non distortion theorem for spreading models; this is true not only
of the statement, but also of the method of proof, cf. [BeLa84, Proposition II.2.4].

As simple deduction from the above characterisation, we may now conclude sharp
estimates on the symmetric Kottman constant of Banach spaces with `1 spreading mod-
els.

Corollary 3.4.7 ([HKR18, Corollary 5.6]). Suppose that a Banach space X admits a spreading
model isomorphic to `1. Then for every renorming |||·||| of X one has Ks((X, |||·|||)) = 2.

Proof. From the equivalence between (i) and (ii) in the previous theorem, it is obvious
that if X admits a spreading model isomorphic to `1, then the same occurs to (X, |||·|||).
Hence, we only need to show that Ks(X) = 2. Applying now (iii) of the same theorem
yields, for every η > 0, a sequence (xn)∞

n=1 such that

1− η 6 ‖xn‖ 6 1 + η and
1
2
‖xn ± xk‖ > 1− η (n, k ∈N, n 6= k).

Consequently, the sequence ( xn
1+η )

∞
n=1 ⊆ BX is symmetrically 2 · 1−η

1+η -separated. Lemma 3.1.15

then yieds Ks(X) > 2 · 1−η
1+η and letting η → 0+ concludes the proof. �
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As we already mentioned, we shall apply the above corollary to Tsirelson’s space,
whose construction is recorded here. We follow the construction due to [FiJo74], as
described in [AlKa06] or in the monograph [CaSh89]; the latter contains a throughout
investigation of Tsirelson’s space and its variations.

We shall start by fixing some notation: if E and F are finite subsets of N, we keep the
notation E < F to mean that max E < min F; and analogously for E 6 F. In the case
that E = {n} is a singleton, we write n < E in place of {n} < E. For a vector x ∈ c00
and a finite subset E of N, we consider the vector Ex := (χE(j) · x(j))∞

j=1, i.e., we also
denote by E the associated linear projection2.

Definition 3.4.8. A collection (Ej)
k
j=1 of finite subsets of N is admissible if

k < E1 < E2 < · · · < Ek.

In other words, we are allowed to select k consecutive blocks, provide that we select
them to ‘start after’ k. As a shorthand, especially in mathematical formulas, we will
write (Ej)

k
j=1 adm to mean that (Ej)

k
j=1 is an admissible family.

We may now define a sequence of norms on c00.

Definition 3.4.9. For a vector x ∈ c00, consider

‖x‖0 := ‖x‖c0 := max
j=1,...,∞

|x(j)|,

‖x‖1 := max

‖x‖0, sup
(Ej)

k
j=1adm

1
2
·

k

∑
j=1
‖Ejx‖0


...

‖x‖n+1 := max

‖x‖n, sup
(Ej)

k
j=1adm

1
2
·

k

∑
j=1
‖Ejx‖n


Obviously, (‖·‖n)

∞
n=0 is an increasing sequence of norms on c00; it is moreover im-

mediate to prove by induction that ‖·‖n 6 ‖·‖`1
for every n. The following definition is

therefore well posed.

Definition 3.4.10. Let ‖·‖T be the norm on c00 defined by

‖x‖T := lim
n→∞
‖x‖n = sup

n
‖x‖n (x ∈ c00).

Tsirelson’s space T is the completion of (c00, ‖·‖T).

2In other parts of the thesis such object would have been denoted by x�E, but here we prefer to keep
the notation of [CaSh89]
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One also immediately sees by induction that (ej)
∞
j=1 is a 1-unconditional basis for T.

The following elementary fact contains an alternative description of the norm of T; its
simple proof may be found in [CaSh89, Chapter I].

Fact 3.4.11. For every x ∈ c00 and n ∈N

‖x‖n+1 := max

‖x‖0, sup
(Ej)

k
j=1adm

1
2
·

k

∑
j=1
‖Ejx‖n

 .

Consequently, ‖·‖T is the unique norm on c00 that satisfies the implicit equation

(T) ‖x‖ := max

‖x‖c0 , sup
(Ej)

k
j=1adm

1
2
·

k

∑
j=1
‖Ejx‖

 (x ∈ c00).

Let us then pass to discuss the first fundamental property of T, namely the fact that
T contains no isomorphic copy of c0, or `p (1 6 p < ∞). The starting point is an
immediate, but important, consequence of the definition of ‖·‖T. Assume that (uj)

k
j=1

is a normalised block sequence in T such that k < supp u1. If we set Ej := supp uj, it is
obvious that (Ej)

k
j=1 is admissible, whence (T) yields∥∥∥∥∥ k

∑
j=1

ajuj

∥∥∥∥∥
T

>
1
2

k

∑
i=1

∥∥∥∥∥Ei

(
k

∑
j=1

ajuj

)∥∥∥∥∥
T

=
1
2

k

∑
i=1
‖aiui‖T =

1
2

k

∑
i=1
|ai|.

Consequently, the finite sequence (uj)
k
j=1 is 2-equivalent to the canonical basis of `k

1. An
immediate consequence of this assertion is that, if (uj)

∞
j=1 is any normalised block basis

sequence in T, then for every k ∈ N there is a finite subsequence uj1 , . . . , ujk which is
2-equivalent to the canonical basis of `k

1.
When combined with the Bessaga–Pełczyński selection principle [AlKa06, Proposi-

tion 1.3.10], this readily implies that T contains no copy of c0 or `p (1 < p < ∞). The
proof that `1 does not embed in T is somewhat more difficult, as it depends on a finer
analysis of the norm of T and on James’ non distortion theorem, cf. [CaSh89, Proposi-
tion I.3]. Let us then state the main property of T that follows from a combination of the
above observations (see [CaSh89, Theorem I.8]).

Theorem 3.4.12 ([Tsi74]). T is a reflexive Banach space with 1-unconditional basis. More-
over, it contains no copy of c0 or `p (1 6 p < ∞), nor an infinite-dimensional super-reflexive
subspace.

We shall now turn our attention to the spreading models of T, starting with those
generated by block sequence of the canonical basis. Let F be a spreading model of
T generated by a normalised block sequence (uj)

∞
j=1 of the basis of T. Up to passing
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to a subsequence, we may assume that the sequence (uj)
∞
j=1 satisfies the conclusion of

Proposition 3.4.5 (in this discussion, let us call any sequence that satisfies the conclusion
of Proposition 3.4.5 a spreading sequence). Given scalars α1, . . . , αk, the norm in F of the
vector ∑k

j=1 αjej is defined to be equal to

lim
n1 < · · · < nk

n1 → ∞

∥∥∥∥∥ k

∑
j=1

αjunj

∥∥∥∥∥
T

.

Evidently, for n1 sufficiently large, we have k < supp un1 ; therefore, the above observa-
tion yields that

1
2

k

∑
j=1
|αj| 6

∥∥∥∥∥ k

∑
j=1

αjunj

∥∥∥∥∥
T

6
k

∑
j=1
|αj|.

It immediately follows that the fundamental sequence (ej)
∞
j=1 of F is 2-equivalent to

the `1 basis; in particular, T admits a spreading model isomorphic to `1. For the sake
of completeness, we shall also presently sketch a proof of the fact that every spreading
model of T is isomorphic to `1 (see, e.g., [BeLa84, Proposition IV.2.F.2]). Further results
on spreading models of T may be found in [OdSc98, §4].

Theorem 3.4.13 ([BeLa84]). Every spreading model of T is isomorphic to `1.

Proof. Let us preliminarily note that if (uj)
∞
j=1 is any seminormalised block basis se-

quence in T, then it generates a spreading model isomorphic to `1; the proof of this is
the same as above. Moreover, it is obvious that if (uj)

∞
j=1 is any spreading sequence and

(vj)
∞
j=1 is any sequence such that ‖uj − vj‖ → 0, then (vj)

∞
j=1 is a spreading sequence

that generates (isometrically) the same spreading model.
Assume now that (xj)

∞
j=1 is any (bounded) spreading sequence, that generates a

spreading model F with fundamental sequence (ej)
∞
j=1; obviously, every subsequence

of (xj)
∞
j=1 generates the same spreading model. Consequently, the reflexivity of T al-

lows us to assume that (xj)
∞
j=1 admits a weak limit x. By the Bessaga–Pełczyński selec-

tion principle, we can also assume that there exists a seminormalised block sequence
(uj)

∞
j=1 of the basis of T such that ‖(xj − x)− uj‖ → 0. The comments at the beginning

of the argument imply that (xj − x)∞
j=1 is a spreading sequence with spreading model

isomorphic to `1 and fundamental sequence ( f j)
∞
j=1 equivalent to the `1 basis.

To conclude, we now deduce that also (ej)
∞
j=1 is equivalent to the `1 basis (cf. [BeLa84,

Proposition I.5.5]). In fact, for scalars α1, . . . , αk we have∥∥∥∥∥ k

∑
i=1

αiei −
k

∑
i=1

αiek+i

∥∥∥∥∥ = lim

∥∥∥∥∥ k

∑
i=1

αixni −
k

∑
i=1

αixnk+i

∥∥∥∥∥ =
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lim

∥∥∥∥∥ k

∑
i=1

αi(xni − x)−
k

∑
i=1

αi(xnk+i − x)

∥∥∥∥∥ =

∥∥∥∥∥ k

∑
i=1

αi fi −
k

∑
i=1

αi fk+i

∥∥∥∥∥ > 2δ
k

∑
i=1
|αi|.

On the other hand, the invariance under spreading of (ej)
∞
j=1 yields∥∥∥∥∥ k

∑
i=1

αiei −
k

∑
i=1

αiek+i

∥∥∥∥∥ 6
∥∥∥∥∥ k

∑
i=1

αiei

∥∥∥∥∥+
∥∥∥∥∥ k

∑
i=1

αiek+i

∥∥∥∥∥ = 2

∥∥∥∥∥ k

∑
i=1

αiei

∥∥∥∥∥ ,

whence the conclusion follows from the boundedness of (ej)
∞
j=1. �

When we conbine the above result with Corollary 3.4.7, we immediately infer the
following corollary.

Corollary 3.4.14 ([HKR18, Corollary 5.7]). For every renorming |||·||| of Tsirelson’s space T
we have Ks((T, |||·|||)) = 2.

In particular, we have an example of a reflexive Banach space every whose renorm-
ing has symmetric Kottman constant equal to 2; this is the desired counterexample to
the question in [MaPa09].

The natural counterpart of the above results concerning `1 spreading models would
be that every Banach space with a spreading model isomorphic to c0 has symmetric
Kottman constant equal to 2. However, we do not know whether this analogue result
holds true, namely, the following problem is open to us.

Problem 3.4.15. Suppose that a Banach space X admits a spreading model isomorphic
to c0. Does it follow that Ks(X) = 2?

More in general, one go even further and ask whether the Kottman’s constant of a
Banach space is lower bounded by that of its spreading models, i.e., the following:

Problem 3.4.16. Let X be a Banach space and let Z be a spreading model of X. Is it true
that Ks(X) > Ks(Z)? Of course, the same question may be posed for K(·).

A positive answer to the above problems would, in particular, yield information on
the symmetric Kottman constant of the original Tsirelson’s space T∗, [Tsi74]; the proof
that the space constructed by Tsirelson is indeed isometric to the dual of T defined above
may be found in [CaSh89, p. 17]. In particular, we do not know if Corollary 3.4.14 can
be extended also to T∗:

Problem 3.4.17. Let ‖·‖ be an equivalent norm on the original Tsirelson’s space T∗. Is
Ks((T∗, ‖·‖)) = 2?

On the other hand, concerning the original norm ‖·‖T∗ of T∗ we have the following
simple observation, which was noted during a conversation with Pavlos Motakis.

Proposition 3.4.18. The unit sphere of T∗ contains a symmetrically 2-separated sequence.
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Proof. Let us denote by (ej)
∞
j=1 the canonical 1-unconditional basis of T and let (e∗j )

∞
j=1 be

the associated biorthogonal functionals. Notice that ‖e∗j ‖T∗ = 1, due to (ej)
∞
j=1 being 1-

unconditional. Notice, moreover, that for distinct indices i, j ∈N one has ‖ei± ej‖T = 1.
In fact, obviously, ‖ei ± ej‖T 6 2, whence (T) gives

‖ei ± ej‖T = max
{
‖ei ± ej‖c0 ,

1
2
‖ei ± ej‖T

}
= max

{
1,

1
2
‖ei ± ej‖T

}
= 1.

Consequently,
‖e∗i ± e∗j ‖T∗ > 〈e∗i ± e∗j , ei ± ej〉 = 2

and (e∗j )
∞
j=1 is the desired symmetrically 2-separated sequence. �

As it was apparent, the results concerning Tsirelson’s space T and its dual T∗ pre-
sented in this section are actually easy consequences of known results; on the other hand
Tsirelson’s space is a very important object in Banach space theory, which is therefore
natural to investigate. It is therefore quite surprising that these results were apparently
not recorded before in the literature, which motivated the project proposed in [GMZ16,
Problem 292].

3.4.3 Renormings and biorthogonal systems

In this short part, we observe that the problem of finding symmetrically (1+ ε)-separated
sequences of unit vectors is a much easier task if we allow renormings of the spaces un-
der investigation.

This phenomenon was already observed by Kottman ([Kot75, Theorem 7]), who
showed that every infinite-dimensional Banach space admits a renorming such that the
new unit sphere contains a 2-separated sequence. An inspection of his argument shows
that actually the resulting sequence is symmetrically 2-separated. We note in passing
that van Dulst and Pach ([vDPa81]) proved a stronger renorming result (with a signifi-
cantly more difficult proof) which also implies the same conclusion; however, we shall
not require this stronger result here. Let us present here a simple proof of this result.

Proposition 3.4.19 ([HKR18, Proposition 5.1]). Let (X, ‖·‖) be an infinite-dimensional Ba-
nach space. Then X admits an equivalent norm |||·||| such that S(X,|||·|||) contains a symmetrically
2-separated sequence.

Proof. By the main result in [Day62], X contains an Auerbach system {xi, fi}∞
i=1. Set

ν(x) := sup
i 6=k∈N

(|〈 fi, x〉|+ |〈 fk, x〉|)

and let us define
|||x||| = max{‖x‖, ν(x)} (x ∈ X).
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Then |||·||| is an equivalent norm on X as ‖x‖ 6 |||x||| 6 2‖x‖ (x ∈ X). From the biorthog-
onality we deduce that ν(xi) = 1, so |||xi||| = 1 (i ∈N). Moreover,∣∣∣∣∣∣xi ± xj

∣∣∣∣∣∣ > ν(xi ± xj) = 2 (i, j ∈N, i 6= j).

Hence, (xi)
∞
i=1 is a symmetrically 2-separated sequence in the unit sphere of (X, |||·|||).

�

A modification of the above renorming yields a new norm |||·||| that approximates
‖·‖ and such that the unit sphere of |||·||| contains a symmetrically (1 + ε)-separated
sequence. This shows how simple the symmetric version of the Elton–Odell theorem
would be if we were allowed to consider arbitrarily small perturbations of the original
norm.

Proposition 3.4.20 ([HKR18, Proposition 5.2]). Let (X, ‖·‖) be an infinite-dimensional Ba-
nach space. Then, for every ε > 0, X admits an equivalent norm |||·||| such that ‖·‖ 6 |||·||| 6
(1 + ε) ‖·‖ and S(X,|||·|||) contains an infinite symmetrically (1 + δ)-separated subset, for some
δ > 0.

In other words, for every infinite-dimensional Banach space, the set of all equivalent
norms for which the symmetric version of the Elton–Odell theorem is true is dense in
the set of all equivalent norms.

Proof. The very basic idea is that in the definition of ν we replace the sum of the two
terms by an approximation of their maximum. Clearly, we may assume that ε ∈ (0, 1)
(in which case we could actually choose δ = ε); we may then select a norm Φ on R2

with the following properties:
(i) ‖·‖∞ 6 Φ 6 (1 + ε) · ‖·‖∞;

(ii) Φ((1, 0)) = Φ((0, 1)) = 1;

(iii) Φ((1, 1)) = 1 + ε.
For example, one can choose

Φ((α, β)) := max
{
‖(α, β)‖∞, (1 + ε) · |α + β|

2

}
.

We also fix an Auerbach system {xi, fi}i∈N in X. Then we set

ν(x) := sup
i 6=k∈N

Φ(|〈 fi, x〉|, |〈 fk, x〉|) (x ∈ X)

and, exactly as above,
|||x||| = max{‖x‖, ν(x)} (x ∈ X).

Note that
ν(x) 6 (1 + ε) sup

i 6=k∈N

max{|〈 fi, x〉|, |〈 fk, x〉|} 6 (1 + ε)‖x‖,
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which immediately implies ‖·‖ 6 |||·||| 6 (1 + ε) ‖·‖.
Finally, from the biorthogonality we deduce that ν(xi) = 1 (i ∈ N) and ν(xi ± xj) =

1 + ε (i, j ∈ N, i 6= j). Hence, |||xi||| = 1 and
∣∣∣∣∣∣xi ± xj

∣∣∣∣∣∣ > 1 + ε for i 6= j. Consequently,
(xi)

∞
i=1 is a symmetrically (1+ ε)-separated sequence in the unit sphere of (X, |||·|||). �

We conclude this part with the following remark, in sharp contrast with Proposition
3.4.19. It belongs to obvious mathematical folklore, but it fits so well here, that we could
not resist the temptation of including it.

Remark 3.4.21. Every separable Banach space admits a strictly convex renorming (even
a locally uniformly rotund one; see, e.g., [FHHMZ10, Theorem 8.1]), so in particular the
unit sphere under such renorming contains no 2-separated sequences. Indeed, let X be
any Banach space and let x, y ∈ SX be linearly independent and 2-separated vectors.
Then x−y

2 , the midpoint of the non-trivial segment joining x and −y, is a point on the
unit sphere of X; hence it is a witness that X is not strictly convex.

The previous assertion is no longer true if the separability assumption is dropped.
In fact, Partington ([Par80, Theorem 1]) showed that, when Γ is uncountable, every
renorming of `∞(Γ) contains an isometric copy of `∞. In particular, the unit sphere of
every renorming of `∞(Γ) contains a 2-separated sequence.

A consequence of Partington’s result is obviously that, for Γ uncountable, `∞(Γ)
admits no strictly convex renorming. There actually exist examples of spaces with po-
tentially smaller density character, for example `∞/c0 ([Bou80]), that admit no strictly
convex renorming. (One has to bear in mind that the space `∞(Γ) has density character
equal to 2|Γ| as long as Γ is infinite, however it may happen that in some models of set
theory 2ℵ0 = 2|Γ| for all uncountable sets of cardinality less than the continuum.) This is
related to a question of A. Aviles ([GaKu11, Question 7.7]) of whether there exists, with-
out extra set-theoretic assumptions, a Banach space with density character ℵ1 which has
no strictly convex renorming. We may then ask the following related question.

Problem 3.4.22. Does there exist in ZFC a Banach space X with density character ℵ1
such that the unit sphere of every renorming of X contains a 2-separated sequence?

In conclusion to the chapter, we shall state one more question, concerning the ex-
tendability of the results of the present chapter to the context of complex Banach spaces.
If X is a complex normed space, we may naturally adjust the definition of symmetric
separation to encompass complex number of modulus 1. Thus, let us call a set A ⊂ X
(δ+)-toroidally separated (respectively, δ-toroidally separated) when for all distinct x, y ∈ A
and complex numbers θ with |θ| = 1 we have ‖x− θy‖ > δ (respectively, ‖x− θy‖ > δ).
A quick inspection of Delpech’s proof of the main theorem in [Del10] reveals that the
unit sphere of a complex asymptotically uniformly convex space contains a toroidally
(1+ ε)-separated sequence, for some ε > 0. Similarly, Theorem 3.4.3 has a natural coun-
terpart in the complex case for toroidally separated sequences. It is then reasonable to
ask whether the theorems of Kottman and Elton–Odell have such counterparts too.



Chapter 4

Uncountable separated sets

In the present chapter we shall investigate to what extent the results presented in Chap-
ter 3 may be improved in the context of non-separable Banach spaces, where it is natural
to investigate the existence of uncountable separated subsets of the unit ball. (Let us re-
call also here that finding such sets in the unit ball is equivalent to finding them in the
unit sphere, cf. Section 3.1.1.) Such a field of research has been subject of extensive study
in the last few years, most notably in the context of C(K)-spaces. In the first section of
the chapter we shall review the results present in the literature and state our main con-
tributions, comparing them with the status of the art. In the subsequent sections we
shall discuss the proofs of our results.

4.1 Overview

Over the last years, a renewed interest and a rapid progress in delineating the struc-
ture of both qualitative and quantitative properties of well-separated subsets of the unit
sphere of a Banach space have been observed. Perhaps the first spark was lit by Mer-
courakis and Vassiliadis [MeVa15] who have identified certain classes of compact Haus-
dorff spaces K for which the unit sphere of the Banach space C(K) of all scalar-valued
continuous functions on K contains an uncountable (1+)-separated set.

They also asked whether an ‘uncountable’ analogue of Kottman’s theorem, or even
the Elton–Odell theorem, is valid for every non-separable C(K)-space. One may thus
extrapolate Mercourakis’ and Vassiliadis’ question to the class of all non-separable Ba-
nach spaces and ask for the following ‘uncountable’ version of Kottman’s theorem.

Must the unit sphere of a non-separable Banach space contain
an uncountable (1+)-separated subset?

A partial motivation to support the validity of the above conjecture may be obtained
from Riesz’ lemma: in fact, transfinite iteration of Riesz’ argument immediately implies

129
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that, for every ε > 0, the unit ball of a non-separable Banach space X contains a (1− ε)-
separated subset of the maximal possible cardinality, namely dens X. In the case that X
is reflexive, the same argument produces a 1-separated subset of cardinality dens X.

A slight modification of the above argument, based on the Mazur technique of norm-
ing functionals instead of the Riesz one, also serves to produce a 1-separated subset of
the unit ball—in general, with a cardinality smaller than dens X. Since we shall make
extensive use of similar arguments in the chapter, let us record the very simple proof
here.

Lemma 4.1.1. The unit ball of every infinite-dimensional Banach space X contains a 1-separated
subset of cardinality w∗-dens X∗.

Proof. Let λ := w∗-dens X∗; we are going to find a 1-separated transfinite sequence
(xα)α<λ ⊆ SX. Assume, by transfinite induction, to have already found (xα)α<β for
some β < λ; select, for every α < β, a norming functional fα ∈ SX∗ with 〈 fα, xα〉 = 1.
The subspace Yβ = spanw∗{ fα}α<β ⊆ X∗, having w∗-density at most |β| < λ, is a proper
subspace. Consequently, span{ fα}α<β is not w∗-dense in X∗, hence it does not separate
points; this yields a vector xβ ∈ SX with 〈 fα, xβ〉 = 0 for α < β. Finally,

‖xα − xβ‖ > 〈 fα, xα − xβ〉 = 1.

�

Unfortunately, the answer to the above question in its full generality remains un-
known; in this section we shall discuss several attempts to solve it, leading to fairly
general results. Quite surprisingly, it is also unknown, at least to the best of our knowl-
edge, whether the unit ball of every Banach space contains a 1-separated subset whose
cardinality equals the density character of the underlying Banach space. Concerning the
latter problem, we are only aware of the above lemma and of the equally easy [CKV19,
Proposition 21], giving a positive answer for the class of C(K)-spaces (cf. Proposition
4.1.6).

On the other hand, it was already observed by Elton and Odell themselves [ElOd81]
that an ‘uncountable’ version of the Elton–Odell theorem is in general false, as wit-
nessed by the space c0(ω1). The argument is a surprisingly simple application of the ∆-
system lemma. We present it below, partially because of its simplicity, and more notably
since it is the simplest instance of a combinatorial argument in the study of separated
sets.

Proposition 4.1.2 ([ElOd81, p. 109]). Every (1 + ε)-separated subset of the unit ball of c0(Γ)
is at most countable.

Proof. Let us assume by contradiction that, for some ε > 0, the unit ball of c0(Γ) con-
tains an uncountable (1 + ε)-separated subset, say F . Of course, for every x ∈ F the
set N(x) := {γ ∈ Γ : |x(γ)| > ε/2} is a finite set; according to the ∆-system lemma,
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Lemma 2.1.12, we may deduce the existence of a finite set ∆ ⊆ Γ and of an uncountable
subfamily F0 ⊆ F such that N(x) ∩ N(y) = ∆ for distinct x, y ∈ F0.

Now, fix x 6= y ∈ F0 and γ ∈ Γ \∆; since γ /∈ N(x)∩N(y), we can assume for exam-
ple that |x(γ)| < ε/2. We infer that |y(γ)− x(γ)| 6 1 + ε/2, whence ‖(x− y)�Γ\∆‖ <
1 + ε. Of course, this implies ‖x�∆ − y�∆‖ > 1 + ε for every x 6= y ∈ F0, which means
that the family {x�∆}x∈F0 is a (1 + ε)-separated subset of the unit ball of `∞(∆). How-
ever, this is blatantly impossible, since `∞(∆) is finite-dimensional. �

In the light of the results of Chapter 3 concerning separation in separable Banach
spaces, the above-discussed problems also gained new natural ‘symmetric’ counter-
parts, where separation, that is the distance ‖x − y‖, is replaced with the symmetric
distance, i.e., ‖x± y‖.

The primary aim of this chapter is therefore to develop results concerning construc-
tions of as large separated subsets of the unit sphere of a Banach space as possible that
are moreover symmetrically separated sets, wherever possible. Let us mention that the
clause about symmetry is not the main issue in our results to be presented, since they
are sharper than the ones present in the literature, even when the symmetry assertion is
removed from them.

Before entering into the discussion of the results contained in the chapter, we shall
discuss what was already known concerning the main problem quoted above. Kania
and Kochanek answered this question affirmatively ([KaKo16, Theorem B]) for the class
of all non-separable C(K)-spaces as well as for all non-separable (quasi-)reflexive Ba-
nach spaces ([KaKo16, Theorem A(i)]). In the case that the Banach space X is addi-
tionally super-reflexive, they are even able to produce an uncountable (1+ ε)-separated
subset of BX, for some ε > 0, [KaKo16, Theorem A(ii)].

In the context of C(K)-spaces, Koszmider proved that an ‘uncountable’ version of
the Elton–Odell theorem for non-separable C(K)-spaces is independent of ZFC, [Kos18].
Interestingly, if the unit sphere of a C(K)-space contains a (1 + ε)-separated subset for
some ε > 0, then it also contains a 2-separated subset of the same cardinality, [MeVa15,
Theorem 1]. Very recently, Cúth, Kurka, and Vejnar [CKV19] improved significantly
[KaKo16, Theorem B] by identifying a very broad class of C(K)-spaces whose unit
spheres contain (1+)-separated (or even 2-separated) subsets of the maximal possible
cardinality, thereby giving many sufficient conditions for the solution to the ‘tantalising
problem’ whether the unit ball of every C(K) space contains a (1+)-separated subset of
the maximal possible cardinality, [KaKo16, p. 40].

The results of this chapter will not proceed in the direction of a more complete un-
derstanding of separated subsets of the unit ball of a C(K)-space; however, since many
results appeared in the recent years, we shall give a more detailed survey of this area in
Section 4.1.1.

Our results will be of two different, and in a sense antipodal, natures. In the former
part we shall exploit combinatorial methods and obtain results under minimal assump-
tions on the underlying Banach space. In the second part, on the other hand, we shall
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present a geometric approach and give several sufficient conditions, both of geometric
and topological nature, for carrying over such approach.

Our first main result consists in understanding the fact that Auerbach systems can be
profitably exploited to approach the problem of the existence of (1+)-separated subsets
of the unit sphere; this allows us to deduce that, for large enough Banach spaces, the
main question has a positive answer indeed. In the particular case where the underlying
Banach space X is moreover weakly Lindelöf determined (WLD), we are able to obtain
a better relation between the density character of the space X and the cardinality of the
(1+)-separated subset of the unit sphere.

It turns out–perhaps surprisingly–that under the present assumptions it is not pos-
sible to strengthen the results and obtain either (1+)-separated families of unit vec-
tors, with cardinality larger than ω1, or uncountable (1 + ε)-separated families. We
have already mentioned that the unit sphere of c0(ω1) does not contain uncountable
(1 + ε)-separated subsets. Koszmider noticed that every (1+)-separated subset in the
unit sphere of c0(Γ) has cardinality at most continuum ([KaKo16, Proposition 4.13]). We
optimise this result by actually decreasing the continuum to ω1, which shows that even
for rather well-behaved and very large spaces the size of (1+)-separated subsets of the
sphere may be relatively small.

Let us then present our first main result formally.

Theorem 4.1.3 ([HKR••, Theorem A]).
(i) Let X be a Banach space with w∗-dens X∗ > exp2 c. Then both X and X∗ contain

uncountable symmetrically (1+)-separated families of unit vectors.

(ii) Let X be a WLD Banach space with dens X > c. Then the unit spheres of X and of X∗

contain uncountable symmetrically (1+)-separated subsets.

(iii) Furthermore, if X = c0(Γ), then every (1+)-separated subset of Sc0(Γ) has cardinality at
most ω1.

The proof of Theorem 4.1.3 will be presented in Section 4.2; in particular the first two
parts are obtained as Corollary 4.2.3 and 4.2.4, while the last assertion is Theorem 4.2.9.
In the same section we shall also present some results of isomorphic nature, concerning
the existence of equivalent norms whose unit balls contain uncountable (1+)-separated
subsets.

Clause (ii) in the above theorem generalises [KaKo16, Theorem A(iii)], where the
result is only proved for X∗, under the same assumptions; part of the argument given
there consists in showing that X contains an Auerbach system of cardinality dens X.
However it was brought to the attention of the authors of [KaKo16] by Marek Cúth
quite rightly that the proof contains a gap, namely that it is not clear why the system
constructed in the proof of [KaKo16, Theorem 3.8] is biorthogonal—the existence of a
gap in that claim is also a consequence of our Theorem 2.1.11. Therefore, we can also
understand the second clause of Theorem 4.1.3 as a remedy to this problem, together
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with an improvement of the result, by exhibiting the sought (1+)-separated subset both
in SX, and in SX∗ .

In the second part of the chapter, we turn our attention to some strong structural
constrains on the space, which allow construction of potentially larger separated subsets
of the unit sphere. For example, we strengthen considerably [KaKo16, Theorem A(i)]
by proving the existence of a symmetrically (1+)-separated set in the unit sphere of
every (quasi-)reflexive space X that has the maximal possible cardinality, that is, the
cardinality equal to dens X, the density of the underlying Banach space. Moreover,
we also show the existence, for some ε > 0, of an uncountable symmetrically (1 + ε)-
separated subset of BX.

When X is a super-reflexive space, we improve [KaKo16, Theorem A(ii)] by exhibit-
ing a symmetrically (1 + ε)-separated set in the unit sphere of X that also has the maxi-
mal possible cardinality—this answers a question raised by T. Kochanek and T. Kania,
[KaKo16, Remark 3.7]. Let us then present our result formally.

Theorem 4.1.4 ([HKR••, Theorem B]). Let X be an infinite-dimensional, (quasi-)reflexive
Banach space. Then,

(i) SX contains a symmetrically (1+)-separated subset with cardinality dens X;

(ii) for every cardinal number κ 6 dens X with uncountable cofinality there exist ε > 0 and
a symmetrically (1 + ε)-separated subset of SX of cardinality κ;

(iii) if X is super-reflexive, there exist ε > 0 and a symmetrically (1 + ε)-separated subset of
SX of cardinality dens X.

Quite remarkably, Theorem 4.1.4 involves properties that are preserved by isomor-
phisms, not only isometries, of Banach spaces. Let us also immediately note that clause
(ii) is optimal, as it was observed in [KaKo16, Remark 3.7]; we shall prove this in detail
in Proposition 4.5.1.

Let us also recall that a Banach space X is quasi-reflexive whenever the canonical
image of X in its bidual X∗∗ has finite codimension. The proof of Theorem 4.1.4 will
be presented in Sections 4.3, 4.4, 4.5; in particular, the first clause is Theorem 4.3.1, the
second one is contained in Corollary 4.4.3 and the last part will be discussed in Section
4.5. In the same sections, we shall also present several further results whose proofs
follow similar patterns; in particular, we shall also prove a generalisation of the first
two parts of the theorem to the class of Banach spaces with the RNP.

In conclusion to this part, let us give a more precise comparison between Theorem
4.1.4 and the existing literature, in particular [KaKo16, Theorem A]. The first improve-
ment contained in our result consists in finding a (1+)-separated set in the unit ball
of every non-separable reflexive Banach space of cardinality dens X, instead of merely
an uncountable set. Moreover, Theorem 4.1.4(ii) is precisely [KaKo16, Theorem A(ii)],
with reflexivity replacing super-reflexivity; notice, in particular, that [KaKo16, Theorem
A] gives no information whatsoever on the existence of uncountable (1 + ε)-separated
sets in the unit ball of a reflexive Banach space. A third improvement is given by the
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technique of the proof: the proofs of (i) and (ii) in [KaKo16, Theorem A] are based on
completely different ideas and are both quite non-trivial. On the other hand, we are able
to deduce both (i) and (ii) of our result from the same method of proof, which is more-
over based on a simpler idea. The last improvement, aside from the clause concerning
symmetric separation, is the optimal result for super-reflexive spaces, that we already
mentioned above.

4.1.1 C(K)-spaces

In this section we are going to review some results concerning separated sets and equi-
lateral sets in Banach spaces of the form C(K); we shall also give selected proofs to illus-
trate a few techniques. All the results have been obtained in one of the aforementioned
papers [MeVa15, KaKo16, Kos18, CKV19].

In the context of separable C(K) spaces, namely for metrisable K, it is well known
and easy that C(K) contains an isometric copy of c0, whenever K is an infinite com-
pact (see, e.g., [AlKa06, Proposition 4.3.11]). As a consequence, the unit ball of C(K)
contains a 2-separated, hence equilateral, sequence. Therefore, we shall only consider
non-metrisable (Hausdorff) compacta in this section, even with no explicit reference.

We shall start with a well-known topological description of the density character of
a C(K)-space; we also sketch its proof, for the sake of completeness. Let us recall that
the weight of a compact space K, denoted w(K), is the minimal cardinality of a basis for
the topology of K.

Fact 4.1.5.

dens C(K) = w(K) = min{|F| : F ⊆ C(K) separates points on K}.

Proof. If the family F separates points on K, then the algebra it generates has density
character at most |F | and it is dense in C(K), in light of the Stone–Weierstrass theorem
(cf. [Con90, Theorem V.8.1]). Conversely, if F is dense in C(K), it is easily seen by
Urysohn’s lemma ([Rud87, Lemma 2.12]) that F separates points on K; this shows the
equality between the first and third cardinal numbers.

Moreover, ifF is dense in C(K) andO is a countable basis for the topology of R, then
the collection of open sets B := { f−1(O) : f ∈ F , O ∈ O} is a basis for the topology of K
and |B| 6 |F |. In fact, let us select a non-empty open set V in K and x ∈ V and choose
x ∈ V; we may also find a function ϕ ∈ C(K) such that ϕ(x) = 1 and ϕ(y) = −1 on V{.
If O ∈ O is a small neighbourhood of 1 in R and f ∈ F is sufficiently close to ϕ, then
f−1(O) ∈ B satisfies x ∈ f−1(O) ⊆ V. It follows that w(K) 6 dens C(K).

For the converse inequality, assume that B is a basis for the topology of K; for every
finite covering {U1, . . . , Un} ⊆ B of K, select a partition of the unity {ϕ1, . . . , ϕn} subor-
dinated to the covering. It is then standard to verify that the collection comprising all
the functions ϕ obtained in this way is linearly dense in C(K) and its cardinality does
not exceed |B|. This implies dens C(K) 6 w(K), thereby concluding the proof. �
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As an immediate application, let us show that the unit ball of every C(K)-space
contains a 1-separated subset of the maximal possible cardinality; the argument is the
simplest instance of a maximality argument which turns out to be very profitable in this
context.

Proposition 4.1.6 ([CKV19, Proposition 21]). For every infinite compact K, the unit ball of
C(K) contains a 1-separated set of cardinality w(K).

Proof. Let F be a maximal (with respect to inclusion) 1-separated subset of BC(K); if
|F | < w(K), then F does not separate points and therefore there exist distinct x, y ∈ K
such that f (x) = f (y) whenever f ∈ F . If ϕ ∈ C(K) satisfies ϕ(x) = 1, ϕ(y) = −1, then
F ∪ {ϕ} is 1-separated, a contradiction. �

We shall now turn our attention to the existence of (1 + ε) separated subsets of
the unit ball and we first show their surprising correlation with equilateral sets; this
equivalence passes through the notion of a linked family, which was also introduced
in [MeVa15]. Let us recall that a subset A of a metric space (M, d) is λ-equilateral if
d(x, y) = λ for distinct x, y ∈ A.

Definition 4.1.7 ([MeVa15, Definition 2.1]). Let S be a set and F := {(Aα, Bα)}α∈I be a
collection of pairs of subsets of S. F is linked (or intersecting) if:

(i) Aα ∩ Bα = ∅ for α ∈ I;

(ii) for distinct α, β ∈ I, either Aα ∩ Bβ 6= ∅ or Aβ ∩ Bα 6= ∅;

Note that (ii) implies Aα ∪ Bα 6= ∅; moreover, the conditions easily imply Aα 6= Aβ

and Bα 6= Bβ whenever α 6= β. In turn, it follows that at most one set Aα (and at
most one Bα) is empty; as an example where this happens, the family {(∅, S), (S, ∅)} is
clearly linked.

The following trivial fact illustrates the relation with equilateral sets in C(K); we
shall denote B+

C(K) the positive part of the unit ball, i.e., B+
C(K) = { f ∈ BC(K) : f > 0}.

Fact 4.1.8. Let S ⊆ B+
C(K) and consider the sets A f := { f = 0} and B f := { f = 1}, for f ∈ S.

Then the family {(A f , B f )} f∈S is linked if and only if S is 1-equilateral.

Proof. For distinct f , g ∈ S, the condition A f ∩ Bg 6= ∅ or Ag ∩ B f 6= ∅ means that there
is a point x ∈ K such that either f (x) = 0 and g(x) = 1 or f (x) = 1 and g(x) = 0. Since
0 6 f (x), g(x) 6 1, this condition is equivalent to ‖ f − g‖ = 1. �

We are now ready for the aforementioned equivalence between equilateral sets and
(1 + ε)-separated sets; we shall also offer its proof.

Theorem 4.1.9 ([MeVa15, Theorem 2.6]). For a compact topological space K and a cardinal
number λ, the following are equivalent:

(i) B+
C(K) contains a 1-equilateral set of cardinality λ;
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(ii) BC(K) contains a 2-equilateral set of cardinality λ;

(iii) BC(K) contains a (1 + ε)-separated set of cardinality λ;

(iv) there exists a linked family of closed subsets of K, with size λ.

Proof. The implication (i) =⇒ (iv) is part of the previous fact, since the sets A f and B f
are closed.

Let us now assume (iv) and select a linked family {(Aα, Bα)}α∈I consisting of closed
sets. For every α ∈ I, an appeal to Urysohn’s lemma allows us to select a continuous
function fα ∈ B+

C(K) such that fα = 1 on Bα and fα = 0 on Aα (in the case Aα = ∅,
we may just consider fα = 1 and analogously for Bα = ∅). The family {(Aα, Bα)}α∈I
being linked, for every distinct α, β ∈ I we conclude the existence of x ∈ K such that
x ∈ (Aα ∩ Bβ)∪ (Aβ ∩ Bα). In either cases, we conclude | fα(x)− fβ(x)| = 1, whence the
collection { fα}α∈I is 1-equilateral. This proves (iv) =⇒ (i).

If we proceed analogously with functions gα such that gα = −1 on Aα, we also see
that (iv) =⇒ (ii). (ii) =⇒ (iii) being trivial, we only need to show that (iii) =⇒ (iv).

Assume that the set S ⊆ BC(K) is (1+ ε)-separated and consider the mutually disjoint
and closed sets A f := { f 6 −ε} and B f := { f > ε}. Since ‖ f − g‖ > 1 + ε for distinct
f , g ∈ S, we may find x ∈ K such that | f (x)− g(x)| > 1+ ε and we may assume without
loss of generality that f (x) > g(x). Consequently, we have 1 + ε 6 f (x) − g(x) 6
1− g(x), whence g(x) 6 −ε. Analogously, f (x) > ε, which implies that {(A f , B f )} f∈S
is a linked family of closed sets and concludes the proof. �

We may now proceed to give several sufficient conditions on K for the Banach space
C(K) to contain an uncountable 2-equilateral subset in its unit ball. Those conditions
have been obtained in the papers [MeVa15, KaKo16] independently. We start with a
few topological notions.

Definition 4.1.10. A topological space T is Lindelöf if every open covering of T admits a
countable subcovering. T is hereditarily Lindelöf if every its subspace is Lindelöf. Finally,
a topological space T is perfectly normal if every its closed subset is a Gδ set.

Note that if every open subset of a topological space T is Lindelöf, then T is heredi-
tarily Lindelöf. In case of compact topological spaces, we have the following standard
characterisation of hereditary Lindelöf spaces.

Fact 4.1.11. For a compact topological space K, the following are equivalent:
(i) K is perfectly normal;

(ii) for every open set U ⊆ K there exists (a non-negative) f ∈ C(K) with U = { f > 0};
(iii) K is hereditarily Lindelöf;

(iv) there exists no uncountable right separated family, that is, a family (xα)α<ω1 ⊆ K such
that xα /∈ {xβ}α<β<ω1 (α < ω1).
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Proof. Assume that K is perfectly normal and let U be an open subset of K; by assump-
tion we may write U = ∪Fn, where each Fn is a closed subset of K. Let ϕn : K → [0, 1] be
a continuous function such that ϕn = 1 on Fn and ϕn = 0 on U{. The function ∑ 2−n ϕn
then witnesses that (i) =⇒ (ii).

For the converse implication, we just have to note that { f > 0} = ∪{ f > 1/n} is Fσ.
Assume now that K is hereditarily Lindelöf and let U be an open subset of K. By

the regularity of K ([Rud87, Theorem 2.7]), for every x ∈ U there exists an open set Ux
with x ∈ Ux and Ux ⊆ U. U being Lindelöf, we may find a countable subcover for the
covering {Ux}x∈U; in other words, we have a countable collection of open sets (Un)∞

n=1
such that U = ∪Un and Un ⊆ U. Consequently, U = ∪Un is Fσ and (i) follows.

Conversely, for (i) =⇒ (iii), let A be any subset of K and {Oα}α∈I be a collection
of open subsets of K that covers A. By assumption, ∪Oα is Fσ, whence we may find
closed subsets {Fn}∞

n=1 of K such that ∪Oα = ∪Fn. By compactness of Fn, we may find
a countable subset I0 of I such that ∪Fn = ∪α∈I0Oα. Therefore, {Oα}α∈I0 is the desired
countable subcover of A.

Assume, next, that K is not hereditarily Lindelöf and choose a subspace Z of K and
an open covering O of Z with no countable subcover. By transfinite induction, it is
immediate to find open sets (Oα)α<ω1 ⊆ O and points (zα)α<ω1 ⊆ Z such that zα ∈ Oα

and zβ /∈ Oα whenever α < β < ω1. We infer that (zβ)α<β<ω1 ∩ Oα = ∅, whence
zα /∈ {zβ}α<β<ω1 .

Finally, if (zα)α<ω1 ⊆ K is an uncountable right-separated family, by the very defini-
tion (zβ)α<β<ω1 is a closed subset of Z := {zα}α<ω1 ; therefore, Uα := {zβ}β6α is an open
subset of Z. Evidently, {Uα}α<ω1 is an open covering of Z that admits no countable
subcover. �

Remark 4.1.12. Let us note that the equivalences (i) ⇐⇒ (ii) and (iii) ⇐⇒ (iv) are actu-
ally true for every topological space X, with no compactness assumption. The above
fact should be understood as the claim that hereditary Lindelöf and perfectly normal
are equivalent notions for compact topological spaces, the other clauses being reformu-
lations of the definitions. A similar argument also proves that a topological space T is
hereditarily separable if and only if it admits no uncountable left-separated family, i.e., a
family (xα)α<ω1 ⊆ T such that xβ /∈ {xα}α<β (β < ω1).

Theorem 4.1.13 ([MeVa15], [KaKo16]). The unit ball of the Banach space C(K) contains
an uncountable 2-equilateral set, provided the compact K satisfies at least one of the following
conditions:

1. K is not hereditarily separable;

2. K is not hereditarily Lindelöf;

3. K contains a non-metrisable, totally disconnected subspace;

4. |K| > c;
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5. K carries a measure µ such that L1(µ) is non-separable;

6. K is a Rosenthal compact.

We shall not give a complete proof of this result, we restrict ourselves to indicate the
simplest arguments. Assume that K is not hereditarily separable, and let (xα)α<ω1 ⊆ K
be an uncountable left-separated family. In light of Urysohn’s lemma, for every β < ω1,
we may find a continuous function ϕβ : K → [−1, 1] such that ϕβ(xβ) = 1 and ϕβ(xα) =
−1, whenever α < ω1. The family {ϕβ}β<ω1 is then 2-equilateral; essentially the same
argument also proves 2. These two parts are proved both in [MeVa15, Theorem 2.9] and
[KaKo16, Proposition 4.3], with the above argument.

3. is also immediate: assume that L ⊆ K is non-metrisable and totally disconnected
and let {Uα}α∈I be a basis for the topology of L consisting of clopen sets. Then the family
of continuous functions {χUα − χL\Uα

}α∈I in an uncountable 2-equilateral set in the unit
ball of C(L) (note that w(L) 6 |I| is uncountable, as L is non-metrisable). According to
the Tietze–Urysohn extension theorem ([Eng89, Theorem 2.1.8]), we obtain the desired
2-equilateral set in the unit ball of C(K).

4. follows from 2. and the classical Arkhangel’skiı̆’s inequality [Ark69] (see also
[Rud75, p. 7]), according to which every compact first countable topological space has
cardinality at most continuum. In fact, one can show that every hereditarily Lindelöf
compact is first countable; for further details, we refer to [MeVa15, Theorem 2.9(iv)], or
the proof of [CKV19, Theorem 7(ii)].

The last clauses are [MeVa15, Theorem 2.9(v)] and [KaKo16, Proposition 4.7] respec-
tively.

Remark 4.1.14. Very recently, Cúth, Kurka and Vejnar [CKV19] have substantially im-
proved the above results in the direction of finding sufficient conditions on K for the
existence of a 2-equilateral subset of BC(K) of the maximal possible cardinality w(K).
We shall not enter the discussion of all the results here, but we shall restrict ourselves to
give the flavor of some their results.

By generalising one above argument, it is easy to see that if there exists a subset A of
K with dens A > w(K), then BC(K) contains a 2-equilateral subset of cardinality w(K).
This is shown to be the case [CKV19, Corollary 8] if either K is a Valdivia compact or
w(K) is a strong limit cardinal.

Further sufficient conditions are shown to be that K is homogeneous, continuous im-
age of {0, 1}κ for some cardinal κ (i.e., dyadic), or homeomorphic to L× L, to a compact
convex subset in a locally convex space, or to a compact line ([CKV19, §3]). Some of
these results follow from the interesting result ([CKV19, Theorem 9]) that the unit ball
of C(K× {0, 1}) always contains a 2-equilateral subset of cardinality w(K).

The extensive amount of sufficient conditions for the existence of an uncountable 2-
equilateral set in the unit ball of C(K) may lead to the conjecture that such sets ought to
exist in every non-separable C(K)-space. However, as we already mentioned, Koszmider
[Kos18] proved that the answer to the above problem is undecidable in ZFC. In particu-
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lar, one his result consists in a positive answer to the conjecture, subject to the assump-
tion of Martin’s Axiom and the negation of the Continuum Hypothesis.

We shall present this surprisingly simple argument below; the main observation it is
built on is that linked families of closed pairs are antichains in a natural partially ordered
set, which was already considered before, e.g., in [Kos99]. Therefore, the existence of no
uncountable linked family of closed pairs implies that such partially ordered set has the
countable chain condition, which allows for the use of Martin’s Axiom; for a review of
Martin’s Axiom, we refer to Section 2.4.1 and the references therein.

Theorem 4.1.15 ([Kos18, Theorem 5.2], MAω1). The unit ball of every non-separable C(K)-
space contains an uncountable 2-equilateral subset.

Proof. Fix a non-metrisable compact Hausdorff topological space K; we first note that
we may assume w(K) = ω1. In fact, if X is a closed sub-∗-algebra of C(K), with
dens X = ω1, then X is a C(L)-space, in light of the Gelfand–Naimark theorem (cf.
[Rud91, Theorem 11.18]). Alternatively, L can be identified with a quotient of K, see
[Con90, Exercise 4, p. 148]. According to 2. of Theorem 4.1.13, we may also assume that
K is perfectly normal.

Let us now fix a basis B for the topology of K such that |B| = ω1; up to enlarging it
(but keeping its cardinality fixed), we can assume that B is closed under finite unions,
i.e., U ∪V ∈ B whenever U, V ∈ B. Let us now consider the poset

P :=
{

p = (Up, Vp) : Up, Vp ∈ B, Up ∩Vp = ∅
}

endowed with the partial order p 6 q iff Up ⊇ Uq and Vp ⊇ Vq. Since B is closed
under finite unions, elements p, q ∈ P are compatible iff (Up ∪ Uq, Vp ∪ Vq) ∈ P, i.e.,
Up ∪Uq ∩ Vp ∪Vq = ∅, that is, Up ∩ Vq = ∅ = Uq ∩ Vp. Consequently, p, q ∈ P are
incompatible if and only iff {(Up, Vp), (Uq, Vq)} is a linked family of closed pairs; we
conclude from Theorem 4.1.9 that the existence of an uncountable 2-equilateral set in
BC(K) is equivalent to the existence of an uncountable antichain in P. Therefore, we
only need to show that P is not ccc.

To conclude, assume by contradiction that P is ccc; MAω1 and Theorem 2.4.29 yield
that P is also σ-centred. We may therefore write P = ∪Pn, where each Pn is a centred
set; in particular, Up ∩ Vq = ∅ = Uq ∩ Vp whenever p, q ∈ Pn. We deduce that (for
every n ∈ N) the sets Un := ∪p∈PnUp and Vn := ∪p∈PnVp are disjoint open sets and the
complete regularity of K implies the existence of continuous functions ϕn : K → [−1, 1]
such that Un = {ϕn > 0} and Vn = {ϕn < 0}. Finally, for distinct x, y ∈ K, there
exists (U, V) ∈ P such that x ∈ U and y ∈ V; if n ∈ N is such that (U, V) ∈ Pn, we
infer that ϕn(x) > 0 > ϕn(y). Therefore, the sequence (ϕn)∞

n=1 separates points on K, a
contradiction. �

On the other hand, the main result in [Kos18] consists in showing the relative consis-
tency with ZFC of the existence of a non-separable C(K) space whose unit ball contains
no uncountable equilateral set. We shall not discuss the techniques involved in the
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proof, and we shall refer to the very clearly explained argument in [Kos18]; in particu-
lar, the forcing argument is postponed to the last part of the proof §4 thereby allowing
readers not familiar with forcing to grasp most of the proof.

Let us now highlight some open problems which arise from Koszmider’s work, most
of which are raised by the author himself. Firstly, the main result of the paper provides
the first example of a non-separable Banach space which contains no uncountable equi-
lateral set. It is not known if, outside the class of C(K) spaces, it is possible to find
an absolute such example; this important problem has also been recorded in [GMZ16,
Problem 293]. In this connection, let us also mention Terenzi’s wonderful example of a
renorming of `1 without infinite equilateral sets, [Ter89]; we shall take a small detour
and prove such a gem below, in Theorem 4.1.17.

It follows from results of Todorcevic [Tod06] and Mercourakis and Vassiliadis [MeVa14]
that consistently every non-separable Banach space admits a renorming that contains
an uncountable equilateral set; also see the discussion preceding Corollary 4.2.6. It is
an open problem whether there consistently exist a non-separable Banach space whose
no renorming has uncountable equilateral sets; in particular, it is not known if such
phenomenon is possible for a C(K)-space.

Let us close with one more problem, in the class of C(K)-spaces formulated in [MeVa15,
Remark 2.10]; its negative answer would be a result in the same line of Theorem 4.1.9.

Problem 4.1.16. Does there exist a consistent example of a C(K)-space that contains un-
countable equilateral subsets, but whose unit ball contains no uncountable 2-equilateral
set?

We shall next digress a bit and prove Terenzi’s result.

Theorem 4.1.17 ([Ter89]). There exists a renorming of `1 that contains no infinite equilateral
set.

Proof. Let |||·||| be a renorming of `1 such that (`1, |||·|||) is strictly convex and

(∗) lim sup
n→∞

|||xn + x||| = lim sup
n→∞

|||xn|||+ |||x|||

whenever x ∈ `1 and (xn)∞
n=1 ⊆ `1 converges to 0 coordinatewise. We claim that

(`1, |||·|||) contains no infinite equilateral set. In fact, if by contradiction (xn)∞
n=1 is a

1-equilateral sequence, up to a subsequence we may assume that (xn)∞
n=1 admits a co-

ordinatewise limit; up to subtracting this limit, we can additionally assume (xn)∞
n=1 to

be coordinatewise null. Therefore, for every n ∈N we have

1 = lim sup
k→∞

|||xk − xn||| = lim sup
k→∞

|||xk|||+ |||xn|||;

this implies that (|||xn|||)∞
n=1 is a constant sequence and in turn yields |||xn||| = 1/2 (n ∈

N). The strict convexity of |||·||| and |||xn − xk||| = 1 for distinct n, k ∈ N then imply
xn = −xk (n 6= k), an obvious contradiction.
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In order to conclude the argument, we thus only need to give one example of a norm
with the above two properties. For x = (x(n))∞

n=1 ∈ `1, consider

|||x||| :=
∞

∑
n=1
|x(n)|+

(
∞

∑
n=1

2−n · |x(n)|2
)1/2

;

the strict convexity is an obvious consequence of Day’s lemma, [Day55, (3) p. 518].
Finally, the verification of (∗) is an immediate application of a sliding hump argument,
combined with the fact—due to the 2−n factor—that the second summand in |||xn||| tends
to 0, whenever (xn)∞

n=1 is a bounded coordinatewise null sequence. �

In the last part to this section, we shall focus our attention to the existence of an
uncountable (1+)-separated subset of the unit ball of C(K), the results discussed so far
giving a strong evidence for a positive answer to the conjecture (formulated in [MeVa15,
Question 2.7]) whether the unit ball of every non-separable C(K)-space contains an un-
countable (1+)-separated subset.

The conjecture has indeed been given a positive answer in [KaKo16, Theorem B]; in
combination with clause 2. of Theorem 4.1.13, it is sufficient to consider the case where
K is perfectly normal. The simpler proof we shall present below–one more instance
of a maximality argument–is based on the elaboration given in the proof of [CKV19,
Theorem 6].

Theorem 4.1.18 ([KaKo16, Theorem 4.11]). If K is a perfectly normal compact, the unit ball
of C(K) contains a (1+)-separated subset of cardinality w(K).

Proof. Given a function f ∈ C(K), we shall say that a real value t is a local maximum for
f if there exists a point x ∈ K such that f (x) = t and x is a point of local maximum for f .
We shall use the following version of Urysohn’s lemma for perfectly normal compacta.
Claim 4.1.19 (cf. [KaKo16, Lemma 4.10]). If x, y are distinct points of K, there exists a
continuous function f : K → [−1, 1] such that f (x) = 1, f = −1 in a neighbourhood of
y and 0 is not a local maximum for f .

Proof of the claim. According to Urysohn’s lemma and the regularity of K, we may find
a continuous ϕ : K → [−1, 1] such that ϕ(x) = 1 and ϕ = −1 in some open neighbour-
hood of y. If x ∈ K is any point of local maximum for ϕ with ϕ(x) = 0, select an open
neighbourhood Ux of x such that −1/2 6 ϕ 6 0 on Ux. Denote by U the union of all
such sets Ux and find a continuous function ψ : K → [−1/2, 0] which is strictly negative
on U and vanishes elsewhere.

We shall prove that f := ϕ + ψ is the desired function; the fact that f keeps the
same properties as ϕ is clear, since −1/2 6 ϕ 6 0 on U and ψ vanishes elsewhere.
Assume now that x ∈ K satisfies f (x) = 0; note that f < 0 on U, so x /∈ U. As a
consequence of this, we also obtain ϕ(x) = 0. In light of the fact that x is not a point of
local maximum for ϕ, for every neighbourhood V of x there exists a point t ∈ V with
ϕ(t) > 0. Necessarily, t /∈ U, which implies ψ(t) = 0, whence f (t) > 0; this shows that
x is not a point of local maximum for f and proves the claim. �
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Let us now take a maximal (1+)-separated subset F of the unit ball of C(K) such
that 0 is a local maximum of no f ∈ F . We shall prove that |F | = w(K); if this were not
the case, then F would not separate points, hence there would exist distinct x, y ∈ K
with f (x) = f (y) whenever f ∈ F . Letting ϕ be any function as in the above claim, the
set F ∪ {ϕ} would also be (1+)-separated, a contradiction.

Finally, let us check that F ∪ {ϕ} is (1+)-separated. If f ∈ F satisfies f (x) = f (y) 6=
0, then clearly ‖ f − ϕ‖ > 1. Otherwise, let U be an open neighbourhood of y where
ϕ = −1; since y is not a point of local maximum for f , there exists t ∈ U with f (t) > 0.
Consequently, ‖ f − ϕ‖ > | f (t)− ϕ(t)| = f (t) + 1 > 1, and we are done. �

As we hinted at above, this argument is taken from [CKV19, Theorem 6], where a
more general result is also proved; this more general statement reads as follows.

Theorem 4.1.20 ([CKV19, Theorem 6]). For every compact space K the unit ball of C(K)
contains either a (1+)-separated subset of cardinality w(K) or a 2-equilateral set of cardinality
c.

In the particular case where w(K) 6 c, we conclude that the unit ball of C(K) con-
tains a (1+)-separated subset of the maximal possible cardinality. This is, indeed, a gen-
eralisation of [KaKo16, Theorem 4.11], since perfectly normal compacta are fist count-
able, hence they have cardinality at most continuum, as we already mentioned above.

Let us also mention that it is still not known whether the above results can be ex-
tended to cover all non-metrisable compacta, i.e., whether the unit ball of every C(K)-
space contains a (1+)-separated subset of cardinality w(K). Of course, several further
sufficient conditions are the results in [CKV19], some of which we described in Remark
4.1.14.

Sketch of the proof. Consider the following property (which was inspired by the argu-
ment in [KaKo16]):
(KK): For distinct x, y ∈ K, there exists a continuous function f : K → [−1, 1] such that
f (x) = 1, f = −1 in a neighbourhood of y and 0 is not a local maximum for f .

In the case that (KK) holds, then we argue exactly as in the proof of the previous
theorem—note that, in this notation, Claim 4.1.19 just means that every perfectly normal
compact satisfies (KK).

In the other case, select two distinct points x, y ∈ K that witness the failure of (KK)
and let f ∈ BC(K) be any function such that f (x) = 1 and f = −1 in a neighbourhood
of y. By the negation of (KK), 0 is a local maximum for f ; moreover, every t ∈ (−1, 1) is
easily seen to be a local maximum for f —just consider φ ◦ f , where φ : [−1, 1]→ [−1, 1]
is a strictly increasing function such that φ(−1) = −1, φ(1) = 1 and φ(t) = 0.

Consequently, for every t ∈ (−1, 1) there exists a point of local maximum xt for f ,
with f (xt) = t. It is easy to deduce that the family (xt)−1<t<1 is right-separated, whence
the existence of a 2-equilateral subset of cardinality continuum follows. �
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4.2 Combinatorial analysis

In this section we shall start our investigation of uncountable separated families of unit
vectors by means of a combinatorial approach, in particular we wish to obtain results
that depend only on the density character of a given Banach space and, possibly, on
no its specific geometric property. In its first part, we shall give quite general sufficient
conditions that depend on the existence of suitable coordinate systems, while in the
second part we analise the spaces of the form c0(Γ). In all the section, we shall frequently
use some of the combinatorial results that were recalled in Section 2.1.2.

4.2.1 The rôle of Auerbach systems

The main goal of the section is to see how to use Auerbach systems or, more generally,
biorthogonal systems for the construction of separated families of unit vectors. There-
fore, in the first part of the section we shall also make use of the general results about
the existence of Auerbach systems that were proved in Chapter 2.

Having those general results at our disposal, we first give a basic proposition show-
ing how to obtain separated families of unit vectors starting from a long Auerbach sys-
tem.

Proposition 4.2.1 ([HKR••, Proposition 3.4]). Suppose that the Banach space X contains an
Auerbach system of cardinality c+. Then both SX and SX∗ contain an uncountable symmetri-
cally (1+)-separated subset.

Proof. Clearly, if {eγ; ϕγ}γ∈Γ is an Auerbach system in X, then we can consider {ϕγ; eγ}γ∈Γ
as an Auerbach system in X∗; consequently, it suffices to prove the result for X. Let
therefore {eα; ϕα}α<c+ be an Auerbach system in X and consider the following colour-
ing c : [c+]2 → {(>;>), (>;6), (6)}:

{α, β} 7→


(>;>) ‖eα − eβ‖ > 1, ‖eα + eβ‖ > 1
(>;6) ‖eα − eβ‖ > 1, ‖eα + eβ‖ 6 1
(6) ‖eα − eβ‖ 6 1.

The Erdős–Rado theorem assures us of the validity of c+ → (ω1)
2
3, whence the colouring

c admits a monochromatic set Λ ⊆ c+ with cardinality ω1. Let us, for notational simplic-
ity, well order the set Λ in an ω1-sequence, thereby obtaining an ω1-sequence (eα)α<ω1

of unit vectors (with the corresponding norm-one biorthogonal functionals (ϕα)α<ω1)
with the property that either ‖eα − eβ‖ > 1, ‖eα + eβ‖ > 1 for distinct α, β < ω1, or
‖eα − eβ‖ > 1, ‖eα + eβ‖ 6 1 for every such α, β, or finally ‖eα − eβ‖ 6 1 for such α, β.
In the first case, the family {eα}α∈Λ is obviously symmetrically (1+)-separated, and we
are done.

In the second case, where ‖eα − eβ‖ > 1 and ‖eα + eβ‖ 6 1 for distinct α, β < ω1, we
consider, for 1 6 α < ω1 the vector

ẽα := e0 + eα.
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Our assumption evidently implies that these are, indeed, unit vectors. Moreover, for
distinct 1 6 α, β < ω1 we have

‖ẽα − ẽβ‖ = ‖eα − eβ‖ > 1

‖ẽα + ẽβ‖ = ‖2e0 + eα + eβ‖ > 〈ϕ0, 2e0 + eα + eβ〉 = 2,

whence the vectors {ẽα}16α<ω1 are symmetrically (1+)-separated.
Finally, let us consider the case where ‖eα − eβ‖ 6 1 whenever α, β < ω1 (regardless

of the value of ‖eα + eβ‖). We may then modify the vectors eα as follows: for 1 6 α < ω1,
we set

ẽα := eα − ∑
γ<α

cγ
α eγ,

where {cγ
α}γ<α is a collection of positive real numbers such that, for 1 6 α < ω1, c0

α >
3/4 and ∑γ<α cγ

α = 1 (such collections do exist since the set {γ : γ < α} is countable).
Let us first observe that this modification does not change the norm of the vectors:

indeed, on the one hand

‖ẽα‖ =
∥∥∥∥∥∑

γ<α

cγ
α eα − ∑

γ<α

cγ
α eγ

∥∥∥∥∥ 6 ∑
γ<α

cγ
α‖eα − eγ‖ 6 1;

on the other hand, 〈ϕα, ẽα〉 = 〈ϕα, eα〉 = 1. Consequently, ẽα ∈ SX.
Finally, the family {ẽα}16α<ω1 is symmetrically (1+)-separated. Indeed, for any

choice 1 6 α < β < ω1, we have

‖ẽα − ẽβ‖ > 〈ϕα, ẽα − ẽβ〉 = 〈ϕα, eα〉 −
〈

ϕα, eβ − ∑
γ<β

cγ
βeγ

〉
= 1 + cα

β > 1,

‖ẽα + ẽβ‖ > |〈ϕ0, ẽα + ẽβ〉| = |c0
α + c0

β| > 3/2.

�

Remark 4.2.2. It is perhaps worth observing that the above proof also yields us an alter-
native, shorter proof of the symmetric version of Kottman’s theorem, Theorem 3.1.11
(although the argument there is self-contained and contains no combinatorial features).
Indeed, it is sufficient to replace the use of the Erdős–Rado theorem with Ramsey’s theo-
rem, in the form ω → (ω)2

3, and remember that every infinite-dimensional Banach space
contains an infinite Auerbach system, [Day62]. The argument then proceeds identically,
with only obvious notational modifications.

Let us note explicitly that, though the above argument is definitely not hard, it is not
possible to find more clever proofs that suffice to provide stronger results; in particular,
it is not possible to obtain a larger (1+)-separated set, just assuming the existence of a
larger Auerbach system. This is in light of the result–that we already mentioned–that



4.2. COMBINATORIAL ANALYSIS 145

every (1+)-separated family in c0(Γ) has cardinality at most ω1, regardless of the set Γ
(cf. Theorem 4.2.9).

If we combine this proposition with Theorem 2.2.1 and Theorem 2.2.3 respectively,
concerning the existence of Auerbach systems, we immediately arrive at the following
results. For the proof of the second one, we just need to observe that c+, being a succes-
sor cardinal, is regular (cf. [Jec03, Corollary 5.3]).

Corollary 4.2.3 ([HKR••, Corollary 3.5]). Let X be a Banach space with w∗-dens X∗ >
exp2 c. Then both X and X∗ contain uncountable symmetrically (1+)-separated families of
unit vectors.

In particular, the unit sphere of every Banach space X with dens X > exp3 c contains an
uncountable symmetrically (1+)-separated subset.

Corollary 4.2.4 ([HKR••, Corollary 3.6]). Let X be a WLD Banach space with dens X >
c. Then the unit spheres of X and of X∗ contain uncountable symmetrically (1+)-separated
subsets.

In the second part of this section, we shall present a few, much simpler, renorming
results, which also depend on the existence of Auerbach systems (or, more generally,
biorthogonal systems). Those results are the non-separable counterparts to Section 3.4.3,
with essentially the same proofs.

In this context, we should also mention that Mercourakis and Vassiliadis have been
able to show that the existence of an uncountable biorthogonal system allows for the
existence of an uncountable equilateral set, under a renorming of the space, [MeVa14,
Theorem 3]. It is to be noted that the notion of an equilateral set is a finer notion than
the one of a separated set and the corresponding existence results are typically more
difficult; to grasp an idea of some such difficulties, let us refer, among others, to the pa-
pers [FOSS14, Kos18, MeVa14, MeVa15, Ter87, Ter89]. The results that we shall present
below–though analogous and somewhat simpler–are not direct consequences of those
in [MeVa14]. On the other hand, our first result to be presented below also proves the
existence of a 2-equilateral set, with a simpler renorming than [MeVa14, Corollary 1].

Recall that a biorthogonal system {xi; fi}i∈I in X is said to be bounded if

sup
i∈I
‖xi‖ · ‖ fi‖ < ∞.

Of course, up to a scaling, we can always assume that the system is normalised, i.e., such
that ‖xi‖ = 1 (i ∈ I).

Proposition 4.2.5 ([HKR••, Proposition 3.7]). Let (X, ‖·‖) be a Banach space that contains a
bounded biorthogonal system {xi; fi}i∈I . Then there exists an equivalent norm |||·||| on X such
that S(X,|||·|||) contains a symmetrically 2-separated subset with cardinality |I|. In particular,
{xi}i∈I is such a set.
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The proof is the same as in Proposition 3.4.19, and it is therefore omitted. Let us just
mention that the norm |||·||| can be explicitly defined as

|||x||| = max

{
sup

i 6=k∈I

(∣∣〈 fi, x〉
∣∣+ ∣∣〈 fk, x〉

∣∣) , ‖x‖
}

(x ∈ X)

and that the above renorming was already present in the proof of [Kot75, Theorem 7].
Note that, if {xi; fi}i∈I is a biorthogonal system and |I| has uncountable cofinality,

we can pass to a subsystem with the same cardinality and which is bounded. In fact the
sets In := {i ∈ I : ‖xi‖ · ‖ fi‖ 6 n} satisfy ∪∞

n=1 In = I; hence, for some n ∈ N, we have
|In| = |I| and, of course, {xi; fi}i∈In is a bounded biorthogonal system.

We can now combine these simple observations with deep results concerning the ex-
istence of uncountable biorthogonal systems in non-separable Banach spaces. In his fun-
damental work [Tod06], Todorc̆ević has proved the consistency with ZFC of the claim
that every non-separable Banach space admits an uncountable biorthogonal system,
proving in particular the result under Martin’s Maximum (MM) ([Tod06, Corollary 7]).

Let us mention–even if not strictly needed–that under suitable additional set theo-
retic assumptions there exist non-separable Banach spaces with no uncountable biorthog-
onal systems. The first such example, under (CH), is due to Kunen (unpublished)
and appeared later in the survey [Neg84]; other published results, under ♣ and ♦
respectively, are [Ost76, She85]. We also refer to [HMVZ08, Section 4.4] for a mod-
ification, suggested by Todorc̆ević, of the argument in [Ost76]. Let us also refer to
[FaGo88, FiGo89, GoTa82, Laz81, Ste75, Tod06], or [HMVZ08, Section 4.3], for some
absolute (ZFC) results. These results combined with the above renorming argument
give, in particular, the existence of a renorming whose unit sphere contains an un-
countable symmetrically 2-separated subset for quite large classes of Banach spaces.
Moreover, Todorc̆ević’s result yields that such a class may consistently consist of every
non-separable Banach space.

Corollary 4.2.6. It is consistent with ZFC that every non-separable Banach space X admits
an equivalent norm |||·||| such that S(X,|||·|||) contains an uncountable symmetrically 2-separated
subset.

In the particular case that the biorthogonal system is an Auerbach system, we can
specialise the above renorming and obtain an approximation of the original norm.

Proposition 4.2.7 ([HKR••, Proposition 3.9]). Assume that a Banach space (X, ‖·‖) contains
an Auerbach system {xi, fi}i∈I . Then, for every ε > 0, X admits an equivalent norm |||·||| such
that ‖·‖ 6 |||·||| 6 (1 + ε) ‖·‖ and (for some δ > 0) S(X,|||·|||) contains a symmetrically (1 + δ)-
separated subset with cardinality |I|.

4.2.2 c0(Γ) spaces

In this part we shall investigate the existence of separated families of unit vectors in
spaces of the form c0(Γ). Such spaces are natural candidates for investigation since they



4.2. COMBINATORIAL ANALYSIS 147

constitute the archetypal examples of spaces which fail to contain uncountable (1 + ε)-
separated families of unit vectors. This was already pointed out by Elton and Odell
([ElOd81, Remark (2)]); the very simple proof is also recorded in [KaKo16, Proposition
2.1] (cf. Proposition 4.1.2). On the other hand, it was noted in [GlMe15, Remark (2),
p. 558] that, for uncountable Γ, the unit sphere of c0(Γ) contains an uncountable (1+)-
separated subset; it even contains an uncountable symmetrically (1+)-separated subset.
The very quick argument is also included here.

Example 4.2.8. For every uncountable set Γ, c0(Γ) contains an uncountable symmetri-
cally (1+)-separated family of unit vectors.

Of course, it suffices to prove the claim for Γ = ω1. For 1 6 α < ω1, we choose a unit
vector xα ∈ c0(ω1) such that

xα(λ) =


1 λ = 0, α

< 0 1 6 λ < α

0 α < λ < ω1;

such a choice is indeed possible since, for α < ω1, the set {λ : 1 6 λ < α} is at most
countable. It is obvious that the family (xα)16α<ω1 is symmetrically (1+)-separated,
since, for 1 6 α < β < ω1, we have ‖xα − xβ‖ > |xα(α)− xβ(α)| = 1− xβ(α) > 1 and
‖xα + xβ‖ > |xα(0) + xβ(0)| = 2.

Our next result shows that the above obvious construction can not be improved,
as every (1+)-separated family of unit vectors in a c0(Γ) space has cardinality at most
ω1. This result improves an observation due to P. Koszmider (see [KaKo16, Proposition
4.13]). Just as the assertion about (1 + ε)-separation, the proof exploits the ∆-system
lemma.

Theorem 4.2.9 ([HKR••, Theorem 3.11]). Let A ⊆ Sc0(Γ) be a (1+)-separated set. Then
|A| 6 ω1.

Proof. The assertion is trivially true for |Γ| 6 ω1; on the other hand, if |Γ| > ω2 and
the unit sphere of c0(Γ) contains a (1+)-separated family of cardinality ω2, then the
union of the supports of those vectors is a set with cardinality at most ω2; therefore, we
would find a (1+)-separated family with cardinality ω2 in the unit sphere of c0(ω2).
Consequently, we may without loss of generality restrict our attention to the case Γ =
ω2.

Assume, in search for a contradiction, that the unit sphere of c0(ω2) contains a subset
{xα}α<ω2 such that ‖xα − xβ‖ > 1 for every choice of distinct α, β < ω2. For α < ω2,
consider the finite sets Nα := {|xα| > 1/2}, where {|xα| > 1/2} is a shorthand for the
set {γ < ω2 : |xα(γ)| > 1/2}. The ∆-system lemma allows us to assume (up to passing
to a subset that still has cardinality ω2) that there is a finite subset ∆ of ω2 such that
Nα ∩ Nβ = ∆ whenever α 6= β; moreover, using again the regularity of ω2, we can also
assume that all the Nα’s have the same (finite) cardinality. Since ∆ is a finite set, the unit
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ball of `∞(∆) ⊆ c0(ω2) is compact and it can be covered by finitely many balls of radius
1/2; also, xα�∆ ∈ B`∞(∆) for every α. These two facts imply that there is a subset Ω of
ω2, still with cardinality ω2, such that all xα�∆’s (α ∈ Ω) lie in the same ball; in other
words, up to passing to a further subset, we can assume that, for every α, β < ω2, we
have ‖xα�∆ − xβ�∆‖ 6 1.

Let us summarise what we have obtained so far. If, by contradiction, the conclusion
of the theorem is false, then there is a (1+)-separated subset {xα}α<ω2 of Sc0(ω2) such
that the following hold true:

(i) there is a finite set ∆ ⊆ ω2 with Nα ∩ Nβ = ∆ for distinct α, β < ω2;

(ii) the sets Nα have the same finite cardinality;

(iii) ‖xα�∆ − xβ�∆‖ 6 1 for every α, β < ω2.

We will show that these properties lead to a contradiction. According to (i), we
may write Nα = ∆ ∪ Ñα, where Ñα ⊆ ω2 \ ∆ and the sets Ñα are mutually disjoint.
Moreover, by (ii), they also have the same finite cardinality, say k; let us then write
Ñα = {λα

1 , . . . , λα
k}with λα

1 < λα
2 < · · · < λα

k < ω2. The disjointness of the Ñα’s forces in
particular λα

1 6= λ
β
1 for α 6= β and this in turn implies

sup
α<ω2

λα
1 = ω2. (4.2.1)

We then consider the set ∪α<ω1suppxα; such a set has cardinality at most ω1, so its
supremum is necessarily strictly smaller than ω2. Therefore, combining this information
and (4.2.1), we infer that there exists an ordinal β < ω2 such that

sup

( ⋃
α<ω1

suppxα

)
< λ

β
1 ;

in particular, this implies that Ñβ ∩ suppxα = ∅ for every α < ω1. Moreover, the set
{0 < |xβ| < 1/2} is of course countable, whence it can intersect at most countably many
of the disjoint sets {Ñα}α<ω1 . Consequently, we can find an ordinal α < ω1 such that
{0 < |xβ| < 1/2} ∩ Ñα = ∅ too. In order to understand where the supports of those xα

and xβ could possibly intersect, we note that for every γ we have the disjoint union

supp xγ = ∆ ∪
(

Ñγ ∪ {0 < |xγ| < 1/2}
)

.

Therefore, using our previous choices of β and α, we obtain:

suppxα ∩ suppxβ = ∆ ∪
((

Ñα ∪ {0 < |xα| < 1/2}
)
∩
(

Ñβ ∪ {0 < |xβ| < 1/2}
))

= ∆ ∪
(
{0 < |xα| < 1/2} ∩ {0 < |xβ| < 1/2}

)
.

Finally, for every γ ∈ {0 < |xα| < 1/2} ∩ {0 < |xβ| < 1/2} it is obvious that we have
|xα(γ)− xβ(γ)| 6 1; consequently, the condition ‖xα − xβ‖ > 1 can only be witnessed
by coordinates from ∆, i.e., ‖xα�∆− xβ�∆‖ > 1; however, this readily contradicts (iii). �
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Remark 4.2.10. Let us notice in passing that if we consider the spaces c00(Γ), then every
(1+)-separated family of unit vectors is actually at most countable; this is also pointed
out in [GlMe15, Remark (2), p. 558] and it immediately follows from the ∆-system
lemma exactly as in [ElOd81, Remark (2)].

The results mentioned so far in this section draw a complete picture about separated
families of unit vectors in c0(Γ) spaces; we therefore conclude this section presenting
some results concerning renormings of those spaces.

Proposition 4.2.7 in the previous section applies in particular to the canonical basis
of c0(Γ); consequently, the canonical norm ‖·‖∞ on c0(Γ) can be approximated by norms
whose unit spheres contain (for some ε > 0) symmetrically (1 + ε)-separated subsets of
cardinality |Γ|. If we combine this result with James’ non distortion theorem, we obtain
the approximation of every equivalent norm on c0(Γ). Before we proceed, a historical
remark about the non-separable counterparts of James’ theorems is in order.

Remark 4.2.11. It was communicated to us by W. B. Johnson that the non-separable ana-
logue of both James’ non-distortion theorems were known to the experts immediately
after the paper of James [Jam64a] had been published. At the beginning of this century,
A. S. Granero being unaware of this situation, circulated a note containing the proofs of
these theorems ([Gra]). It seems that the first published proof of non-separable versions
of James’s non-distortion theorems may be found in [HáNo18, Theorem 3].

Proposition 4.2.12 ([HKR••, Proposition 3.14]). Every equivalent norm on c0(Γ) can be
approximated by norms whose unit spheres contain (for some δ > 0) symmetrically (1 + δ)-
separated subsets of cardinality |Γ|.

Proof. Let ‖·‖ be any equivalent norm on c0(Γ) and fix ε > 0. By the non-separable ver-
sion of James’ non-distortion theorem, there exists a subspace Y of c0(Γ), with dens(Y) =
|Γ|, such that Y is ε-isometric to (c0(Γ), ‖·‖∞). Let T : (Y, ‖·‖)→ (c0(Γ), ‖·‖∞) be a linear
isomorphism witnessing this fact; in particular, we may assume that ‖T‖ 6 1 + ε and
‖T−1‖ 6 1. According to Proposition 4.2.7, we can choose a norm ν on (c0(Γ), ‖·‖∞)
with ‖·‖∞ 6 ν 6 (1 + ε) ‖·‖∞ and such that S(c0(Γ),ν) contains (for some δ > 0) a sym-
metrically (1 + δ)-separated family of cardinality |Γ|.

Consider a new norm on Y given by y 7→ ν(Ty) (y ∈ Y); since

‖y‖ 6 ‖Ty‖∞ 6 ν(Ty) 6 (1 + ε)‖Ty‖∞ 6 (1 + ε)2‖y‖,

it is well known that we can extend the norm ν ◦ T to a norm |||·||| defined on (c0(Γ), ‖·‖)
and still satisfying ‖·‖ 6 |||·||| 6 (1 + ε)2 ‖·‖. Finally, T is an isometry from (Y, |||·|||)
onto (c0(Γ), ν), whence the unit sphere of (c0(Γ), |||·|||) contains a symmetrically (1+ δ)-
separated family of cardinality |Γ|. �

Remark 4.2.13. Let us note in passing that, by a very similar argument, the unit sphere
of every equivalent norm on `1(Γ) contains (for some ε > 0) a symmetrically (1 + ε)-
separated family of cardinality |Γ|.
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In the last result for this section we provide a sufficient condition for a renorming
of c0(Γ) to contain an uncountable (1+)-separated family of unit vectors; the argument
elaborates over the proof of Proposition 4.2.1. Further sufficient conditions will follow
from some results from Section 4.3.

Let Γ be any set and ‖·‖ be a norm on c0(Γ) (not necessarily equivalent to the canon-
ical ‖·‖∞ norm of c0(Γ)). We say that ‖·‖ is a lattice norm if ‖x‖ 6 ‖y‖ for every pair
of vectors x, y ∈ c0(Γ) such that |x(γ)| 6 |y(γ)| for each γ ∈ Γ. In other words, ‖·‖
is a lattice norm if (c0(Γ), ‖·‖) is a normed lattice when endowed with the canonical
coordinate-wise partial ordering. Accordingly, in what follows we shall denote by |x|
the element defined by |x|(γ) := |x(γ)| (γ ∈ Γ).

Proposition 4.2.14 ([HKR••, Proposition 3.16]). Let Γ be an uncountable set and ‖·‖ be a
(not necessarily equivalent) lattice norm on c0(Γ). Then the unit sphere of (c0(Γ), ‖·‖) contains
an uncountable (1+)-separated subset.

Proof. It is sufficient to prove the result for Γ = ω1. Let us denote by eα (α < ω1) the α-th
element of the canonical basis, i.e., eα(γ) := δα,γ; we also denote by ẽα the unit vector
ẽα := eα/‖eα‖. We may now choose, for every β < ω1, real numbers (cα

β)α<β subject to
the following three conditions:

(i) cα
β > 0 for each α < β;

(ii) cα
β > 0 if and only if ‖ẽα − ẽβ‖ 6 1;

(iii) if cα
β > 0 for some α < β, then ∑γ<β cγ

β = 1.

Observe that condition (iii) could be equivalently stated as the requirement ∑α<β cα
β to

equal either 0 or 1; note, further, that (ii) implies cα
β · ‖ẽα − ẽβ‖ 6 cα

β for each α < β.

We are now in position to define vectors fβ ∈ c0(ω1) (β < ω1) as follows:

fβ := ẽβ − ∑
α<β

cα
β ẽα.

We readily verify that ‖ fβ‖ = 1. In fact, if ∑α<β cα
β = 0, then fβ = ẽβ and there is nothing

to prove. In the other case, i.e., ∑α<β cα
β = 1, we have, according to (ii),

‖ fβ‖ =
∥∥∥∥∥∑

α<β

cα
β ẽβ − ∑

α<β

cα
β ẽα

∥∥∥∥∥ 6 ∑
α<β

cα
β‖ẽβ − ẽα‖ 6 ∑

α<β

cα
β = 1.

On the other hand, | fβ| > |ẽβ|, whence ‖ fβ‖ = 1 follows from the lattice property.
To conclude, we prove that the vectors ( fα)α<ω1 are (1+)-separated. Given α <

β < ω1, we distinguish two cases. If cα
β = 0, then by our previous choice we have

‖ẽα− ẽβ‖ > 1. Moreover, | fα− fβ| > |ẽα− ẽβ| and the lattice property imply ‖ fα− fβ‖ >
‖ẽα − ẽβ‖ > 1. On the other hand, if cα

β > 0, we note that | fα − fβ| > |(1 + cα
β)ẽα|;

consequently, exploiting once more the lattice property, we conclude that ‖ fα − fβ‖ >
‖(1 + cα

β)ẽα‖ = 1 + cα
β > 1. �
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Remark 4.2.15. Concerning lattice norms, we would like to point out here the validity of
the analogous result for lattice norms on the space C([0, ω1]). Inspection of the proof of
[FHZ97, Proposition 2] shows that if ‖·‖ is any (not necessarily equivalent) lattice norm
on C([0, ω1]), then (C([0, ω1]), ‖·‖) contains an isometric copy of (c0(ω1), ‖·‖∞). Con-
sequently, the unit sphere of (C([0, ω1]), ‖·‖) contains an uncountable (1+)-separated
subset.

4.3 Exposed points and (1+)-separation

In the present section we shall be concerned with the proof of clause (i) in Theorem
4.1.4; the argument will depend on rather powerful results concerning the notion of an
exposed point (which we shall record below), whence the title of this section. We will
also present an abstract and more general result, whose proof follows an analogous pat-
tern, and show some its consequences. The material also allows for natural analogues
concerning (1 + ε)-separation, that will be discussed in the next section.

Let X be a Banach space and let C ⊆ X be a non-empty, closed, convex and bounded
set. A point x ∈ C is an exposed point for C if there is a functional ϕ ∈ X∗ such that
〈ϕ, y〉 < 〈ϕ, x〉 for every y ∈ C, y 6= x. In other words, ϕ attains its supremum over C
at the point x and only at that point. In such a case, we also say that the functional ϕ
exposes the point x. x ∈ C is a strongly exposed point for C if there is a functional ϕ ∈ X∗

that exposes x and with the property that yn → x for every sequence (yn)∞
n=1 in C such

that 〈ϕ, yn〉 → 〈ϕ, x〉. In such a case, we shall say that ϕ strongly exposes the point x.
Of course, every strongly exposed point is an exposed point and it is immediate to

check that every exposed point is an extreme point. By a result of Lindenstrauss and
Troyanski ([Lin63, Tro71] see, e.g., [FHHMZ10, Theorem 8.13]), every weakly compact
convex set in a Banach space is the closed convex hull of its strongly exposed points. We
shall use the immediate consequence that every non-empty weakly compact convex set
in a Banach space admits an exposed point.

Theorem 4.3.1 ([HKR••, Theorem 4.1]). Let X be an infinite-dimensional, reflexive Banach
space. Then the unit sphere of X contains a symmetrically (1+)-separated subset of cardinality
dens X.

An important result for the structure of quasi-reflexive Banach spaces is the fact that
every quasi-reflexive Banach space X contains a reflexive subspace Y with the same
density character as X. For non-separable X this was proved in [CiHo57, Theorem
4.6], while the assertion in the separable case follows from some results by Johnson
and Rosenthal (cf. [JoRo72, Corollary IV.1]). Consequently, the above result implies
assertion (i) in Theorem 4.1.4.

Proof. Let X be an infinite-dimensional, reflexive Banach space and set λ = dens X. Ac-
cording to the result by Lindenstrauss and Troyanski quoted above, the weakly compact
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set BX contains an exposed point x1; we can then choose a functional ϕ1 ∈ X∗ that ex-
poses x1 (and we let X1 := X for notational consistency). Needless to say, the subspace
X2 := ker ϕ1 ⊆ X1 is a reflexive Banach space, whence BX2 is a weakly compact subset
of X. Consequently, we can choose an exposed point x2 ∈ BX2 and a functional ϕ2 ∈ X∗

that exposes x2. We now proceed by transfinite induction. Assume, for some β < λ, to
have already found closed subspaces (Xα)α<β of X, unit vectors (xα)α<β and functionals
(ϕα)α<β such that for each α < β:

(i) Xα =
⋂

γ<α ker ϕγ;

(ii) xα ∈ Xα is an exposed point for BXα in X and the functional ϕα ∈ X∗ exposes xα.
Consider the closed subspace Xβ :=

⋂
α<β ker ϕα. The reflexivity of X implies that

w∗-dens X∗ = dens X = λ > |β|, whence the linear span of the family {ϕα}α<β can not
be w∗-dense in X∗. Consequently, {ϕα}α<β does not separate points on X and Xβ does
not reduce to the zero vector. Moreover, BXβ

is a weakly compact subset of X, hence it
admits an exposed point xβ, exposed by ϕβ ∈ X∗. The fact that Xβ 6= {0} ensures us
that xβ is a unit vector. This completes the inductive step and shows the existence of
families of closed subspaces (Xα)α<λ of X, unit vectors (xα)α<λ and functionals (ϕα)α<λ

with the two properties above.
In conclusion, we show that the family (xα)α<λ is symmetrically (1+)-separated: if

α < β < λ, by construction xβ ∈ Xβ ⊆ ker ϕα, so 〈ϕα, xα ± xβ〉 = 〈ϕα, xα〉. Since ϕα

exposes xα, this last equality implies that xα± xβ /∈ BXα . But of course xα± xβ ∈ Xα and
consequently ‖xα ± xβ‖ > 1, thus concluding the proof. �

It is perhaps clear that the above reasoning can be adapted to more general spaces,
notably spaces with the RNP. However, instead of giving various related results with
similar proofs, we prefer to present an abstract version of the present reasoning, which
subsumes many concrete examples. We then present concrete consequences of this gen-
eral theorem.

Definition 4.3.2. An infinite-dimensional Banach space (X, ‖·‖) is said to admit the point
with small flatness property (shortly, PSF) if there exist x ∈ SX and a closed subspace Y of
X, with dim(X/Y) < ∞, such that ‖x + y‖ > 1 for every unit vector y ∈ SY. In symbols,

X has PSF whenever:

{
∃x ∈ SX, ∃Y ⊆ X closed subspace, with dim(X/Y) < ∞ :
∀y ∈ SY ‖x + y‖ > 1.

This notion is inspired from condition (�) in the proof of Theorem 3.1.11. We are
going to see in a moment various examples of spaces with property (PSF), therefore it is
perhaps worth including here an example of a Banach space failing this property.

Example 4.3.3. The space X = c0(ω1) is an easy example of a space failing (PSF). Indeed,
fix arbitrarily x ∈ SX and a finite-codimensional closed subspace Y of X. For α < ω1,
we denote by X>α the closed subspace of X consisting of all vectors whose support is
contained in [α + 1, ω1). Of course, there exists an ordinal α < ω1 such that supp x 6 α
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and, moreover, Y ∩ X>α is a finite-codimensional subspace of X>α. In particular, if we
choose y ∈ Y∩X>α with ‖y‖ = 1, x and y are disjointly supported, whence ‖x+ y‖ = 1.

Let us also mention that there exists examples of separable Banach spaces that fail
(PSF). In particular, it is possible to show that the space c0 does not satisfy property
(PSF). The proof of this claim is similar to the one above, together with some linear
algebra calculations, similar to the argument in [Bog••, Theorem 2.1]; for the sake of
completeness, we shall present it below.

Fact 4.3.4. The space c0 does not have property (PSF).

Proof. Fix x ∈ c0, ‖x‖ = 1 and let Y be a finite-codimensional subspace of c0. Let us
select a finite collection of linear functionals z1, . . . , zn ∈ `1 such that Y = ker z1 ∩ · · · ∩
ker zk; we can clearly assume that such functionals are linearly independent. Let us fix
N ∈ N such that |x(j)| 6 1/2 for every j > N; since we shall construct a vector y ∈ SY
with supp(y) > N, we can also assume that the vectors z1�[N,∞), . . . , zn�[N,∞) are linearly
independent. It is then easy, e.g., by the Gauß reduction method, to find n columns, say
with indices N 6 k1 < · · · < kn, such that the matrixz1(k1) . . . z1(kn)

...
...

zn(k1) . . . zn(kn)


is non singular. Since the vectors z1, . . . , zn are in `1, it is possible to find kn+1 ∈N with
kn+1 > kn such that the unique solution to the linear systemz1(k1) . . . z1(kn)

...
...

zn(k1) . . . zn(kn)

 ·
y(k1)

...
y(kn)

 = sgn(x(kn+1))

z1(kn+1)
...

zn(kn+1)


has all coordinates bounded by 1/2 in absolute value. Here, we use the convention that
sgn(0) = 1. Therefore, setting y(kn+1) := −sgn(x(kn+1)), it is clear that the vector

y :=
n+1

∑
j=1

y(k j)ekj ∈ c0

satisfies 〈zj, y〉 = 0 (j = 1, . . . , n), hence y ∈ Y. Our construction also assures that
|y(k j)| 6 1/2 (j = 1, . . . , n) and |y(kn+1)| = 1, whence ‖y‖ = 1. Finally, |y(k j)+ x(k j)| 6
|y(k j)| + |x(k j)| 6 1 (j = 1, . . . , n) and also |y(kn+1) + x(kn+1)| 6 1 follows from our
previous choice. Consequently, ‖x + y‖ 6 1 and we are done. �

Our general result now reads as follows.

Theorem 4.3.5 ([HKR••, Theorem 4.4]). Let X be an infinite-dimensional Banach space such
that every infinite-dimensional subspace X̃ of X has (PSF). Then SX contains a symmetrically
(1+)-separated subset with cardinality w∗-dens X∗.
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Proof. Let λ := w∗-dens X∗. If λ = ω, then the result is contained in Theorem 3.1.11, so
we assume λ > ω. We shall construct by transfinite induction a family of unit vectors
(xα)α<λ ⊆ SX and a decreasing family of closed subspaces (Hα)α<λ of X such that, for
every α < λ:

(i) ‖xα + y‖ > 1 for every y ∈ SHα ;

(ii) xβ ∈ Hα for α < β < λ;

(iii) dim((∩β<αHβ)/Hα) < ∞ for every α < λ.
Condition (iii) is a technical condition that we need for the inductive procedure to con-
tinue until λ; it implies in particular that dim(X/H0) < ∞ and dim(Hα/Hα+1) < ∞ for
each α < λ. Once such a family is constructed, for α < β < λ we have±xβ ∈ Hα, by (ii).
From (i) we conclude that ‖xα ± xβ‖ > 1, whence the family (xα)α<λ is symmetrically
(1+)-separated.

Before entering the construction of those families, we note the following: if condition
(iii) is satisfied for every α < γ, then ∩α<γHα is the intersection of at most max{|γ|, ω}
kernels of functionals from X, i.e., w∗-dens((X/ ∩α<γ Hα)∗) 6 max{|γ|, ω}.

The proof of this is also based on a simple transfinite induction argument: assuming
the statement to be true for every α < δ (where δ < γ), if δ = δ′+ 1 is a successor ordinal,
then of course ∩α<δHα = Hδ′ . Consequently, the facts that ∩α<δ′Hα is the intersection
of at most max{|δ′|, ω} kernels of functionals and that dim((∩α<δ′Hα)/Hδ′) < ∞ imply
the desired assertion for ∩α<δHα. If δ is a limit ordinal, then ∩α<δHα = ∩β<δ(∩α<βHα)
and each ∩α<βHα is the intersection of at most max{|β|, ω} 6 |δ| kernels of functionals;
hence the same is true for ∩α<δHα.

We now turn to the construction of the families (xα)α<λ and (Hα)α<λ with the desired
properties. Assume by transfinite induction to have already found such elements for
every α < γ, where γ < λ. From the above observation, we infer that

w∗-dens (X/
⋂

α<γ

Hα)
∗ 6 max{|γ|, ω} < λ

and this readily implies that w∗-dens((∩α<γHα)∗) = λ 1. In particular, ∩α<γHα (is
infinite-dimensional, hence it) has property (PSF) and we can thus find a unit vector
xγ ∈ ∩α<γHα and a finite-codimensional subspace Hγ of∩α<γHα such that ‖xγ + y‖ > 1
for every y ∈ SHγ . It is then clear that properties (i)–(iii) are satisfied with such a choice;
therefore, the transfinite induction step is complete and we are done. �

We shall now pass to discuss some concrete situations where the above theorem
applies.

1Indeed, it is a standard fact that, for a closed subspace Y of a Banach space X,

w∗-dens X∗ 6 max {w∗-dens Y∗, w∗-dens (X/Y)∗} .

Let us stress that equality may fail to hold, as witnessed by the fact that `2(c) is a quotient of `1(c), yet
w∗-dens `1(c)

∗ = ω and w∗-dens `2(c)
∗ = c.
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Definition 4.3.6. Let X be a normed space and F be a non-empty subset of SX. We say
that F is a face of BX if there exists a functional ϕ ∈ SX∗ such that F = BX ∩ {〈ϕ, ·〉 = 1}.

Note that if SX contains a face F with diam(F) < 1, then X has (PSF). In fact, let
ϕ ∈ SX∗ be such that F = BX ∩ {〈ϕ, ·〉 = 1} and choose any x ∈ F. Then, for every
y ∈ Y := ker ϕ with ‖y‖ = 1 we have ‖x + y‖ > 1 (otherwise, x + y ∈ F, whence
diam(F) > ‖(x + y)− x‖ = 1). Consequently, the following proposition is an immedi-
ate consequence of the previous result and the simple fact that if Y is a subspace of X,
then every face of BY is contained in a face of BX.

Proposition 4.3.7 ([HKR••, Proposition 4.6]). Let X be an infinite-dimensional Banach space.
Suppose that, for every infinite-dimensional subspace Y of X, the unit ball BY contains a face
with diameter strictly smaller than 1. Then the unit sphere of X contains a symmetrically (1+)-
separated subset with cardinality w∗-dens X∗.

In particular, the conclusion holds true if every face of X has diameter strictly smaller than
1.

Clearly, if X is strictly convex, then every face of BX is a singleton; we can therefore
record the following immediate consequence to the present proposition.

Corollary 4.3.8. If X is an infinite-dimensional strictly convex Banach space, then the unit
sphere of X contains a symmetrically (1+)-separated subset of cardinality w∗-dens X∗.

Our next application of Theorem 4.3.5 leads us back to the dawning of this section,
i.e., to exposed points. In fact, if x ∈ SX is an exposed point for BX and ϕ ∈ SX∗

exposes x, then, for every unit vector y ∈ Y := ker ϕ, we have 〈ϕ, x + y〉 = 1, whence
‖x + y‖ > 1. Consequently, if the unit ball of X admits an exposed point, X has (PSF).

We also need to recall that the result by Lindenstrauss and Troyanski the proof of
Theorem 4.3.1 heavily relied on is in fact consequence of a more general result, due to
Phelps ([Phe74], cf. [BeLi00, Theorem 5.17]): if C is a closed, convex and bounded set
with the Radon-Nikodym property (RNP) in a Banach space X, then C is the closed
convex hull of its strongly exposed points. This assertion is truly more general, since
every weakly compact convex set has the RNP ([BeLi00, Theorem 5.11.(i)]), while the
unit ball of `1 is a simple example of a set with the RNP that fails to be weakly compact.
Therefore, if a Banach space X has the RNP, the unit ball of every its subspace is the
closed convex hull of its strongly exposed points. As a consequence, every infinite-
dimensional subspace of X has (PSF) and we infer the validity of the following result.
Note that, of course, it contains Theorem 4.3.1 as a particular case.

Theorem 4.3.9 ([HKR••, Theorem 4.8]). Let X be an infinite-dimensional Banach space with
the Radon–Nikodym property. Then there exists a symmetrically (1+)-separated family of unit
vectors in X, with cardinality w∗-dens X∗.

Our last result in this chapter is devoted to duals to Gâteaux differentiability spaces
and exploits w∗-exposed points; let us proceed to recall a few definitions. A functional
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ϕ ∈ SX∗ is a w∗-exposed point of BX∗ , whenever there exists a unit vector x ∈ SX such
that 〈ϕ, x〉 = 1 and Re 〈ψ, x〉 < 1 for every ψ ∈ BX∗ , ψ 6= ϕ; in other words, ϕ is the
unique supporting functional at x. A Banach space X is called a Gâteaux differentiability
space if every convex continuous function defined on a non-empty open convex subset
D of X is Gâteaux differentiable at densely many points of D. This notion differs from
the notion of weak Asplund space only by virtue of the fact that the set of differentiability
points is not required to contain a dense Gδ, but merely to be dense in D (for information
concerning those spaces, consult [Fab97, Phe93]). On the other hand, let us stress the
fact that the two notions are actually distinct, as it was first proved in [MoSo06]. Let
us also refer to [Moo05] for a simplified proof of the example and to [KaSt99, Kal02,
KMS01, MoSo02] for related results.

The interplay between w∗-exposed points and Gâteaux differentiability spaces stems
from the fact that points of Gâteaux differentiability of the norm correspond to w∗-
exposed points in the dual space. More precisely, the norm ‖·‖ of a Banach space X
is Gâteaux differentiable at x ∈ SX if and only if there exists a unique ϕ ∈ BX∗ with
〈ϕ, x〉 = 1 (see, e.g., [FHHMZ10, Corollary 7.22]); in which case, ϕ is w∗-exposed by x.

Note that, if X is a Gâteaux differentiability space, there exists a functional f1 ∈ SX∗

which is w∗-exposed by some x1 ∈ SX; in particular, for every g ∈ {x1}⊥ we have
‖ f1 ± g‖ > 1. The w∗-closed subspace {x1}⊥ of X∗ is the dual to X/span x1, which is a
Gâteaux differentiability space, according to [Phe93, Proposition 6.8]; therefore, we may
repeat the argument to the subspace {x1}⊥. When we proceed by a transfinite induction
argument completely analogous to those already presented in this section, we reach the
following result.

Proposition 4.3.10 ([HKR••, Proposition 4.9]). Let X be a Banach space dual to a Gâteaux
differentiability space. Then the unit sphere of X contains a symmetrically (1+)-separated sub-
set with cardinality w∗-dens X∗.

4.4 (1 + ε)-separation

In this part we shall proceed to present results parallel to those of the previous section,
but concerning the existence of large symmetrically (1+ ε)-separated sets. It is clear that
one could formulate a uniform analogue to condition (PSF) and adapt the arguments to
be presented in this section to deduce an analogue to Theorem 4.3.5. However, we shall
not pursue this direction and we shall restrict ourselves to the consideration of some
classes of Banach spaces.

In the first result we shall exploit the full power of the notion of strongly exposed
point in order to treat spaces with the RNP. We start with the following simple observa-
tion.

Lemma 4.4.1. Let X be a Banach space and x ∈ BX be a strongly exposed point of BX; also let
ϕ ∈ X∗ be a strongly exposing functional for x. Then

inf{‖x + v‖ : v ∈ ker ϕ, ‖v‖ = 1} > 1.
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Proof. Note preliminarily that the above infimum is necessarily greater or equal to 1.
In fact, ϕ exposes x, so for every non-zero v ∈ ker ϕ we have ‖x + v‖ > 1. If by con-
tradiction the conclusion of the lemma is false, we may find a sequence of unit vectors
(vn)∞

n=1 in ker ϕ such that ‖x + vn‖ → 1. The vectors rn := x+vn
‖x+vn‖ ∈ BX then satisfy

〈ϕ, rn〉 = 〈ϕ,x〉
‖x+vn‖ → 〈ϕ, x〉; consequently, our assumption that x is strongly exposed by

ϕ allows us to conclude that rn → x. This is however an absurdity, since

‖rn − x‖ > ‖x + vn − x‖ − ‖rn − (x + vn)‖ = 1− ‖x + vn‖ ·
∣∣∣∣ 1
‖x + vn‖

− 1
∣∣∣∣→ 1.

�

Theorem 4.4.2 ([HKR••, Theorem 4.11]). Let X be an infinite-dimensional Banach space with
the RNP and let κ 6 w∗-dens X∗ be a cardinal number with uncountable cofinality. Then,
for some ε > 0, the unit sphere of X contains a symmetrically (1 + ε)-separated subset, with
cardinality κ.

Proof. The argument follows a pattern similar to the proofs of the previous section,
therefore we only sketch it. Let λ := w∗-dens X∗; a transfinite induction argument as in
the proof of Theorem 4.3.1 shows the existence of families of closed subspaces (Xα)α<λ

of X, unit vectors (xα)α<λ and functionals (ϕα)α<λ with the following properties, for
every α < λ:

(i) Xα =
⋂

γ<α ker ϕγ;

(ii) xα ∈ Xα is a strongly exposed point for BXα in Xα, strongly exposed by ϕα.
According to Lemma 4.4.1, we can also find, for each α < λ, a real εα > 0 such that
‖xα + v‖ > 1 + εα for every unit vector v ∈ ker ϕα ∩ Xα. In particular, for every α < β <
λ we have ±xβ ∈ ker ϕα ∩ Xα, whence ‖xα ± xβ‖ > 1 + εα.

We finally exploit the cofinality of κ to conclude the proof. Of course, the union of
the sets Γn := {α < κ : εα > 1/n} covers κ, whence the uncountable cofinality of κ
implies the existence of n0 such that |Γn0 | = κ. Consequently, for any α, β ∈ Γn0 , α < β,
we have

‖xα ± xβ‖ > 1 + εα > 1 + 1/n0.

Therefore, the family {xα}α∈Γn0
has cardinality κ and it is symmetrically (1 + 1/n0)-

separated, which concludes the proof. �

Plainly, reflexive Banach spaces have the RNP and satisfy dens X = w∗-dens X∗.
Therefore, the following corollary is a particular case of the previous theorem; note that,
by the considerations at the beginning of Section 4.3 concerning quasi-reflexive Banach
spaces, it implies (ii) in Theorem 4.1.4.

Corollary 4.4.3 ([HKR••, Corollary 4.12]). Suppose that X is an infinite-dimensional reflexive
Banach space. Let κ 6 dens X be a cardinal number with uncountable cofinality. Then there
exists a symmetrically (1 + ε)-separated family of unit vectors in SX, with cardinality κ.
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We next give the (1+ ε)-separation analogue to Corollary 4.3.8; as it is to be expected,
we need to assume a uniform analogue to strict convexity. Let us recall that a norm ‖·‖
on a Banach space X is locally uniformly rotund (hereinafter, LUR) if, for every x ∈ SX
and every sequence (xn)∞

n=1 in SX, the condition ‖xn + x‖ → 2 implies xn → x. It is
very easy to verify the standard fact that if the norm of X is LUR, then every point of SX
is a strongly exposed point for BX.

Consequently, by following the same pattern as in the proof of Theorem 4.4.2, we
may conclude the following result.

Proposition 4.4.4 ([HKR••, Proposition 4.13]). Let X be an infinite-dimensional Banach
space and let κ 6 w∗-dens X∗ be a cardinal number with cf(κ) uncountable. If X is LUR,
then for some ε > 0 the unit sphere of X contains a symmetrically (1 + ε)-separated subset,
with cardinality κ.

Remark 4.4.5. It follows from a well-known renorming result, due to Troyanski and Zi-
zler ([Tro71, Ziz84], also see [DGZ93, Section 7.1]), that every Banach space with a pro-
jectional skeleton admits a LUR renorming; we shall not recall the definition of a pro-
jectional skeleton here and we refer the reader to [Kub09] or [KKL11, Corollary 17.5] for
information on this topic. As a consequence, when we combine this result with our pre-
vious proposition, we obtain the existence of a renorming whose unit sphere contains
a large symmetrically (1 + ε)-separated family, with no need to exploit biorthogonal
systems, as we made in Section 4.2.1.

4.4.1 Asymptotically uniformly convex spaces

The last result for this section is dedicated to asymptotically uniformly convex Banach
spaces; some basic facts concerning this notion will be discussed in the first part of the
section and we shall refer, e.g., to [GKL01, JLPS02, KOS99, Mil71] for more information.
The study of separated sequences in those spaces was undertaken by Delpech, [Del10];
our result will, in particular, provide the non-separable counterpart to Deplech’s contri-
bution.

Definition 4.4.6. Let X be an infinite-dimensional Banach space. The modulus of asymp-
totic uniform convexity δX is given, for t > 0, by

δX(t) := inf
‖x‖=1

sup
dim(X/H)<∞

inf
h∈H
‖h‖>t

(‖x + h‖ − 1).

We shall also denote by δX(·, x) the modulus of asymptotic uniform convexity at x:

δX(t, x) := sup
dim(X/H)<∞

inf
h∈H
‖h‖>t

(‖x + h‖ − 1).

An infinite-dimensional Banach space X is asymptotically uniformly convex if δX(t) > 0
for every t > 0.
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Let us first note that δX(t, x) > 0 for every t > 0 and x ∈ SX. In fact, we can find a
norming functional x∗ for x and consider H = ker x∗; of course, ‖x + h‖ > 1 for each
h ∈ H. Hence

δX(t, x) > inf
h∈ker x∗
‖h‖>t

(‖x + h‖ − 1) > 0.

Choosing, for each H with dim(X/H) < ∞, h = 0 ∈ H, shows that δX(0, x) = 0, so
δX(0) = 0 too. It is also obvious that δX is a non-decreasing function, and that δX(·, x) is
non-decreasing for each fixed x; in fact, infh∈H,‖h‖>t(‖x + h‖ − 1) clearly increases with
t.

One more property which is easily verified (cf. [JLPS02, Proposition 2.3.(3)]) is the
fact that, for each t ∈ [0, 1], δX(t) 6 δX(t), where δX denotes the modulus of uniform
convexity—which we recall to be given by

δX(t) := inf
{

1− ‖x + y‖
2

: x, y ∈ BX, ‖x− y‖ > t
}

.

Lemma 4.4.7. δX(t) 6 δX(t) for each t ∈ [0, 1].

Proof. Fix ε > 0 and let x ∈ SX be such that δX(t, x) < δX(t) + ε; let us then select a
norming functional x∗ for x and consider the hyperplane H = ker x∗. It follows that
infh∈ker x∗,‖h‖>t(‖x + h‖ − 1) < δX(t) + ε, so we can find y ∈ ker x∗ with ‖y‖ > t such
that ‖x + y‖ < 1 + δX(t) + ε. Of course, ‖x + λy‖ > 〈x∗, x + λy〉 = 1 (λ ∈ R); conse-
quently, the convex function R 3 λ 7→ ‖x + λy‖ attains its minimum for λ = 0 and it
is necessarily non-decreasing on [0, ∞). In other words, we can assume without loss of
generality that ‖y‖ = t; in particular, y ∈ BX. Consider now vectors

u :=
x + y
‖x + y‖ and v := u− y =

1
‖x + y‖x +

(
1− 1
‖x + y‖

)
(−y);

as v is a convex combination of x and −y, we have u, v ∈ BX. Moreover, ‖u − v‖ =
‖y‖ = t. We infer that

δX(t) 6 1− 1
2
‖u + v‖ 6 1− 1

2
〈x∗, u + v〉 = 1− 〈x∗, u〉 = 1− 1

‖x + y‖

6 1− 1
1 + δX(t) + ε

=
δX(t) + ε

1 + δX(t) + ε
6 δX(t) + ε;

letting ε→ 0+ concludes the proof. �

The non-unexpected fact that uniformly convex Banach spaces are asymptotically
uniformly convex immediately follows. The two notions are however non equivalent,
as it is easy to see that `1 is asymptotically uniformly convex; let us show this by com-
puting the modulus δX for the spaces c0 and `p, 1 6 p < ∞.
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Example 4.4.8. Let X be either `p or c0. Then for every x ∈ SX we have

δX(t, x) :=

{
p
√

1 + tp − 1 if X = `p

max{1, t} − 1 if X = c0

Proof. Fix ε > 0 and find an index n such that ‖x�[n+1,∞)‖ < ε. Given any finite-
codimensional subspace H of X, there is h ∈ H such that h�[1,n] = 0 (since the map
h 7→ h�[1,n] is, of course, not injective); of course we can assume that ‖h‖ = t. For such h
we have ‖(x + h)�[1,n]‖ = ‖x�[1,n]‖ 6 1 and ‖(x + h)�[n+1,∞)‖ 6 t + ε. Using the behav-
ior of ‖ · ‖X on disjointly supported vectors (which is the heart of the present argument)
we immediately infer that

inf
h̃∈H
‖h̃‖>t

(‖x+ h̃‖− 1) 6 ‖x+ h‖− 1 =

{
p
√
‖(x + h)�[1,n]‖p + ‖(x + h)�[n+1,∞)‖p − 1 if X = `p

max{‖(x + h)�[1,n]‖, ‖(x + h)�[n+1,∞)‖} − 1 if X = c0

6

{
p
√

1 + (t + ε)p − 1 if X = `p

max{1, t + ε} − 1 if X = c0.

Passing to the supremum over H then gives

δX(t, x) 6

{
p
√

1 + (t + ε)p − 1 if X = `p

max{1, t + ε} − 1 if X = c0.

and letting ε→ 0 proves the upper bound.
For the lower bound, fix ε > 0 and find n such that, as above, ‖x�[n+1,∞)‖ < ε;

considering H := span{ej}∞
j=n+1 we have that δX(t, x) > infh∈H,‖h‖>t(‖x + h‖ − 1). But

for every h ∈ H with ‖h‖ > t we have ‖(x + h)�[1,n]‖ > 1− ε and ‖(x + h)�[n+1,∞)‖ >
t− ε, so that

δX(t, x) >

{
p
√
(1− ε)p + (t− ε)p − 1 if X = `p

max{1− ε, t− ε} − 1 if X = c0.

Finally, letting ε→ 0+ proves the lower bound and concludes the proof. �

Remark 4.4.9. Note that the same argument applies to the spaces c0(Γ) and `p(Γ) and,
more in general, to any sum

(
∑γ∈Γ Xγ

)
c0(Γ)

or
(
∑γ∈Γ Xγ

)
`p(Γ)

, provided that the spaces
Xγ are finite-dimensional.

In the proof of our result we shall need one more property of this modulus, namely
that passage to a subspace improves the modulus δ (cf. [JLPS02, Proposition 2.3.(2)]).
We also present its very simple proof, for the sake of completeness.

Fact 4.4.10. Let Y be a closed infinite-dimensional subspace of a Banach space X. Then δY > δX.
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Proof. Fix any t > 0 and y ∈ Y. If H ⊆ X is such that dim(X/H) < ∞, then also
dim(Y/(Y ∩ H)) < ∞ (the inclusion Y ↪→ X induces an injection Y/(Y ∩ H) ↪→ X/H);
consequently,

inf
h∈H
‖h‖>t

(‖y + h‖ − 1) 6 inf
h∈H∩Y
‖h‖>t

(‖y + h‖ − 1) 6 δY(t, y).

Passage to the supremum over H gives δX(t) 6 δX(t, y) 6 δY(t, y). We now pass to the
infimum over y ∈ Y and conclude the proof. �

Theorem 4.4.11 ([HKR••, Theorem 4.15]). Let X be an infinite-dimensional Banach space
and let d < 1 + δX(1). Then the unit sphere of X contains a symmetrically d-separated family
with cardinality equal to w∗-dens X∗.

We should perhaps mention that the result is of interest only for asymptotically uni-
formly convex Banach spaces, or, more generally, whenever δX(1) > 0. In fact, for d < 1,
the existence of a symmetrically d-separated subset of SX, with cardinality dens X, is
an immediate consequence of Riesz’ lemma.

Proof. Let λ := w∗-dens X∗. We construct by transfinite induction a long sequence
of unit vectors (xα)α<λ ⊆ SX and a decreasing long sequence (Hα)α<λ of infinite-
dimensional subspaces of X with dim(Hα/Hα+1) < ∞, dim(X/H1) < ∞ and such
that:

(i) ‖xα + h‖ > d, for each h ∈ SHα and α < λ;

(ii) xβ ∈ Hα, for α < β < λ.
It immediately follows that, for α < β, ±xβ ∈ Hα, whence ‖xα ± xβ‖ > d and we are
done.

We start with an arbitrary x1 ∈ SX; since d − 1 < δX(1, x1) there exists a finite-
codimensional subspace H1 of X such that infh∈H1,‖h‖>1 ‖x1 + h‖ > d. In particular,
‖x1 + h‖ > d for every h ∈ SH1 . We now choose arbitrarily x2 ∈ SH1 and we proceed
by transfinite induction. Assuming to have already found (xα)α<γ and (Hα)α<γ for
some γ < λ we consider two cases: if γ = γ̃ + 1 is a successor ordinal, we can choose
arbitrarily xγ ∈ SHγ̃

. According to Fact 4.4.10, we have d − 1 < δX(1) 6 δHγ̃
(1) 6

δHγ̃
(1, xγ); consequently, we may find a finite-codimensional subspace Hγ of Hγ̃ such

that ‖xγ + h‖ > d, for every h ∈ SHγ .
In the case that γ is a limit ordinal, we first note that ∩α<γHα is infinite-dimensional.

In fact, each Hα+1 is the intersection of Hα with the kernels of finitely many function-
als; therefore, ∩α<γHα is the intersection of the kernels of at most |γ| < λ functionals.
Consequently, the minimal cardinality of a family of functionals that separates points
on ∩α<γHα is λ and, in particular, ∩α<γHα is infinite-dimensional. We can therefore
choose a norm-one xγ ∈ ∩α<γHα and, arguing as above, we find Hγ ⊆ ∩α<γHα such
that dim(∩α<γHα/Hγ) < ∞ and ‖xα + h‖ > d for h ∈ SHγ . This completes the inductive
step and consequently the proof. �



162 CHAPTER 4. UNCOUNTABLE SEPARATED SETS

If we combine the above theorem with the inequality δX(1) 6 δX(1), we arrive at the
following particular case to claim (iii) in Theorem 4.1.4.

Corollary 4.4.12. Let X be a uniformly convex Banach space. Then for every ε > 0, the unit
sphere of X contains a symmetrically (1+ δX(1)− ε)-separated family with cardinality dens X.

4.5 Super-reflexive spaces

This section is dedicated to the investigation of the question under which conditions
the unit sphere of a non-separable Banach space contains a (1 + ε)-separated set of car-
dinality dens X. In light of the results of Section 4.4 it is natural to consider the class
of reflexive Banach spaces; in particular Corollary 4.4.3 implies that one sufficient con-
dition is that X is a reflexive Banach space, whose density is a cardinal number with
uncountable cofinality.

We shall however note that the cofinality assumption can not be dispensed with,
meaning in particular that the conclusion of Corollary 4.4.3 can not be improved. This
fact was already observed in [KaKo16, Remark 3.7] with an indication of the proof and
we shall present a detailed argument below.

In the same remark the authors also conjecture that the situation may be different un-
der the assumption of super-reflexivity, this conjecture being partially motivated also by
our previous Corollary 4.4.12. In the main part of the present section, we shall provide
a positive answer to this conjecture, proving part (iii) of Theorem 4.1.4.

Proposition 4.5.1 ([KaKo16, Remark 3.7]). Let (pn)∞
n=1 ⊆ (1, ∞) be an increasing sequence

of reals such that pn → ∞ and consider the Banach space

X :=

(
∞

∑
n=1

`pn(ωn)

)
`2

.

Then X is a reflexive Banach space with density character ωω, whose unit sphere does not contain
a (1 + ε)-separated subset of cardinality ωω (ε > 0).

Proof. The fact that X is reflexive is obvious, X being the `2 sum of reflexive Banach
spaces; equally obvious is that dens X = ωω. As in the proof of Theorem 3.1.21, for
x ∈ X, we shall write x�[1,N] for the vector whose first N components are equal to those
of x and the successive ones are equal to 0; if x = (x(n))∞

n=1 ∈ X, with x(n) ∈ `pn(ωn),
we shall also keep the notation supp(x) := {n ∈N : x(n) 6= 0}.

Assume now, by contradiction, that there exist ε > 0 and a subset {xα}α∈Γ of BX such
that |Γ| = ωω and ‖xα − xβ‖ > 1 + ε for distinct α, β ∈ Γ. Up to a small perturbation
and, if necessary, replacing ε with ε/2, we may assume without loss of generality that
the support of every xα is a finite set.

Since pn ↗ ∞, we may find N ∈ N such that 21/pN < 1 + ε/2. Moreover, the
vectors xα�[1,N] (α ∈ Γ) belong to the Banach space

(
∑N

n=1 `pn(ωn)
)
`2

, whose density
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character equals ωN; consequently, there exists an uncountable subset Λ of Γ such that
‖xα�[1,N]− xβ�[1,N]‖ 6 ε/2 whenever α, β ∈ Λ. Therefore, when we consider the vectors
x̃α := xα − xα�[1,N] (α ∈ Λ), we obtain ‖x̃α − x̃β‖ > 1 + ε/2 for distinct α, β ∈ Λ. Also
observe that the vectors x̃α satisfy ‖x̃α‖ 6 1 and supp(x̃α) > N.

Finally, observe that {supp(x̃α)}α∈Λ is an uncountable collection of finite subsets
of N and consequently, there exists an uncountable subset Λ0 of Λ such that the sup-
ports of every x̃α (α ∈ Λ0) are the same finite subset, say F, of N. We therefore con-
clude that (x̃α)α∈Λ0 is an uncountable (1 + ε/2)-separated subset of the unit ball of(
∑n∈F `pn(ωn)

)
`2

; let us also note that F > N. On the other hand, Theorem 3.1.21 as-
sures us that

K

(∑
n∈F

`pn(ωn)

)
`2

 = max{21/pn : n ∈ F} 6 21/pN < 1 + ε/2,

a contradiction. �

As a consequence, the mere assumption of reflexivity on a Banach space X is not
sufficient for the unit ball of X to contain (for some ε > 0) a (1 + ε)-separated subset
whose cardinality equals the density character of X. Therefore in the second (and main)
part of the present section we shall assume that the Banach space X is super-reflexive
and we shall present the proof of Theorem 4.1.4(iii); let us also record formally here the
statement to be proved, for convenience of the reader.

Theorem 4.5.2 ([HKR••, Theorem B(iii)]). Let X be a super-reflexive Banach space. Then, for
some ε > 0, the unit sphere of X contains a symmetrically (1 + ε)-separated set of cardinality
dens X.

Loosely speaking, the argument to be presented is divided in two parts: in the first
one, using an idea already present in [KaKo16, Theorem 3.5], we shall exploit the Gu-
rariı̆–James inequality and inject a suitable subspace of the super-reflexive Banach space
X into some `p(Γ), in a way to map some collection of unit vectors onto the canonical
unit vector basis of `p(Γ). Once this is achieved, the second part of the argument is a
sharpening of the argument in [KaKo16] and consists of a stabilisation argument, simi-
lar to the one present in Theorem 3.4.3.

Let us now start the first part of the argument by recalling the Gurariı̆–James inequal-
ity, in the formulation given in [Jam72, Theorem 4]. Let us mention that basically the
same inequality was proved in [GuGu71] for Banach spaces that are uniformly convex
and uniformly smooth; however, at the time of these papers it was not yet known that
every super-reflexive Banach space admits a uniformly convex and uniformly smooth
renorming.

Theorem 4.5.3 (Gurariı̆–James inequality). Let X be a super-reflexive Banach space. Then
for every constants K > 1, 0 < c < 1/2K, and C > 1 there are exponents 1 < p, q < ∞ such
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that for every normalised basic sequence (en)∞
n=1 with basis constant at most K

c

(
N

∑
n=1
|an|p

)1/p

6

∥∥∥∥∥ N

∑
n=1

anen

∥∥∥∥∥ 6 C

(
N

∑
n=1
|an|q

)1/q

,

for every choice of scalars (an)N
n=1 and n ∈N.

For our purposes it will not be important that the constants c and C can be selected to
be arbitrarily close to 1/2K and 1 respectively; on the other hand, it is going to be crucial
their independence from the basic sequence. Let us also observe here the interesting fact
that the validity of the above inequality actually characterises super-reflexive Banach
spaces, [Jam72, Theorem 6].

As a particular case of the inequality, for every c < 1/2 there is an exponent p ∈
(1, ∞) such that for every monotone basic sequence (en)∞

n=1 in X one has, for every
N ∈N,

c

(
N

∑
n=1
‖en‖p

)1/p

6

∥∥∥∥∥ N

∑
n=1

en

∥∥∥∥∥ .

Of course, the Gurariı̆–James inequality is a ‘separable’ result. The next idea, due to
Benyamini and Starbird ([BeSt76, p. 139]), consists in exploiting the present particular
case of the inequality to the case where the monotone basic sequence is obtained from
different blocks of a projectional resolution of the identity. In this way one obtains a
formulation of the inequality, more suited to the non-separable setting.

We therefore proceed to recall a few basic notions concerning projectional resolutions
of the identity.

Definition 4.5.4. Let X be a Banach space and denote by λ := dens(X). A projectional
resolution of the identity (PRI, in short) in X is a family (Pα)α6λ of norm-one projections
Pα : X → X such that:

(i) P0 = 0 and Pλ = IdX;

(ii) PαPβ = PβPα = Pα for every α 6 β 6 λ;

(iii) dens(PαX) 6 max{|α|, ω} for α 6 λ;

(iv) PβX = ∪α<βPαX for limit ordinals β < λ.

According to (ii), (PαX)α6λ is a well ordered chain of subspaces of X. Observe,
moreover, that condition (iv) is equivalent to the requirement that limα→β Pαx = Pβx
(x ∈ X) whenever β is a limit ordinal: in fact, the above equality is obvious for x ∈
∪α<βPαX, whence (iv) implies it for x ∈ PβX. The result for the generic x ∈ X follows
from this case applied to Pβx; the converse implication is clear.

The notion of PRI has been introduced by Lindenstrauss [Lin66a], where it is shown
that every non-separable reflexive Banach space admits a PRI; in particular, PRI’s do ex-
ist in non-separable super-reflexive spaces. For more on PRI, we may refer, for example,
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to [DGZ93, Chapter VI], [FHHMZ10, Chapter 13], [HMVZ08, §3.4], or [KKL11, Chapter
17].

Lemma 4.5.5 ([BeSt76]). Let X be a non-separable, super-reflexive Banach space and λ =
dens(X). Then for any ε > 0 there exists p ∈ (1, ∞) such that for every PRI (Pα)α6λ(

∑
α<λ

‖(Pα+1 − Pα)x‖p

)1/p

6 (2 + ε)‖x‖ (x ∈ X).

In other words, the operator

T : X −→
(⊕

α<λ

(Pα+1 − Pα)(X)

)
`p(λ)

(4.5.1)

given by
Tx := (Pα+1x− Pαx)α<λ (x ∈ X)

has norm at most 2 + ε.

Proof. We shall start observing that, for every x ∈ X, (‖Pα+1x− Pαx‖)α<λ ∈ c0(λ).
Indeed, fix ε > 0; if there exists infinitely many α’s such that ‖Pα+1x− Pαx‖ > ε, we may
then choose an increasing sequence (αn)∞

n=1 such that ‖Pαn+1x − Pαn x‖ > ε for every
n ∈ N. On the other hand, letting α∞ = sup αn = lim αn, we see that Pαn x → Pα∞ x, a
contradiction.

It follows that if we let (αn)∞
n=1 be an increasing enumeration of the indices α with

Pα+1x− Pαx 6= 0 and α∞ = sup αn, then Pα1 x = 0, Pαn+1x = Pαn+1 x and Pα∞ x = x, due
to (i). Therefore, as N → ∞,

N

∑
n=1

(Pαn+1 − Pα)x =
N

∑
n=1

(Pαn+1 − Pα)x = PαN+1 x− Pα1 x −→ x.

Finally, we just observe that ((Pαn+1 − Pαn)x)∞
n=1 is a monotone basic sequence, whence

for every c < 1/2 there exists p ∈ (1, ∞) (depending only on c, and not on x) such that
for every N ∈N

c

(
N

∑
n=1
‖(Pαn+1 − Pαn)x‖p

)1/p

6

∥∥∥∥∥ N

∑
n=1

(Pαn+1 − Pαn)x

∥∥∥∥∥ ,

and letting N → ∞ concludes the proof. �

We are now ready to record in the following proposition–which was already implic-
itly present in [KaKo16, p. 10]–the conclusion to the first part of the argument.
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Proposition 4.5.6 ([HKR••, Proposition 4.17]). Let X be a super-reflexive space X and let
λ = dens(X). Then for every ε > 0 there exist p ∈ (1, ∞), a closed subspace Y of X with
dens(Y) = λ, and a linear injection S : Y → `p(λ) with ‖S‖ 6 2 + ε that maps some family
of unit vectors (yα)α<λ in Y onto the unit vector basis of `p(λ).

Proof. The case where X is separable follows directly from the Gurariı̆–James inequality,
applied to a normalised basic sequence with basis constant sufficiently close to 1, with
Y being the closed linear span of the basic sequence. Let us consider the case where X
is non-separable.

Let us fix ε > 0 and a PRI (Pα)α6λ in X and take the corresponding operator T
given by (4.5.1). For every α < λ let us select a unit vector yα in (Pα+1 − Pα)(X);
plainly, ‖Tyα‖ = 1. Moreover, the closed linear span in the codomain of T of the set
{Tyα : α < λ} is isometric to `p(λ), {Tyα : α < λ} being isometrically equivalent to its
canonical basis. Consequently, Y being the closed linear span of {yα : α < λ} is the
desired subspace of X and for S we simply take the restriction of T to Y. �

Remark 4.5.7. As proved by Hájek, [Háj94], the hypothesis of super-reflexivity cannot
be relaxed to mere reflexivity of the space X. In fact, the main result of [Háj94] consists
in the construction of a ‘long’ Tsirelson-like space X with dens X = ω1 and such that
no its non-separable subspace admits a bounded injection into a super-reflexive Banach
space.

We shall now enter the second part of the argument. Let us mention that the defi-
nition of operator bounded by a pair, given in the proof below, is inspired from the anal-
ogous definition given in [KaKo16], but the two definitions are actually different. It is
precisely this difference that allows to drop the cofinality assumption from the argu-
ment (compare with [KaKo16, Lemma 3.4]).

Proposition 4.5.8 ([HKR••, Proposition 4.19]). Let X be a Banach space and let λ = dens(X).
Suppose that there exists a bounded linear injection S : X → `p(λ) that maps some collection
(yα)α<λ of unit vectors in X onto the standard unit vector basis of `p(λ). Then for every ε > 0,
SX contains a symmetrically (21/p − ε)-separated subset of cardinality λ.

Proof. We shall start the argument by fixing some notation. For a subset Λ of λ, let
us denote XΛ to be the closed linear span of the set {yβ : β ∈ Λ}; we shall also set
$Λ = ‖S�XΛ

‖. As ‖Syα‖ = ‖yα‖ = 1 whenever α < λ, we have $Λ > 1.
Consider now the directed set L comprising subsets of λ whose complements have

cardinality less than λ, ordered with the reversed inclusion. We then say that S is
bounded by a pair (v, $), when ‖S‖ 6 $ and ‖S�XΛ

‖ > v for every Λ ∈ L ; for example,
we plainly have that S is bounded by the pair (1, ‖S‖).

Moreover, for every Λ ∈ L , the restriction operator S�XΛ
is bounded by the pair(

inf
Υ∈L

$Υ, $Λ

)
.
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The net ($Λ)Λ∈L is evidently non-increasing, whence limΛ∈L $Λ = infΛ∈L $Λ > 1.
Consequently, we may always replace X with XΛ for a small enough set Λ ∈ L and
assume that S : X → `p(λ) is bounded by a pair (v, $) with v

$ as close to 1 as we wish
(in which case v

$ < 1).

Let us now fix arbitrarily ṽ ∈ (0, v). Since ‖S‖ > ṽ, we may find a unit vector y1
in X such that ‖Sy1‖ > ṽ and Sy1 is finitely supported. Take a non-zero α < λ and
assume that we have already found unit vectors yβ (β < α) in X such that

(i) ‖Syβ‖ > ṽ (β < α),

(ii) Syβ is finitely supported (β < α),

(iii) supp Syβ1 ∩ supp Syβ2 = ∅ for distinct β1, β2 < α.
As the vectors Syβ are finitely supported, the set

Λα =
⋃

β<α

supp Syβ

has cardinality |Λα| < λ, that is, λ \ Λα ∈ L . Consequently, ‖S�Xλ\Λα
‖ > v > ṽ and

we may find a unit vector yα ∈ Xλ\Λα
such that ‖Syα‖ > ṽ; note that, by construction,

supp Syα is disjoint from Λα.
It follows that there exists a family (yα)α<λ of unit vectors in X that satisfy conditions

(i)–(iii) above. The vectors (Syα)α<λ being pairwise disjointly supported, for distinct
α, β < λ we have

$ · ‖yβ ± yα‖ > ‖Syβ ± Syα‖ =
(
‖Syβ‖p + ‖Syα‖p)1/p > ṽ · 21/p.

Since ṽ
$ may be chosen to be as close to 1 as we wish, the proof is complete. �

To conclude, it is plain that the conjunction of the two propositions presented in
this section implies Theorem 4.5.2. It is just sufficient to apply Proposition 4.5.8 to the
subspace Y obtained in Proposition 4.5.6.
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[FZZ81] M. Fabian, L. Zajíček, and V. Zizler, On residuality of the set of rotund
norms on a Banach space, Math. Ann. 258 (1981/82), 349–351.

[FaZi97] M. Fabian and V. Zizler, A note on bump functions that locally depend
on finitely many coordinates, Bull. Aust. Math. Soc. 56 (1997), 447–451.

[FaZi99] M. Fabian and V. Zizler, An elementary approach to some problems in
higher order smoothness in Banach spaces,Extracta Math. 14 (1999), 295–
327.

[FiJo74] T. Figiel and W. B. Johnson, A uniformly convex Banach space which
contains no `p, Compositio Math. 29 (1974), 179–190.

[FiGo89] C. Finet and G. Godefroy, Biorthogonal systems and big quotient spaces,
Banach space theory (Iowa City, IA, 1987), 87–110, Contemp. Math. 85,
Amer. Math. Soc., Providence, RI, 1989.

[Fod52] G. Fodor, Proof of a conjecture of P. Erdős, Acta. Sci. Math. Szeged 14
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