5 Tutorial 5 – October 31st, 2017

5.1 Using the Euclid's Algorithm find the greatest common divisor of 346 and 36.

Solution. 1. We set u := 346, t := 36.

2. We divide u by t:

 $346 = 9 \cdot 36 + 22.$

and we set u := 36, t := 22.

3. Since $t \neq 0$, we divide u by t:

 $36 = 1 \cdot 22 + 14$,

and we set u := 22, t := 14.

4. Since $t \neq 0$, we divide u by t:

 $22 = 1 \cdot 14 + 8$,

and we set u := 14, t := 8.

5. Since $t \neq 0$, we divide u by t:

$$14 = 1 \cdot 8 + 6.$$

and we set u := 8, t := 6.

6. Since $t \neq 0$, we divide u by t: 8 = 1 · 6 + 2,

and we set u := 6, t := 2.

7. Since $t \neq 0$, we divide u by t:

```
6 = 3 \cdot 2 + 0,
```

and we set u := 2, t := 0.

8. Since t = 0, we return c := t = 2.

The greatest common divisor gcd(346, 36) = 2.

5.2 Find all the solutions of the following Diophantic equation

$$319\,x + 473\,y = 0.$$

Solution. First, we use the Euclid's algorithm to find gcd(319, 473). We proceed faster than in the first exercise.

319	=	$0 \cdot 473$	+	319
473	=	$1 \cdot 319$	+	154
319	=	$2 \cdot 154$	+	11
154	=	$14 \cdot 11$	+	0

We have obtained gcd(319, 473) = 11.

We divide the equation by gcd(319, 473) = 11 and we get

$$29x + 43y = 0.$$

This equation has the following general solution: $x = 43 k, y = -29 k, k \in \mathbb{Z}$.

Marie Demlova: Discrete Mathematics and Graphs

5.3 Find all the pairs of integers x and y for which

167 x + 32 y = 1.

Solution. We use the extended Euclid's algorithm.

1. We set u := 167, $x_u := 1$, $y_u := 0$, t := 32 $x_t := 0$, $y_t := 1$.

2. We divide u by t:

 $167 = 5 \cdot 32 + 7$,

and we set $x_r := 1 - 5 \cdot 0$, $y_r := 0 - 5 \cdot 1$. Further, u := 32, $x_u := 0$, $y_u := 1$, t := 7, $x_t := 1$, $y_t := -5$.

3. Since $t \neq 0$, we divide u by t:

$$32 = 4 \cdot 7 + 4,$$

and we set $x_r := 0 - 4 \cdot 1$, $y_r := 1 - 4 \cdot (-5)$. Further, u := 7, $x_u := 1$, $y_u := -5$, t := 4, $x_t := -4$, $y_t := 21$.

4. Since $t \neq 0$, we divide u by t:

 $7 = 1 \cdot 4 + 3,$

and we set $x_r := 1 - 1 \cdot (-4)$, $y_r := -5 - 1 \cdot 21$. Further, u := 4, $x_u := -4$, $y_u := 21$, t := 3, $x_t := 5$, $y_t := -26$.

5. Since $t \neq 0$, we divide u by t:

$$4 = 1 \cdot 3 + 1,$$

and we set $x_r := -4 - 1 \cdot 5$, $y_r := 21 - 1 \cdot (-26)$. Further, u := 3, $x_u := 5$, $y_u := -26$, t := 1, $x_t := -9$, $y_t := 47$.

6. Since $t \neq 0$, we divide u by t:

$$3 = 3 \cdot 1 + 0,$$

and we set $x_r := 5 - 3 \cdot (-9)$, $y_r := -26 - 3 \cdot 47$. Further, u := 1, $x_u := -9$, $y_u := 47$, t := 0, $x_t := 32$, $y_t := -167$.

Since t = 0, we set gcd(176, 32) := 1, x := -9, y := 47.

The calculations of x_u , x_t and y_u , y_t can be arranged in the following table (which reproduces the procedure above).

	167	32
7	1	-5
32	0	1
$-4 \cdot 7$	-4	20
4	-4	21
7	1	-5
$-1 \cdot 4$	4	-21
3	5	-26
4	-4	21
$-1 \cdot 3$	-5	26
1	-9	47

We can end the table because now we know that

$$l = -9 \cdot 167 + 47 \cdot 32,$$

and one of the solutions of 167 x + 32 y = 1 is $x_0 = -9$ and $y_0 = 47$.

To get the general solution of 167 x + 32 y = 1 we need to solve the homogeneous equation 167 x + 32 y = 0. Since 167 and 32 are relatively prime, the general solution of the homogeneous equation is: x = 32 k, y = -167 k for any $k \in \mathbb{Z}$. Hence the general solution of 167 x + 32 y = 1 is

$$x = -9 + 32k, y = 47 - 167k$$
 where $k \in \mathbb{Z}$.

Marie Demlova: Discrete Mathematics and Graphs

5.4 Find all the solutions of the following Diophantic equation

$$712x + 36y = 2.$$

5.5 Find all the pairs of integers x and y for which

654 x + 234 y = 12.

5.6 Find all the pairs of integers x and y for which

$$512x + 355y = 6.$$

5.7 Find all pairs of integers x and y for which

32x + 590y = 16.

Solution. We know that the equation 32x + 590y = 16 has a solution if and only if gcd(32, 590) divides 16. To find gcd(32, 590) it is convenient to use the Euclid's algorithm.

$$590 = 18 \cdot 32 + 14
32 = 2 \cdot 14 + 4
14 = 3 \cdot 4 + 2
4 = 2 \cdot 2 + 0$$

We have obtained gcd(590, 32) = 2. Because $16 = 8 \cdot 2$, the equation has a solution.

To find on solution of the equation 32 x + 590 y = 16 we extend the Euclid's algorithm.

	32	590
14	-18	1
32	1	0
$-2 \cdot 14$	36	-2
4	37	-2
14	-18	1
$-3 \cdot 4$	-111	6

Since 16 is a multiple of 4, and since $4 = 37 \cdot 32 - 2 \cdot 590$, we have got

$$16 = 148 \cdot 32 - 8 \cdot 590.$$

Hence one of solutions is x = 148, y = -8.

To get the general solution, we have to solve the homogeneous equation 32 x + 590 y = 0. Since gcd(32, 590) = 2, we divide the equation by 2 and get

$$16x + 295y = 0$$
,

where 16 and 295 are relatively prime. So the general solution is x = 295 k, y = -16 k for $k \in \mathbb{Z}$.

The general solution of 32x + 590y = 8 is x = 148 + 259k, y = -8 - 16k, where $k \in \mathbb{Z}$.

If we do another step of the extended Euclid's algorithm we get 2 = -129 x + 7590 and hence 16 = -1032 x + 28 y, with the solution x = -1032, y = 28. It is correct, indeed, $-1032 + 4 \cdot 295 = 148$ and $28 - 4 \cdot 16 = -8$.

Notice that if we were looking for one solution of the non-homogeneous equation we could divide the equation 32 x + 590 y = 16 by gcd(32, 590) = 2 and solve 16 x + 295 y = 8 instead. But then we would need to use the Euclid's algorithm to the pair 16, 295.

5.8 Find all pairs of integers x and y for which

121 x + 531 y = 6.

5.9 Find all pairs of integers x and y for which

141 x + 531 y = 6.

Answers

5.4 Since the greatest common divisor of 712 and 36 is 4 and 2 is not divisible by 4, the equation has no solution.

5.5 The general solution is: x = -10 + 39k, y = 28 - 109k where $k \in \mathbb{Z}$.

5.6 The general solution is: x = 43 - 355 k, y = -62 + 512 k where $k \in \mathbb{Z}$.

5.8 The general solution is: x = 123 - 513 k, y = -29 + 121 k where $k \in \mathbb{Z}$.

6.2 The general solution is: x = 49 - 177 k, y = -13 + 47 k where $k \in \mathbb{Z}$.