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Chapter 1

Propositional Logic

Mathematical logic studies correct thinking, correct deductions of statements from other
statements. Let us make it more precise. A fundamental property of a statement is that it
may be true or false. Whether a statement is true or false is called its truth value. Logic is a
systematic study of how statements can be related in ways that capture their respective truth
values and how from statements (assumptions) correctly deduce other statements. Knowing
which deductions are ”logically” correct, we can determine the truth value not only by looking
at the words but by looking at the relationship to other statements.

We do not define what a statement is (we also did not define a set, a point etc.). For the
reader’s convenience, we only describe, in an intuitive way, what we mean by a statement:
By a statement we will understand something which is said about the world, and something
which has a truth value.

From elementary statements more complicated ones are built, and the truth value of these
statements is then determined by the basic ones. To form more complicated statements we
use the following logical connectives:
• it is not the case that; we denote it by ¬, and call it the negation;
• and; we denote it by ∧, and call it the conjunction;
• or; we denote it by ∨, and call it the disjunction;
• if . . . then; we denote it by ⇒, and call it the implication;
• if and only if; we denote it by ⇔, and call it the equivalence.

1.1 Formal Syntax of Propositional Logic

1.1.1 Definition of a Formula. Given a non-empty set A of logical variables (we also
call them elementary statements, or propositional variables). A finite sequence of elements of
the set A, of logical connectives and parentheses is called a propositional formula (or shortly
a formula), if it is formed by the following rules:

1. Every logical variable (elementary statement) a ∈ A is a propositional formula.

2. If α, β are propositional formulas, then so are (¬α), (α ∧ β), (α ∨ β), (α ⇒ β), and
(α⇔ β).

3. Only sequences that were formed by using finitely many applications of rules 1 and 2,
are propositional formulas.

The set of all propositional formulas, that were formed from the logical variables from the set
A is denoted by P(A). �

1.1.2 Remark and Notation. The connective ¬ is called unary, since it forms a new
formula from one formula. The other connectives are called binary, since they need two
formulas to form a new one.
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In what follows, we will always denote logical (propositional) variables by small letters:
e.g. a, b, c, . . . , x, y, z, . . . . Propositional formulas will be denoted by small Greek letters:
e.g. α, β, γ, . . . , ϕ, ψ, . . .

1.1.3 Convention. We will use two rules about usage of parenthesis:

1. We omit the outward parenthesis. For example, we will write (α ⇒ β) ⇒ β instead of
((α⇒ β)⇒ β).

2. We assume that the unary connective ¬ “is stronger than” each of the binary ones.
Hence, if α and β are formulas then we write ¬α ⇒ β instead of (¬α) ⇒ β, ¬α ∨ β
instead of (¬α)∨ β, etc. After all, you know such situation in arithmetic. For example,
−2 + 3 is interpreted as (−2) + 3, and not as −(2 + 3).

1.1.4 Syntactic Tree of a Formula. A syntactic tree of a formula ϕ captures its
structure; it is a rooted tree where each vertex which is not a leave is labeled by a logical
connective and has either one son if the connective is ¬, or two sons if the connective is ∧,
∨, ⇒, or ⇔. The leaves are labeled by logical variables.

A syntactic tree is also called derivation tree.

The depth of a formula is defined as the height of the syntactic tree of the formula.

1.1.5 Subformulas of a Given Formula. A subformula of a formula α is any substring
of α that is a formula itself. �

We can also say that a subformula of α is any string which corresponds to a subtree of
the syntactic tree of α.

1.2 Semantics in Propositional Logic

Now we will be interested in the fact whether a correctly formed formula is either true or
false. For this we will use the notion of a truth valuation.

1.2.1 Truth Valuations of Formulas.

Definition. Given a nonempty set of logical variables A. A mapping u:P(A) → {0, 1} is
called a truth valuation, if it satisfies the following rules

(1) u(¬α) = 1 if and only if u(α) = 0;

(2) u(α ∧ β) = 1 if and only if u(α) = u(β) = 1;

(3) u(α ∨ β) = 0 if and only if u(α) = u(β) = 0;

(4) u(α⇒ β) = 0 if and only if u(α) = 1 and u(β) = 0;

(5) u(α⇔ β) = 1 if and only if u(α) = u(β).

�
Here u(α) = 1 means that the formula α is true; and u(α) = 0 means that the formula α

is false.

1.2.2 Truth Tables. The properties that any truth valuation must have, can also be
expressed in terms of the truth tables of the logical connectives. These are:

α ¬α
0 1
1 0

α β α ∧ β α ∨ β α⇒ β α⇔ β
0 0 0 0 1 1
0 1 0 1 1 0
1 0 0 1 0 0
1 1 1 1 1 1
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1.2.3 How Many Different Truth Valuation There Are? The answer depends on
the number of logical variables. We shall show that if A has n logical variables then there are
2n distinct truth valuations. For this the following proposition is the key.

1.2.4 Proposition. Every mapping u0 :A → {0, 1} can be uniquely extended to a truth
valuation. It means that there is a unique truth valuation u :P(A) → {0, 1} such that
u0(a) = u(a) for all a ∈ A.

Moreover, two truth valuations u, v :P(A)→ {0, 1} coincide if and only if u(x) = v(x) for
every logical variable x ∈ A. �

Justification. Consider any formula α and its syntactic tree. Evaluate all logical variables
by their values in u0 (i.e. x has the value u(x) = u0(x)). Each vertex in the syntactic tree
has the value given by the connective and the value/s of its son/s. Now, the value of the root
of the syntactic tree is the truth value of the whole formula.

Notice that the above justification may be turned to an exact proof if mathematical
induction is used on the depth of the formula α.

1.2.5 Corollary. Let A contain n logical variables. Then there exist 2n distinct truth
valuations. �

Justification. The above proposition 1.2.4 tells us that the number of distinct truth valuations
is the number of distinct mappings u0 :A→ {0, 1}. And there are 2n of them.

Remark. Similarly as we formed truth tables for logical connectives we can also form truth
tables for any formula. From the above corollary we know that such a truth table will have
2n rows provided the formula has n logical variables.

1.2.6 A Tautology, a Contradiction, a Satisfiable Formula. Now we can divide
formulas into different groups according to their truth values in all valuations.

Definition.

1. A formula is called a tautology provided it is true for all truth valuations.

2. A formula is called a contradiction provided it is false for all truth valuations.

3. A formula is satisfiable provided there is at least one truth valuation for which the
formula is true.

�
Remark. It is evident that a negation of any tautology is a contradiction, and conversely, a
negation of a contradiction is always a tautology.

For instance, a ∨ ¬a, a ⇒ a are tautologies, whereas a ∧ ¬a is a contradiction. Every
tautology is a satisfiable formula, but there are satisfiable formulas that are not tautologies.
Indeed, a⇒ ¬a is such an example.

1.2.7 Tautological Equivalence. Formulas of propositional logic are defined as strings
of symbols (see 1.1.1), so two formulas are the same if and only if they are the same as strings.
Hence the equality of formulas is a very strict notion; indeed, formulas a ∧ b and b ∧ a are
different whereas everybody feels that meaning of the conjunction of two formulas does not
depend on their order. So we need a new notion for ”equality” of formulas; and the notion is
the tautological equivalence. There is the formal definition:

Definition. We say that formulas ϕ and ψ are tautologically equivalent (also semantically
equivalent), if they have the same value in every truth valuation, i.e. if u(ϕ) = u(ψ) for every
truth valuation u.

The fact that ϕ and ψ are tautologically equivalent is denoted by ϕ |=| ψ. �
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1.2.8 Examples. It is very easy to verify that the following tautological equivalences are
valid (indeed, it suffices to form corresponding truth tables):

1. α ∧ α |=| α, α ∨ α |=| α;

2. α ∧ β |=| β ∧ α, α ∨ β |=| β ∨ α (commutativity of ∧ and ∨);

3. α ∧ (β ∧ γ) |=| (α ∧ β) ∧ γ, α ∨ (β ∨ γ) |=| (α ∨ β) ∨ γ (associativity of ∧ and ∨);

4. α ∧ (β ∨ α) |=| α, α ∨ (β ∧ α) |=| α (absorption of ∧ and ∨);

5. ¬¬α |=| α (double negation);

6. ¬(α ∧ β) |=| (¬α ∨ ¬β), ¬(α ∨ β) |=| (¬α ∧ ¬β) (de Morgan’s laws);

7. α ∧ (β ∨ γ) |=| (α ∧ β)∨ (α ∧ γ), α ∨ (β ∧ γ) |=| (α ∨ β)∧ (α ∨ γ) (distributivity laws).

If moreover T is any tautology and F is any contradiction, then

8. T ∧ α |=| α, T ∨ α |=| T, F ∧ α |=| F, F ∨ α |=| α;

9. α ∧ ¬α |=| F, α ∨ ¬α |=| T.

�

You may notice that some of the above facts are analogous to the properties of the set
operations union, intersection, and complement. It is not surprising since these set operations
correspond to logical connectives disjunction, conjunction, and negation.

1.2.9 Properties of Tautological Equivalence. There are other properties that the
tautological equivalence has and that are useful if we are looking for a simple formula which
is tautologically equivalent to a given one. For this the following two propositions play a
crucial role.

Proposition. Tautological equivalence satisfies the following properties: For every formulas
α, β and γ

1. α |=| α;

2. if α |=| β then β |=| α;

3. if α |=| β and β |=| γ then α |=| γ.

�

Theorem. Let α, β, γ, and δ be formulas satisfying α |=| β and γ |=| δ. Then

1. ¬α |=| ¬β;

2. (α ∧ γ) |=| (β ∧ δ), (α ∨ γ) |=| (β ∨ δ), (α⇒ γ) |=| (β ⇒ δ), (α⇔ γ) |=| (β ⇔ δ).

�

Justification of the above Proposition and Theorem is straightforward and is left as an
exercise.

1.2.10 Remark. A formula was defined, see 1.1.1, as a correctly formed string of logical
variables, logical connectives (¬, ∧, ∨, ⇒ and ⇔), and paranthesis. We could started with
only four connectives; indeed, any formula of the form α ⇔ β can be rewritten using the
following tautological equivalence

α⇔ β |=| (α⇒ β) ∧ (β ⇒ α)

and we get a tautologically equivalent formula that contains only ¬, ∨, ∧ and ⇒.

Similarly, we can introduce F as a new symbol, representing a formula that is false in any
truth valuation, so it represents a contradiction. Hence, for example x⇒ F is a well formed
formula, moreover x⇒ F |=| ¬x.
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1.3 Semantical Consequence

Our main aim of this section is to give a more precise meaning to the concept of ”correct
reasoning”, i.e. how to correctly deduce statements/formulas from a given set of formu-
las/assumptions. What we mean by it: Given a set of assumptions, represented by a set of
formulas S, we will be looking for formulas that can be deduced from S.

Before doing this we specify what we mean by a set of formulas is true in a truth valuation.

1.3.1 Definition. Given a truth valuation u and a set of formulas S. We say that S is
true in u, (or that S is satisfied in u), if every formula from S is true in u. In other words,
u(ϕ) = 1 for all ϕ ∈ S.

A set of formulas is said to be satisfiable if it is true in at least one truth valuation.
Otherwise, it is called unsatisfiable. �

We will write u(S) = 1 whenever S is a set of formulas, u a truth valuation such that S
is true in u.

Example. For instance, the set {a ⇒ b,¬b} is true for u where u(a) = 0 = u(b), so it is
satisfiable. On the other hand, the set {a, a⇒ b,¬b} is unsatisfiable.

1.3.2 Semantical Consequence.

Definition. We say that a formula ϕ is a semantical consequence of a set of formulas S,
(or also that ϕ is an entailment of the set S, or that ϕ semantically follows from the set S),
provided ϕ is true for every truth valuation u for which the set S is true.

The fact that formula ϕ is a semantical consequence of the set S is denoted by S |= ϕ. �

Convention. If S is a one element set, e.g. S = {α}, and S |= ϕ, then we write α |= ϕ
instead of {α} |= ϕ.

If S is the empty set ∅, and S |= ϕ, then we write |= ϕ instead of ∅ |= ϕ.

Remarks. 1. It is easy to notice that S |= ϕ if and only if for every valuation u it holds
that u(S) ≤ u(ϕ).

2. Let us observe that one can verify semantical consequences using truth tables; indeed,
we first form truth tables for all formulas in S and for the formula ϕ. Then we look at all the
rows where all formulas from S have 1. In all these rows the formula ϕ must have 1 as well.

1.3.3 Examples. Let us give couple of examples; they are entailments that are commonly
used in many ”real life deductions”.

For all formulas α, β we have

1. {α, α⇒ β} |= β;

2. {α⇒ β,¬β} |= ¬α;

3. {α,¬α} |= β.

The justification of the above examples is straightforward.

1.3.4 Properties of Semantical Consequence. Let us state several properties that
semantical consequences have.

Proposition. For every two formulas ϕ, ψ we have

• ϕ |=| ψ if and only if ϕ |= ψ and ψ |= ϕ.

• We have ϕ |= ψ if and only if the formula ϕ⇒ ψ is a tautology.
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�
Justification. 1. ϕ |=| ψ means that u(ϕ) = u(ψ) for every truth valuation u. So if u(ϕ) = 1
then u(ψ) = 1, and if u(ψ) = 1 then u(ϕ) = 1, which proves the first part of the proposition.

2. Assume that ϕ |= ψ and take arbitrary truth valuation u. Then either u(ϕ) = 1, or
u(ϕ) = 0. In the first case, u(ψ) = 1 since ϕ |= ψ, and hence u(ϕ ⇒ ψ) = 1. In the latter
case, i.e. if u(ϕ) = 0, then from the properties of implication u(ϕ ⇒ ψ) = 1 as well. Hence
ϕ⇒ ψ is a tautology.

Assume that ϕ ⇒ ψ is a tautology. Then it cannot happen that u(ϕ) = 1 and u(ψ) = 0
for any truth valuation u. Hence ϕ |= ψ.

1.3.5 More Advanced Properties. We state two further properties that are true for
semantical consequence. The first one is a base for so called resolution method. The second
one is the Deduction Theorem for propositional logic. We will not prove them, the proofs are
not difficult and are left to the readers.

Theorem. Let S be a set of formulas and ϕ a formula. Then

S |= ϕ if and only if S ∪ {¬ϕ} is unsatisfiable.

Deduction Theorem. Let S be a set of formulas, α and β two formulas. Then

S |= (α⇒ β) if and only if S ∪ {α} |= β.

1.4 Boolean Calculus

Propositional logic has lot of applications, for example in the theory of logical circuits. In
many applications it is useful to form new ”operations” capturing the behavior of logical
connectives conjunction, disjunction, and negation.

1.4.1 Logical Operations. Given a truth valuation u and two logical variables a and b.
Denote x = u(a) and y = u(b). Then the following holds:

u(a ∨ b) = max{u(a), u(b)} = max{x, y},
u(a ∧ b) = min{u(a), u(b)} = min{x, y},
u(¬a) = 1− u(a) = 1− x.

It motivates the following definition of boolean operations for x, y ∈ {0, 1}:

x · y = min{x, y} (product),
x+ y = max{x, y} (logical sum),
x = 1− x (complement).

1.4.2 Properties of Logical Operations. Let us reformulate the properties of logical
connectives of ¬, ∨ and ∧ given in 1.2.8 to the properties of boolean operations.

Proposition. For all x, y, z ∈ {0, 1} we have:

1. x · x = x, x+ x = x;

2. x · y = y · x, x+ y = y + x;

3. x · (y · z) = (x · y) · z, x+ (y + z) = (x+ y) + z;

4. x · (y + x) = x, x+ (y · x) = x;

5. x · (y + z) = (x · y) + (x · z), x+ (y · z) = (x+ y) · (x+ z);
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6. x = x;

7. x+ y = x · y, x · y = x+ y;

8. x+ x = 1, x · x = 0;

9. x · 0 = 0, x · 1 = x;

10. x+ 1 = 1, x+ 0 = x.

1.4.3 Boolean Functions. To every formula ϕ with n logical variables a1, . . . , an one can
assign a function f : {0, 1}n → {0, 1} of n variables x1, . . . , xn defined

f(x1, . . . , xn) = u(ϕ) for u(ai) = xi, i = 1, . . . , n.

If two formulas α and β are tautologically equivalent, then their corresponding functions are
the same.

Definition. A function f : {0, 1}n → {0, 1} is called a boolean function of n variables, where
n is a natural number. �

Proposition. To every boolean function f : {0, 1}n → {0, 1} there is a formula α which
corresponds to f . �

Notice that the above proposition means that any boolean function can be written as an
expression of boolean operations. For example, the boolean function f corresponding to the
formula a⇒ b can be written as f(x, y) = x+ y since a⇒ b |=| ¬a ∨ b.
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