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A criterion of Γ -nullness and differentiability of convex
and quasiconvex functions

by

Jaroslav Tǐser and Luděk Zaj́ıček (Praha)

Abstract. We introduce a criterion for a set to be Γ -null. Using it we give a shorter
proof of the result that the set of points where a continuous convex function on a separable
Asplund space is not Fréchet differentiable is Γ -null. Our criterion also implies a new result
about Gâteaux (and Hadamard) differentiability of quasiconvex functions.

1. Introduction. Our paper deals with two closely related topics:

• Γ -null sets in Banach spaces, which were introduced by J. Linden-
strauss and D. Preiss [LP] in the theory of Fréchet differentiability of
Lipschitz functions on Banach spaces.
• Differentiability of convex and quasiconvex functions on Banach spaces.

It was proved in [LP, Corollary 3.11] (or [LPT, Corollary 6.3.10]) that
every continuous convex function on a separable Asplund space is Γ -a.e.
Fréchet differentiable. This result, however, follows from a more general and
very deep theorem [LP, Theorem 3.10] (or [LPT, Theorem 6.3.9]) with a
long and sophisticated proof.

In the present article we introduce a new criterion for a set to be Γ -null
(Proposition 3.6). Its proof is not short but is considerably more straight-
forward and much easier than the proof of the above mentioned theorem.
Using that criterion we give a quite different and much simpler proof of the
Γ -a.e. Fréchet differentiability of convex functions. (We note, however, that
the main application of [LP, Theorem 3.10] concerns general Lipschitz func-
tions, to which our method does not apply.) In this proof we observe that
the set NF of points of Fréchet nondifferentiability of a continuous convex
function f on a separable Asplund space has a relatively easily formulated
property (of being a countable union of Pdc-sets, see Theorem 4.2), which
permits the use of our Γ -nullness criterion. Also, Theorem 4.2 may be of
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some independent interest, since there exist a number of results (in [K],
[M], [LP], [PZ1], [PZ2], [Z3]) concerning smallness of the set NF , but our
Theorem 4.2 does not seem to follow from the known results.

A further application of our Γ -nullness criterion is a new observation in
Proposition 5.1 that the boundary of every closed and convex subset of any
separable Banach space is Γ -null. We use it to prove that every continuous
quasiconvex function on any separable Banach space is Γ -a.e. Hadamard (in
particular Gâteaux) differentiable.

2. Preliminaries. The symbol | · | denotes the Euclidean norm in Rn,
and B(t, r) is the closed ball centred at t with radius r > 0. We will use the
same symbol for balls in different spaces; it will be clear from the context
which space is intended. For a Lipschitz map f between metric spaces we
denote by Lip(f) the smallest Lipschitz constant of f .

Γ -null and Γn-null sets are defined as follows (see [LPT]). Let X be a
Banach space and let [0, 1]N be equipped with the product topology and
the product Lebesgue measure L N. We denote by Γ (X) the space of all
continuous mappings

γ : [0, 1]N → X

which have continuous partial derivatives Dkγ. (At the points where the
kth coordinate is 0 or 1 we consider one-sided derivatives.) The topology on
Γ (X) is generated by the countable family of pseudonorms

‖γ‖∞ and ‖Dkγ‖∞, k ≥ 1.

The space Γn(X) := C1([0, 1]n, X) is equipped with the norm

‖f‖C1 = max{‖f‖∞, ‖f ′‖∞}.
For the sake of completeness we recall that the derivative γ′(t) for t belonging
to the boundary ∂([0, 1]n) is a bounded linear operator L : Rn → X such
that

‖γ(s)− γ(t)− L(s− t)‖ = o(|s− t|), s→ t, s ∈ [0, 1]n.

The same convention will be used for C1 mappings defined on closed convex
sets. Moreover, by a C1 map defined on a noncompact subset of Rn we mean
a bounded map with a bounded and continuous derivative. The norm of such
a derivative will always refer to the Euclidean norm, although some other
norms in Rn will appear, too.

Definition 2.1. A Borel set A ⊂ X is called Γ -null if

L N{t ∈ [0, 1]N | γ(t) ∈ A} = 0

for residually many γ ∈ Γ (X). Analogously, a Borel set A ⊂ X is called
Γn-null if

L n{t ∈ [0, 1]n | γ(t) ∈ A} = 0

for residually many γ ∈ Γn(X).
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It is easy to verify that the families of Γ -null and of Γn-null sets are
each closed under countable unions. Also, the notions of Γ -null and Γn-null
are incomparable in general. Nevertheless, for sets of low Borel class we
will use the following two properties (see [LPT, Theorem 5.4.2] and [LPT,
Theorem 5.4.3]).

Lemma 2.2. If A ⊂ X is a Gδσ set which is Γn-null for infinitely many
n ∈ N, then A is Γ -null. If A is an Fσ set which is Γ -null, then A is Γn-null
for all n ∈ N.

We will also need the following notion.

Definition 2.3. Let X be a Banach space. A set H ⊂ X is called a
d.c.-hypersurface if X can be decomposed as X = X0⊕Rv, v ∈ X \{0}, and
there exists a d.c.-function g : X0 → R such that H = {x+ g(x)v | x ∈ X0}.
Here a d.c.-function is a difference of two continuous convex functions.

Remark 2.4. The above notion is important in the theory of differ-
entiability of convex continuous functions. Namely (see [Z1] or [BL, Theo-
rem 4.20]), if f is a continuous convex function on a separable Banach space
then the set NG of points of Gâteaux nondifferentiability of f can be covered
by countably many d.c.-hypersurfaces.

3. Criterion. We will need the following fact concerning extensions of
C1 mappings. The idea of the proof is the same as the idea of the proof of a
more special statement in [LPT, Lemma 5.3.1]. It is based on the following
extension result for Lipschitz functions (see [JLS]): Given a Lipschitz map
γ from a subset F of Rn into a Banach space X, there exists a Lipschitz
extension γ̃ : Rn → X of γ such that

(3.1) sup
t∈Rn
‖γ̃(t)‖ = sup

t∈F
‖γ(t)‖, Lip(γ̃) ≤ cn Lip(γ),

where cn depends only on the dimension n.

Lemma 3.1. Let X be a Banach space, q ≥ 1, and let ‖·‖ be an equivalent
norm on Rn satisfying

1

q
| · | ≤ ‖ · ‖ ≤ q| · |.

Let r > 0 and denote U = {x ∈ Rn | ‖x‖ ≤ r}. Then for every ε > 0 and
every C1 map γ : U → X there exists an extension γ̃ ∈ C1(Rn, X) such that

• γ̃ = 0 outside (1 + ε)U ;
• ‖γ̃‖C1 ≤ 2‖γ‖∞ +K(‖γ′‖∞ + ‖γ‖∞/(εr)), where K ≥ 0 depends only

on n and q.

Proof. In the first step we observe that for every C1 map γ : U → X one
can find γ̂ ∈ C1(Rn, X) such that
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(i) γ̂ = 0 outside (1 + ε)U ;
(ii) ‖γ − γ̂‖∞ ≤ 1

2‖γ‖∞, ‖γ′ − γ̂′‖∞ ≤ 1
2‖γ

′‖∞;
(iii) ‖γ̂‖C1 ≤ ‖γ‖∞ + κ(‖γ′‖∞ + ‖γ‖∞/(εr)),

where κ depends only on n and q. To this end, choose 0 < δ < 1
4ε small

enough to guarantee that

(3.2)

∥∥∥∥γ(t)− γ
(

1

1 + δ
s

)∥∥∥∥ ≤ 1

2
‖γ‖∞,∥∥∥∥γ′(t)− 1

1 + δ
γ′
(

1

1 + δ
s

)∥∥∥∥ ≤ 1

2
‖γ′‖∞

for any t ∈ U , s ∈ (1 + δ)U and |s− t| < rδ/q. Define

γ∗(t) =

 γ

(
t

1 + δ

)
if t ∈ (1 + δ)U ,

0 if t /∈ (1 + ε− δ)U.
Then clearly ‖γ∗‖∞ = ‖γ‖∞ and the Lipschitz constant of γ∗ can be esti-
mated by

Lip γ∗ ≤ max

{
‖γ′‖∞,

q‖γ‖∞
(ε− 2δ)r

}
≤ ‖γ′‖∞ +

2q‖γ‖∞
εr

.

Indeed, the first term in the maximum follows from the mean value theorem
for γ∗ on (1 + δ)U . Since the ‖ · ‖-distance between the sets (1 + δ)U and
Rn \ (1 + ε− δ)U is (ε− 2δ)r, the Euclidean distance between these sets is
at least (r/q)(ε− 2δ), which gives the second term in the maximum. Using
(3.1) we can extend γ∗ to a Lipschitz map on Rn preserving the ‖ · ‖∞-norm
and with the Lipschitz constant at most

cn

(
‖γ′‖∞ +

2q‖γ‖∞
εr

)
.

Convolving now this Lipschitz extension with a real C1 mollifier M sup-
ported in the (rδ/q)-neighbourhood of the origin, we obtain the desired γ̂:
The condition (i) is obviously true. To verify (ii), notice first that if t ∈ U
and |t− s| < rδ/q, then s ∈ (1 + δ)U . Now

γ(t)−
�
γ∗(s)M(t− s) ds =

�
(γ(t)− γ∗(s))M(t− s) ds

=
�(
γ(t)− γ

(
1

1 + δ
s

))
M(t− s) ds.

The first inequality in (3.2) implies the first estimate in (ii). Similarly we
obtain the second estimate. Since convolution can increase neither the sup-
norm nor the Lipschitz constant, we obtain (iii) with e.g. κ = 2qcn.

In the second step of the proof we will be recursively applying the exten-
sions just established. Denote γ0 = γ and then define γk+1 = γk−γ̂k on U for
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all k ≥ 0. Condition (ii) implies ‖γk‖∞ ≤ 2−k‖γ‖∞ and ‖γ′k‖∞ ≤ 2−k‖γ′‖∞.
Employing also (iii) we get

∞∑
k=0

‖γ̂k‖C1 ≤
∞∑
k=0

(
‖γk‖∞ + κ

(
‖γ′k‖∞ +

‖γk‖∞
εr

))
≤ 2‖γ‖∞ + 2κ

(
‖γ′‖∞ +

‖γ‖∞
εr

)
.

It follows that the series
∑∞

k=0 γ̂k converges in the space C1(Rn, X) to
some γ̃. Obviously, γ̃ = 0 outside (1 + ε)U and for t ∈ U we obtain

γ̃(t) =
∞∑
k=0

γ̂k(t) =
∞∑
k=0

(γk(t)− γk+1(t)) = γ(t).

Finally,

‖γ̃‖C1 ≤
∞∑
k=0

‖γ̂k‖C1 ≤ 2‖γ‖∞ + 2κ

(
‖γ′‖∞ +

‖γ‖∞
εr

)
,

and we obtain the statement of the lemma with the constant K = 2κ.

Let T : Rn → X be an affine injective map of Rn into a Banach space X.
Consider the image T [L n] of the Lebesgue measure L n under T . Then
both T [L n] and the n-dimensional Hausdorff measure H n are uniformly
distributed measures on the affine subspace T (Rn) and so the former is a
constant multiple of the latter,

(3.3) T [L n] = c(T )H n

(see e.g. [MT, Theorem 3.4]). The exact value of the constant c(T ) > 0 will
not be important for us.

The next definition introduces our key notion.

Definition 3.2. Let A ⊂ X be a subset of the Banach space X, let
a ∈ A and λ ∈ [0, 1). We say that A is Pλ-small at the point a if the
following property holds:

For every finite-dimensional subspace V ⊂ X there are sequences (yk)k∈N
of points of X and (rk)k∈N of positive reals such that

(i) rk ↘ 0;
(ii) ‖yk − a‖ = o(rk), k →∞;
(iii) for every k,

H m
(
B(yk, rk) ∩ (yk + V ) ∩A

)
≤ λH m

(
B(yk, rk) ∩ (yk + V )

)
,

where m = dimV ≥ 1.
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In case the sequences (rk) and (yk) satisfy (i) and (ii), but the last
condition (iii) is strengthened to

B(yk, rk) ∩ (yk + V ) ∩A = ∅,
we say that A is P -small at a.

Remark 3.3. (i) The name “P -small” comes from the fact that the set
A is relatively small on many finite-dimensional planes close to the point a.

(ii) One can easily notice that A is P -small at a ∈ A iff for every δ > 0
and every finite-dimensional subspace V ⊂ X there is y ∈ X with 0 <
‖y − a‖ < δ such that

B(y, ‖y − a‖/δ) ∩ (y + V ) ∩A = ∅.

(iii) The property of Pλ-smallness is not so symmetric. If λ ∈ [0, 1) and
a ∈ A have the property that for every δ > 0 and every finite-dimensional
subspace V ⊂ X there is y ∈ X with 0 < ‖y − a‖ < δ such that

H m
(
B(y, ‖y − a‖/δ) ∩ (y + V ) ∩A

)
≤ λH m

(
B(y, ‖y − a‖/δ) ∩ (y + V )

)
,

then A is Pλ-small at the point A. However, the opposite implication does
not hold.

The next two notions follow the same pattern: after disregarding an
exceptional subset, the set under consideration is Pλ-small (P -small, resp.)
at all remaining points.

Definition 3.4. Let A ⊂ X be a closed subset of a separable Banach
space X.

(i) The set A is called a PΓλ -set, λ ∈ [0, 1), if there is a Borel subset
A0 ⊂ X which is Γn-null for infinitely many n and A is Pλ-small at
all points of A \A0.

(ii) The set A is called a Pdc-set if there is a subset A0 ⊂ X which is a
countable union of d.c.-hypersurfaces and such that A is P -small at
all points of A \A0.

Remark 3.5. Observe that each Pdc-set is also a PΓλ -set for all λ ∈ [0, 1).
Indeed, any countable union of d.c.-hypersurfaces is an Fσ set which is Γ -null
(see [Z2, p. 157]). By Lemma 2.2, it is a Γn-null set even for all n.

We now formulate a criterion for Γ -nullness.

Proposition 3.6. Let A ⊂ X be a PΓλ -set, λ ∈ [0, 1), in a separable
Banach space X. Then A is Γ -null.

Proof. Let n ∈ N be such that the corresponding A0 is Γn-null and let
α > 0. The set

Sα = {γ ∈ Γn(X) | L nγ−1(A) ≥ α}
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is closed in Γn(X) by [LPT, Lemma 5.4.1]. We show that Sα is nowhere
dense for all α > 0.

Suppose not and set

α0 = sup{α > 0 | Sα is not nowhere dense}.

We can find positive numbers α, α1 such that 0 < α < α0 < α1 and

(3.4)
1 + λ

2
α1 < α.

Recall now that by [LPT, Lemma 5.3.5] the set of surfaces γ ∈ Γn(X) for
which rank γ′(t) = n for almost all t ∈ [0, 1]n is residual. Let A∗ = A \ A0

for short. By our assumption, the set

(3.5) {γ ∈ Γn(X) | L nγ−1(A∗) = L nγ−1(A)}

and the set of all surfaces with L nγ−1(A) < α1 are both residual. We denote
by S the residual set of surfaces possessing all three properties.

Let γ ∈ S ∩ IntSα and choose τ > 0 so that B(γ, τ) ⊂ Sα. To achieve
the desired contradiction it suffices to find a surface γ0 ∈ B(γ, τ) \ Sα. We
start by choosing η > 0 small enough that

(3.6) λ(L nγ−1(A∗) + η) + 2η <
1 + λ

2
α1.

For every t ∈ (0, 1)n with rank γ′(t) = n we denote Vt = Im γ′(t) and
Lt = γ′(t), a linear isomorphism of Rn onto Vt. It is easy to show that the set
of points in (0, 1)n with rank γ′(t) = n is open, and the mappings t 7→ ‖Lt‖
and t 7→ ‖L−1t ‖ are continuous on this set. Find q > 0 such that the set

H := {t ∈ (0, 1)n | rank γ′(t) = n, ‖Lt‖ ≤ q, ‖L−1t ‖ ≤ q}

has measure at least 1− η. Using (3.6) we now choose ε > 0 to satisfy both(
2
(
1
2q + 1

)
ε+K

(
1 + 2q

(
1
2q + 1

)))
ε < τ,(3.7)

(1 + ε)n − 1 + λ

(1 + ε)n
(L nγ−1(A∗) + η) + 2η ≤ 1 + λ

2
α1,(3.8)

where K = K(n, q) is from Lemma 3.1. Since γ′ is uniformly continuous on
[0, 1]n, there is δ ∈ (0, 1] such that for any s, t ∈ [0, 1]n with |s − t| < δ we
have ‖γ′(s)− γ′(t)‖ < ε.

Further, let G ⊂ (0, 1)n be an open set containing H ∩ γ−1(A∗) with

(3.9) L n
(
G \ (H ∩ γ−1(A∗))

)
< η.

Since the set A is Pλ-small at each point of A∗, by Definition 3.2 one
can find, for any at := γ(t) with t ∈ H ∩ γ−1(A∗) and the finite-dimensional
subspace Vt, the corresponding sequences (yk(t)) of points of X and (rk(t))
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of positive numbers with

(3.10) H n
(
B(yk(t), rk(t)) ∩ (Vt + yk(t)) ∩A

)
≤ λH n

(
B(yk(t), rk(t)) ∩ (Vt + yk(t))

)
.

For such t and k ∈ N, denote

Uk(t) := t+ L−1t B(0, rk(t)),

Ũk(t) := t+ L−1t B(0, (1 + ε)rk(t)).

Clearly, Uk(t) ⊂ Ũk(t). Note also that by the definition of H,

(3.11) B(t, rk(t)/q) ⊂ Uk(t) ⊂ B(t, qrk(t)), hence
2rk
q
≤ diamUk ≤ 2qrk.

In particular, diamUk(t)→ 0 as k →∞. Assume without loss of generality
that for every t ∈ H ∩ γ−1(A∗) and for all k ∈ N we have, together with
(3.10), also the following:

diamUk(t) < δ and Ũk(t) ⊂ G;(3.12)

‖yk(t)− γ(t)‖ < ε2rk(t);(3.13)

‖γ(s)− γ(t)− γ′(t; s− t)‖ ≤ ε2|s− t| for s ∈ Uk(t).(3.14)

Form a Vitali system by assigning to every t ∈ H ∩ γ−1(A∗) the sequence

(Ũk(t))k∈N of closed sets. Due to the regularity condition (3.11) the Vitali
Covering Theorem is applicable (see e.g. [F, Lemma 471O]) and it yields a
finite disjoint subfamily of the Vitali system covering the set H ∩ γ−1(A∗)
up to a measure η,

(3.15) L n
(
H ∩ γ−1(A∗) \

m⋃
i=1

Ũki(ti)
)
< η.

We simplify the notation by setting yi = yki(ti), Ui = Uki(ti), Ũi = Ũki(ti),
Li = Lti , and ri = rki(ti). In order to apply Lemma 3.1 introduce new norms
‖t‖i := ‖Lit‖ on Rn, i = 1, . . . ,m. Since ti ∈ H, we have

1

q
|t| ≤ ‖t‖i ≤ q|t|, i = 1, . . . ,m.

Then the sets Ui and Ũi are balls in the norm ‖ · ‖i with centre ti and radius
ri and (1 + ε)ri, respectively. Thus

L nŨi = (1 + ε)nL nUi.

For every i = 1, . . . ,m define γi : Ui → X by

γi(t) = yi + γ′(ti; t− ti)− γ(t) = yi + Li(t− ti)− γ(t), t ∈ Ui.
With the help of Lemma 3.1 we can find extensions γ̃i ∈ Γn(X) such that
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• γ̃i = 0 outside Ũi;
• ‖γ̃i‖C1 ≤ 2‖γi‖∞ +K(‖γ′i‖∞ + ‖γi‖∞/(εri)).

Set γ0(t) = γ(t) +
∑m

i=1 γ̃i(t). To estimate ‖γ − γ0‖C1 we notice that by
(3.13), (3.14) and (3.11) we have

‖γi‖∞ = ‖yi + Li(· − ti)− γ‖∞
≤ ‖yi − γ(ti)‖+ ‖γ(ti) + Li(· − ti)− γ‖∞
≤ ε2ri + ε2 diamUi

≤
(
1
2q + 1

)
ε2 diamUi.

Since diamUi < δ (see (3.12)), by the choice of δ we have

‖γ′i‖∞ = ‖γ′(ti)− γ′‖∞ < ε.

Hence using also (3.11), (3.12), (3.7) and the fact that δ ≤ 1, we get

‖γ̃i‖C1 ≤ 2
(
1
2q + 1

)
ε2 diamUi +K

(
ε+

2q
(
1
2q + 1

)
ε2 diamUi

εdiamUi

)
≤
(
2
(
1
2q + 1

)
εδ +K

(
1 + 2q

(
1
2q + 1

)))
ε < τ.

It follows that ‖γ − γ0‖C1 ≤ max1≤i≤m ‖γ̃i‖C1 < τ and so γ0 ∈ B(γ, τ).
It remains to show that γ0 does not belong to Sα, i.e. L nγ−10 (A) < α.

Since

(3.16) L nγ−10 (A) =
m∑
i=1

L n(Ũi ∩ γ−10 (A)) + L n
(
γ−10 (A) \

m⋃
i=1

Ũi

)
,

we have to estimate both summands. For the first one, notice that γ0 is an
affine map on each Ui, γ0 = γ+γi = yi−Li(ti)+Li. Denoting for a moment
Ti = yi − Li(ti) + Li, one easily checks that

Ti(Ui) = yi +B(0, ri) ∩ Vti = B(yi, ri) ∩ (yi + Vti).

Using now (3.3) and (3.10) we obtain

L n(Ui ∩ γ−10 (A)) = L n
(
T−1i (B(yi, ri) ∩A)

)
= Ti[L

n](B(yi, ri) ∩A)

= c(Ti) H n
(
B(yi, ri) ∩ (yi + Vti) ∩A

)
≤ λc(Ti)H n

(
B(yi, ri) ∩ (yi + Vti)

)
= λL nUi.

Thus we have
m∑
i=1

L n(Ũi ∩ γ−10 (A)) ≤
m∑
i=1

L n(Ũi \ Ui) +

m∑
i=1

L n(Ui ∩ γ−10 (A))

≤
(

1− 1

(1 + ε)n

) m∑
i=1

L nŨi + λ
m∑
i=1

L nUi
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=
(1 + ε)n − 1 + λ

(1 + ε)n

m∑
i=1

L nŨi

≤ (1 + ε)n − 1 + λ

(1 + ε)n
L nG

≤ (1 + ε)n − 1 + λ

(1 + ε)n
(L nγ−1(A∗) + η),

where the last inequality follows from (3.9).

The second summand in (3.16) is easy to control. Since the surface γ

satisfies L nγ−1(A) = L nγ−1(A∗) by (3.5) and γ0 = γ outside
⋃k
i=1 Ũi, we

conclude that (3.15) holds for γ0 and A as well:

L n
(
H ∩ γ−10 (A) \

m⋃
i=1

Ũki(ti)
)
< η.

By the choice of H,

L n
(
γ−10 (A) \

k⋃
i=1

Ũi

)
≤ L n

(
(H ∩ γ−10 (A)) \

k⋃
i=1

Ũi

)
+ η < 2η.

Using these estimates in (3.16) together with (3.8) we obtain

L nγ−10 (A) ≤ (1 + ε)n − 1 + λ

(1 + ε)n
(L nγ−1(A∗) + η) + 2η ≤ 1 + λ

2
α1 < α

by the condition (3.4).

In this way we have proved that all sets Sα, α > 0, are nowhere dense.
Consequently, A is Γn-null. Since n belongs to an infinite subset of positive
integers, A is Γ -null by Lemma 2.2.

Corollary 3.7. Let A be a Borel subset of a separable Banach space
and let A ⊂

⋃∞
n=1An. If for every n the set An is a PΓλn-set, then A is

Γ -null. In particular, every Pdc-set is Γ -null.

Proof. The last statement follows immediately from Remark 3.5.

4. Convex functions. In this section we prove that for every convex
continuous function f on a Banach space with separable dual the set NF

of all points of Fréchet nondifferentiability of f is a countable union of
Pdc-sets. This result on smallness of NF is new. Moreover, combining it
with Corollary 3.7 we obtain a simpler proof of the known result of [LP]
that NF is Γ -null.

Lemma 4.1. Let X be a Banach space and let f : X → R be a convex
Lipschitz function. Let 0 < ε ≤ 1 and ϕ ∈ X∗. Denote by A = A(f, ε, ϕ) the
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set of all x ∈ X for which there exists ϕx ∈ ∂f(x) such that

‖ϕx − ϕ‖ ≤ ε,(4.1)

lim sup
h→0

|f(x+ h)− f(x)− ϕx(h)|
‖h‖

≥ 6ε.(4.2)

Assume that f is Gâteaux differentiable at a point a ∈ A. Then A is P -small
at a.

Proof. Choose K ≥ 1 such that f is Lipschitz with constant K. For the
proof it will be convenient to use the alternative definition of P -smallness
mentioned in Remark 3.3(ii). Let 0 < δ ≤ 1 and a finite-dimensional sub-
space V ⊂ X be given. We show that there is y ∈ X with 0 < ‖y − a‖ < δ
satisfying

(4.3) B(y, ‖y − a‖/δ) ∩ (y + V ) ∩A = ∅.

Since f is Gâteaux differentiable at a ∈ A, we have ‖ϕ − f ′G(a)‖ ≤ ε. To
simplify the notation we set

g(x) := f(x)− f(a)− f ′G(a)(x− a), x ∈ X.

Then clearly g(a) = 0, g′G(a) = 0 and

(4.4) lim sup
h→0

|g(a+ h)|
‖h‖

≥ 6ε.

The function ξ(t) := g(a + t), t ∈ V , is a Lipschitz function on a finite-
dimensional space. For such functions the Gâteaux and Fréchet differentia-
bility are equivalent. Since ξ′G(0) = 0 we can choose 0 < r ≤ 1 so that

(4.5) |g(a+ t)| ≤ δε‖t‖ whenever t ∈ V ∩B(0, r).

By (4.4) there is h ∈ X with 0 < ‖h‖ < δεr/(2K) such that

(4.6) |g(a+ h)| ≥ 5ε‖h‖.

To prove (4.3) with y := a+ h suppose the contrary: There is a point x
such that

x ∈ B(y, ‖y − a‖/δ) ∩ (y + V ) ∩A.

Denote M = 2K/ε. The restriction imposed upon ‖h‖ implies

M‖x− y‖ ≤M ‖y − a‖
δ

= M
‖h‖
δ

<
2K

ε

εr

2K
= r.

Noticing that M ≥ 1 we also have, in particular, ‖x−y‖ < r. Since x−y ∈ V ,
the condition (4.5) gives

|g(a+ (x− y))| ≤ ε‖y − a‖,(4.7)

|g(a−M(x− y))| ≤Mε‖y − a‖.(4.8)
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Let ϕx ∈ ∂f(x) be as in the definition of the set A. Then ‖ϕx − ϕ‖ ≤ ε,
ϕx − f ′G(a) ∈ ∂g(x) and

‖ϕx − f ′G(a)‖ ≤ ‖ϕx − ϕ‖+ ‖ϕ− f ′G(a)‖ ≤ 2ε.

Consequently, using also (4.7) we obtain

g(x) ≤ g(a+ (x− y)) + (ϕx − f ′G(a), y − a)(4.9)

≤ ε‖y − a‖+ ‖ϕx − f ′G(a)‖ ‖y − a‖
≤ ε‖y − a‖+ 2ε‖y − a‖ = 3ε‖y − a‖.

Since g is clearly a Lipschitz function with constant 2K, we have

|g(y −M(x− y))− g(a−M(x− y))| ≤ 2K‖y − a‖,

which combined with (4.8) implies

(4.10) |g(y −M(x− y))| ≤Mε‖y − a‖+ 2K‖y − a‖ = 2Mε‖y − a‖.

Finally, the point y is a convex combination

y =
M

M + 1
x+

1

M + 1
(y −M(x− y)).

Thus, using convexity of g, (4.6), (4.9) and (4.10), we obtain

5ε‖y − a‖ ≤ g(y) ≤ M

M + 1
g(x) +

1

M + 1
g(y −M(x− y))

≤ M

M + 1
3ε‖y − a‖+

M

M + 1
2ε‖y − a‖

< 5ε‖y − a‖,

which is a contradiction.

We are ready for the main result of this section.

Theorem 4.2. Let X be a Banach space with X∗ separable, G ⊂ X an
open convex set and f : G→ R a continuous convex function. Then the set of
points where f is not Fréchet differentiable is a countable union of Pdc-sets.
Consequently, f is Fréchet differentiable Γ -almost everywhere in G.

Proof. Since f is locally Lipschitz and X is separable, we may and will
assume that f is Lipschitz and convex, and that it is defined on the whole
space. (We use the well known and easy fact that every Lipschitz convex
function on an open convex set can be extended to a Lipschitz convex func-
tion on the whole space.) Denote by NF and NG the sets of points of Fréchet
and Gâteaux nondifferentiability of f , resp. The set NG is contained in a set
A0 which is a countable union of d.c.-hypersurfaces (see Remark 2.4). We
are going to show that NF is a countable union of Pdc-sets.
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Let {ϕk | k ∈ N} be a dense sequence in X∗. For every m ∈ N we define

Fm =

{
x ∈ X

∣∣∣∣ sup
‖h‖≤δ

|f(x+ h) + f(x− h)− 2f(x)| ≥ δ

m
for every δ > 0

}
.

Then NF =
⋃∞
m=1 Fm and every Fm is closed (see [BL, proof of Proposition

4.16]). We further set

Fm,k =

{
x ∈ Fm

∣∣∣∣ there is ϕx ∈ ∂f(x) such that ‖ϕk − ϕx‖ ≤
1

24m

}
.

Clearly, NF =
⋃∞
m,k=1 Fm,k. We are going to prove that each Fm,k is closed

and P -small at the points of Fm,k \A0.

Recall that the mapping x 7→ ∂f(x) is norm-weak∗ upper semicontinuous
by [P, Proposition 2.5]. Since the ball B(ϕk, 1/(24m)) is weak∗ closed, we
conclude that Fm,k is a closed set.

Now fix m, k and set ϕ := ϕk and ε := 1/(24m). We prove that

(4.11) Fm,k ⊂ A(f, ε, ϕ),

where A(f, ε, ϕ) is as in Lemma 4.1. Let x ∈ Fm,k. Choose ϕx ∈ ∂f(x) such
that ‖ϕk − ϕx‖ ≤ 1/(24m). So the condition (4.1) of Lemma 4.1 holds. To
verify (4.2), suppose the contrary. Then there exists δ > 0 such that

(4.12) |f(x+ h)− f(x)− ϕx(h)| < 6ε‖h‖ whenever ‖h‖ ≤ δ.
By the definition of Fm there exists h ∈ X with ‖h‖ ≤ δ such that

(4.13) |f(x+ h) + f(x− h)− 2f(x)| ≥ δ

2m
= 12δε.

Using (4.12), we obtain

|f(x+ h) + f(x− h)− 2f(x)|
≤ |f(x+ h)− f(x)− ϕx(h)|+ |f(x− h)− f(x)− ϕx(−h)|
< 12εδ,

which contradicts (4.13). Hence Fm,k ⊂ A(f, ε, ϕ).

Let x ∈ Fm,k \ A0. By (4.11) the point x belongs to A(f, ε, ϕ) and it is
also a point of Gâteaux differentiability of f . Lemma 4.1 now shows that
Fm,k is P -small at x. Therefore NF is a countable union of Pdc-sets and so
it is Γ -null by Corollary 3.7.

5. Quasiconvex functions. We recall that a function f : X → R is
quasiconvex if

f(τx+ (1− τ)y) ≤ max{f(x), f(y)}
for all x, y ∈ X and τ ∈ [0, 1]. This is equivalent to the requirement that the
sets {x ∈ X | f(x) ≤ r} are convex for all r ∈ R.
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In [R] it is proved (besides other results) that a continuous quasiconvex
function on a separable reflexive Banach space is Hadamard differentiable
off a Haar null set. In what follows we show that a continuous quasiconvex
function on any separable Banach X space is Hadamard differentiable Γ -a.e.
For X reflexive our result and that of [R] are incomparable, since the notions
of Haar null set and Γ -null set are not comparable in general. However, our
result is the first result on almost everywhere differentiability of quasiconvex
functions with respect to a certain σ-ideal in general separable Banach spaces
(even for Gâteaux differentiability).

Our proof is a combination of well-known methods and the following
result.

Proposition 5.1. Let A ⊂ X be a closed convex subset of a separable
Banach space X. Then the boundary ∂A is P1/2-small at all of its points.
Consequently, ∂A is Γ -null. In particular, a closed convex nowhere dense
subset of X is Γ -null.

Proof. Here we use the formulation given in Remark 3.3(iii).

Let a ∈ ∂A and assume that δ > 0 and a finite-dimensional space V ⊂ X
are given. Choose an open ball B ⊂ B(a, δ) \ A and use the Hahn–Banach
theorem to separate the ball B from A by a closed hyperplane H. Let y ∈
H ∩ B(a, δ) \ A. We set F = B(y, ‖y − a‖/δ) ∩ (y + V ) and denote by
σ : X → X the symmetry map with respect to the point y, σ(x) = 2y − x.
Then F = (F \A) ∪ σ(F \A), which implies

H m(F ∩ ∂A) ≤H m(F ∩A) ≤ 1
2H

m(F ),

where m = dimV .

Having verified that ∂A is P1/2-small at all its points, we apply Propo-
sition 3.6 to complete the proof.

Remark 5.2. It follows from an unpublished observation of D. Preiss
that Γ -nullness of ∂A can be proved in a much shorter way without using
Proposition 3.6.

Before the statement of the last theorem let us recall one fact that will
be needed in the proof. Several systems of exceptional sets were introduced
in [PZ3]. We will refer to one of them, denoted by C̃, and to the property

that C̃ is (strictly) smaller than the system of Γ -null sets (see [Z3]).

Theorem 5.3. Let f : X → R be a continuous quasiconvex function on
a separable Banach space X. Then f is Hadamard differentiable Γ -a.e.

Proof. Let A = {x ∈ X | f(x) ≤ inf f}. Then A is a (possibly empty)
closed convex set. The function f is locally cone monotone outside A (see [R,
Lemma 4.1]). By [D], f is Hadamard differentiable on X \A except possibly
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on a set from C̃. Since any such set is Γ -null, we may conclude that f is
Hadamard differentiable at Γ -a.a. points of X \A.

If A is nowhere dense, it is Γ -null by Proposition 5.1 and we are done.
If A has nonempty interior then the boundary is again Γ -null and f is even
constant and so Fréchet differentiable in the interior of A.
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