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Fréchet differentiability of Lipschitz functions
via a variational principle

Received September 25, 2008

Abstract. We prove a new variational principle which in particular does not assume the complete-
ness of the domain. As an application we give a new, more natural, proof of the fact that a real
valued Lipschitz function on an Asplund space has points of Fréchet differentiability.

1. Introduction

We recall first some basic definitions concerning differentiability of functions defined on
an open setG of a Banach spaceX. The function f defined onG with values in a Banach
space Y is said to have a directional derivative at x ∈ G in the direction u if

f ′(x; u) = lim
t↘0

f (x + tu)− f (x)

t
(1)

exists. If f ′(x; u) exists for every u ∈ X and defines a bounded linear operator f ′(x) as
a function of u we say that f is Gâteaux differentiable at x. If, in addition, the limit (1)
exists uniformly in u in the unit sphere of X we say that f is Fréchet differentiable at x.
Alternatively, f is Fréchet differentiable at x iff

f (x + u) = f (x)+ f ′(x) u+ o(‖u‖), ‖u‖ → 0. (2)

If f is a Lipschitz function and dimX < ∞ then, as easily seen, the notions of Gâteaux
differentiability and Fréchet differentiability coincide. However, if dimX = ∞ the two
notions are different. Consider e.g. the function

f (x) = sin x, x ∈ L2[0, 1],

fromL2[0, 1] into itself. This function is everywhere Gâteaux differentiable with f ′(x) =
cos x (i.e. f ′(x)u = u cos x). The function f is however nowhere Fréchet differentiable.
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Take e.g. in the equation (2) the point x = 0 and the direction u = χE , the characteristic
function of a set E ⊂ [0, 1]. Then notice that

sinχE = χE + χE(sin 1− 1)

and χE(sin 1− 1) is not o(‖χE‖) as ‖χE‖ → 0.
There are well known satisfactory results concerning the existence a.e. of Gâteaux

derivatives of Lipschitz functions from X to Y if X is separable and Y has the Radon–
Nikodym property (RNP). For a detailed discussion of such results as well as the meaning
of a.e. and RNP we refer to the book [1]. On the other hand, there are many natural
open problems concerning the existence of Fréchet derivatives, and the proofs of known
theorems in this subject are often very hard.

A basic positive result in this direction was proved in [9].

Theorem 1.1. Let f : G → R be a Lipschitz function defined on a non-empty open
subset G of an Asplund space X. Then f has points of Fréchet differentiability.

Moreover, for any a, b ∈ G for which the segment [a, b] lies entirely in G and every
ε > 0 there is an x ∈ G at which f is Fréchet differentiable and

f ′(x; b − a) < f (b)− f (a)+ ε.

A Banach space X is called an Asplund space if the dual of every separable subspace of
X is again separable. In particular, every reflexive Banach space is Asplund. The most
important special case of Theorem 1.1 is where X is a Hilbert space. The proof of this
special case is as hard as the general case. The “moreover” part of Theorem 1.1 represents
a mean value theorem for Fréchet derivatives.

The proof in [9] as well as the somewhat simpler proof in [5] involve a delicate it-
erative construction of a sequence of points which are shown to converge to a point of
Fréchet differentiability. This method reminds one of proofs of variational principles.
In fact, Fréchet differentiability results are related to the natural domain of variational
principles (i.e. the existence of points where some functions attain their maximum). If
f : X→ Y is Lipschitz then it is known that

Lip(f ) = sup ‖f ′(x)‖

where the supremum is taken over all points x where f is Gâteaux differentiable (it
is assumed that X is separable and Y has RNP). If there exists a point x0 such that
Lip(f ) = ‖f ′(x0)‖ then (at least in the case of uniformly smooth space X) it is easy
to show that f is Fréchet differentiable at x0. However, the existing variational principles
(e.g. in [2], [4]) do not seem to apply in our situation. They all assume the completeness
of the domain, while the set M of points where f is Gâteaux differentiable (on which
we have to maximize ‖f ′(x)‖) is in general not complete and does not even admit an
equivalent complete metric. (M is an Fσδ set in X, in general not aGδ set.) Thus we need
a variational principle in which we do not assume the completeness of the domain.

Such a variational principle is proved in Section 2 below. This variational principle
has other uses as well. In fact, we first proved it in order to obtain results on the structure
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of porous sets (a notion which will not be used in the present paper; see however the book
[6].) In Section 3 we show how the variational principle is used to prove the easy special
case of Theorem 1.1 where we assume that f is everywhere Gâteaux differentiable.

In Section 4 we prove, using the Hardy–Littlewood maximal lemma, a one-dimen-
sional result which is used in the final step of the proof of Theorem 1.1. Section 5 contains
a complete proof of Theorem 1.1 using the variational principle. Although this proof uses
the main ideas of the proof in [9] the many difficulties encountered in [9] become much
easier to overcome in view of the use of the variational principle and, more importantly,
the steps in the proof are now more natural.

The paper ends in Section 6 where several extensions of Theorem 1.1 are announced
(which will be proved in the forthcoming book [6]).

2. A variational principle

We define notions of completeness and lower semicontinuity in an abstract form and in
Theorem 2.4 we prove a general form of the variational principle.

Definition 2.1. Suppose that (M, d) is a metric space and d0 a continuous pseudometric
on M . We say that M is (d, d0)-complete if there are functions δj : Mj+1

→ (0,∞),
j ≥ 0, such that every d-Cauchy sequence (xj )∞j=0 converges to an element ofM provided
that

d0(xj , xj+1) ≤ δj (x0, . . . , xj ) for each j ≥ 0.

A function f : M → R is (d, d0)-lower semicontinuous if there are functions δj : Mj+1

→ (0,∞), j ≥ 0, such that
f (x) ≤ lim inf

j→∞
f (xj )

whenever xj ∈ M converge in metric d to x ∈ M and

d0(xj , xj+1) ≤ δj (x0, . . . , xj ) for each j ≥ 0.

Notice that the choice d0 = 0 in Definition 2.1 yields the standard notions of completeness
and lower semicontinuity.

Lemma 2.2. Let (M, d) be a metric space and d0 a continuous pseudometric on M . If
f : M → R has the property that for each r ∈ R, the set {x ∈ M | f (x) ≤ r} is a Gδ
subset of (M, d0), then f is (d, d0)-lower semicontinuous.

Proof. For each q ∈ Q choose a sequence (H q
i )i≥1 of d0-open sets such that

{x ∈ M | f (x) ≤ q} =

∞⋂
i=1

H
q
i .

Order all sets H q
i , i ≥ 1, q ∈ Q, into one sequence G0,G1, . . . .

We denote by B0[x, r] the d0-closed ball with centre x and radius r . Let δ0 ≡ 1. We
choose recursively the values δj (x0, . . . , xj ) > 0, j ≥ 1, so that
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• δj (x0, . . . , xj ) ≤
1
2δj−1(x0, . . . , xj−1),

• B0[xj , 2δj (x0, . . . , xj )] ⊂ Gi whenever 0 ≤ i < j and xj ∈ Gi .

Suppose now that the points xj converge in (M, d) to some x∞ ∈ M and satisfy
d0(xj , xj+1) ≤ δj (x0, . . . , xj ) for each j ≥ 0. Consider any rational number q with
q < f (x∞). Since the set {x ∈ M | f (x) ≤ q} is the intersection of a subcollection of
the sets Gi , there is i such that

{x ∈ M | f (x) ≤ q} ⊂ Gi and x∞ /∈ Gi .

We show that f (xj ) > q for j > i. Indeed, f (xj ) ≤ q implies that xj ∈ Gi and so the
ball B0[xj , 2δj (x0, . . . , xj )] is contained in Gi . But for all k ≥ j we have

d0(xk, xk+1) ≤ δk(x0, . . . , xk) ≤ 2j−kδj (x0, . . . , xj ),

hence

d0(xj , xk) ≤ d0(xj , xj+1)+ · · · + d0(xk−1, xk)

≤ (1+ 2−1
+ · · · + 2j−k+1)δj (x0, . . . , xj ) ≤ 2δj (x0, . . . , xj ).

Since the metric d0 is d-continuous, we can take the limit k → ∞ to deduce that
d0(xj , x∞) ≤ 2δj (x0, . . . , xj ). This implies

x∞ ∈ B0[xj , 2δj (x0, . . . , xj )] ⊂ Gi,

which is a contradiction. Hence f (xj ) > q for all j > i, and consequently

f (x∞) ≤ lim inf
j→∞

f (xj )

as required. ut

Lemma 2.3. Let (M, d) be a complete metric space, d0 a continuous pseudometric onM ,
and S a Gδ subset of (M, d0). Then S is (d, d0)-complete.

Proof. Let f be the characteristic function of the complement of S, f = χM\S . Then f
satisfies the assumptions of Lemma 2.2. Hence f is (d, d0)-lower semicontinuous, i.e.
there are functions δj : Mj+1

→ (0,∞) such that

f (x) ≤ lim inf
j→∞

f (xj )

whenever xj ∈ M converge to x in (M, d) and d0(xj , xj+1) ≤ δj (x0, . . . , xj ) for each
j ≥ 0.

Suppose now that a Cauchy sequence (xj )
∞

j=0 in (S, d) satisfies the condition
d0(xj , xj+1) ≤ δj (x0, . . . , xj ) for each j ≥ 0. Since M is complete, the points xj con-
verge in (M, d) to some x ∈ M . Moreover, by the (d, d0)-lower semicontinuity of f ,

f (x) ≤ lim inf
j→∞

f (xj ) = 0,

implying that x ∈ S, and we are done. ut

The variational principle is contained in the following theorem.
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Theorem 2.4. Let f : M → R be a function bounded from below on a metric space
(M, d). Let d0 be a continuous pseudometric on M such that

• M is (d, d0)-complete;
• f is (d, d0)-lower semicontinuous.

Let Fj : M ×M → [0,∞], j ≥ 0, be functions which are d-lower semicontinuous in the
second variable with Fj (x, x) = 0 for all x ∈ M and

inf
d(x,y)>rj

Fj (x, y) > 0 for some sequence rj ↘ 0. (3)

If x0 ∈ M and (εj )∞j=0 is any sequence of positive numbers such that

f (x0) ≤ ε0 + inf
x∈S

f (x),

then one may find a sequence (xj )∞j=1 in M converging in the metric d to some x∞ ∈ M
and a d0-continuous function ϕ : M → R such that the function

h(x) := f (x)+ ϕ(x)+
∞∑
j=0

Fj (xj , x)

attains its minimum on M at x = x∞. Moreover, if 0 ≤ j < k + 1 ≤ ∞,

Fj (xj , xk) ≤ εj and h(x∞) ≤ εj + inf
x∈M

(
f (x)+ ϕ(x)+

j−1∑
i=0

Fi(xi, x)
)
. (4)

Before the proof it will be useful to make some comments on Theorem 2.4.

Comments. By considering the case j = 0 in the second inequality in (4) it is immediate
to see that h(x∞) <∞.

Notice also that the statements of Theorem 2.4 do not change when a constant is added
to ϕ. So one can always replace ϕ by ϕ−ϕ(x∞) to achieve that ϕ(x∞) = 0. Once we have
ϕ(x∞) = 0, we may replace ϕ once more by max{0, ϕ} leaving h(x∞) unchanged and not
decreasing the other values of h. Therefore we may add to the statements of Theorem 2.4
the requirement that ϕ ≥ ϕ(x∞) = 0.

The usual form of the smooth variational principle as considered in [2] is the special
case of Theorem 2.4 when M is a Banach space, d0 = 0, f is ‖ · ‖-lower semicontinuous
and all Fj are constant multiples of a single (smooth) function F(x − y). Then the func-
tion ϕ is necessarily constant and so the previous remark says that we can have ϕ = 0.
In a similar way one can obtain Ekeland’s variational principle putting Fi(x, y) to be a
multiple of the metric d(x, y).

In addition to treating non-lower semicontinuous functions f and incomplete
spaces M , the above variational principle refines the statement of the usual smooth varia-
tional principles also in other aspects. The dependence of the perturbation functions Fj on
j is allowed to be almost arbitrary and a stronger conclusion than just existence of mini-
mum is stated in (4). Other similar ramifications may be obtained by carefully following
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the proof. For example, infinitely many j ’s are sufficient in (3) or given any ε > ε0,
we can have ε ≥ ϕ ≥ ϕ(x∞) = 0. However, in Theorem 2.4 we have just given those
statements that will be used in the following.

Proof of Theorem 2.4. By diminishing the values of εj for j ≥ 1, if necessary, we may
assume that

∑
∞

j=1 εj <∞ and

inf
d(x,y)>rj

Fj (x, y) > εj (5)

for every j ≥ 1. Find the functions δj : Mj+1
→ (0,∞) witnessing the fact f is (d, d0)-

lower semicontinuous. We may also assume that the same functions δj witness the (d, d0)-
completeness of M .

We will now define by induction points xj ∈ M , d0-continuous functions ϕj : M →
[0,∞) and lower bounded functions hj : M → (−∞,∞] such that, in particular, the
following requirements hold:

(i) ϕj (xj ) = 0 for j ≥ 0;
(ii) hj (xj ) ≤ εj + infx∈M hj (x) for j ≥ 0;

(iii) hj (xj ) ≤ hj−1(xj−1) for j ≥ 1;
(iv) ϕi(xj )+ Fi(xi, xj ) ≤ εi whenever j ≥ i ≥ 0.

To start the definitions for j = 0, recall that the point x0 ∈ M is already given. We let
h0(x) = f (x) and define

ϕ0(x) = 2ε0 min{1, d0(x, x0)/δ0(x0)}.

Then (i) is satisfied. By assumptions,

h0(x0) ≤ ε0 + inf
x∈M

h0(x),

which is the requirement (ii). The condition (iii) requires nothing for j = 0 and the
remaining condition (iv) is satisfied trivially.

Assume now that for some j > 0, xi , ϕi and hi have already been defined for i =
0, 1, . . . , j − 1. We let

hj (x) = hj−1(x)+ ϕj−1(x)+ Fj−1(xj−1, x) = f (x)+

j−1∑
i=0

(ϕi(x)+ Fi(xi, x)).

The observation that hj (xj−1) = hj−1(xj−1) allows us to choose xj so that

hj (xj ) ≤ min{hj−1(xj−1), εj + inf
x∈S

hj (x)}.

Finally, we put
ϕj (x) = 2εj min{1, d0(x, xj )/δj (x0, . . . , xj )}.
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Since (i), (ii) and (iii) hold true we turn our attention to the condition (iv). For i = j the
left hand side is zero. Let 0 ≤ i < j . Then

hi(xi) ≥ hj (xj ) since hi(xi) decrease in i
≥ hi+1(xj ) since hi(x) increase in i
= hi(xj )+ ϕi(xj )+ Fi(xi, xj ) by definition of hi+1

≥ hi(xi)+ ϕi(xj )+ Fi(xi, xj )− εi since hi(xi) ≤ εi + hi(x).

Subtracting hi(xi) from both sides, we obtain (iv) and the construction is finished.
We now deduce from (iv) that the sequence (xj ) is d-Cauchy. For any ε > 0 find an

index i so that ri ≤ ε. Hence, using (5), Fi(x, y) > εi whenever d(x, y) > ε. Since (iv)
gives that for all j > i, Fi(xi, xj ) ≤ εi , this implies that d(xi, xj ) ≤ ε, as required.

We also notice that the sequence (xj ) satisfies d0(xi, xj ) ≤ δi(x0, . . . , xi) for j > i:
the opposite inequality d0(xi, xj ) > δi(x0, . . . , xi) would imply that ϕi(xj ) = 2εi , which
contradicts (iv).

Hence, by (d, d0)-completeness of M and (d, d0)-lower semicontinuity of f , the se-
quence (xj ) converges in the metric d to some x∞ ∈ M and

f (x∞) ≤ lim inf
j→∞

f (xj ).

Let ϕ(x) =
∑
∞

j=0 ϕj (x). Since the series is uniformly convergent, the function ϕ is
d0-continuous. In particular, it is d-continuous as well. The desired perturbed function
h(x) from the statement of the theorem will be

h(x) = f (x)+ ϕ(x)+

∞∑
j=0

Fj (xj , x).

Recalling that the functions x 7→ F(xj , x) are d-lower semicontinuous, we get, for any
fixed k,

h0(x0) ≥ h1(x1) ≥ · · · ≥ lim
j→∞

hj (xj ) ≥ lim inf
j→∞

(
f (xj )+ ϕ(xj )+

k∑
i=0

Fi(xi, xj )
)

≥ f (x∞)+ ϕ(x∞)+

k∑
i=0

Fi(xi, x∞).

Hence
hj (xj ) ≥ h(x∞) for all j ≥ 0. (6)

The first inequality in (4) follows immediately from (iv), and the second from (6)
and (ii):

h(x∞) ≤ hj (xj ) ≤ εj + inf
x∈M

hj (x) ≤ εj + inf
x∈M

(
f (x)+ ϕ(x)+

j−1∑
i=0

Fi(xi, x)
)
.
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Finally, we may take the limit as j →∞ and conclude that

h(x∞) ≤ inf
x∈M

(
f (x)+ ϕ(x)+

∞∑
i=0

Fi(xi, x)
)
= inf
x∈M

h(x).

Hence h(x) attains its minimum on M at x = x∞. ut

3. An illustrative special case

To demonstrate the variational approach we prove the following theorem which was first
proved in [8].

Theorem 3.1. Let X be a Banach space with separable dual X∗ and let f : X → R be
Lipschitz and everywhere Gâteaux differentiable. Then f has points of Fréchet differen-
tiability.

Besides the variational principle, which is its main ingredient, the proof requires two
additional observations. Recall that a function 2 : X→ R is called upper Fréchet differ-
entiable at x0 ∈ X if there is L ∈ X∗ such that

lim sup
‖u‖→0

2(x0 + u)+2(x0)− Lu

‖u‖
≤ 0.

Observation 3.2. Let2 : X→R be everywhere upper Fréchet differentiable, ψ : X→R
continuous and f : X → R Lipschitz and everywhere Gâteaux differentiable. Suppose
further that the function h : X ×X→ R given as

h(x, u) = f ′(x; u)+2(u)+ ψ(x)

attains its minimum at (x0, u0). Then f is Fréchet differentiable at x0.

Proof. Although it is not necessary, we first notice that after fixing the variable x = x0
in h(x, u), the resulting function of u is upper differentiable and attains its minimum at
u = u0. Hence its upper derivative is zero, giving that f ′(x0) + L = 0, where L is an
upper derivative of 2 at u0. So it should be no surprise that the formulas below actually
show that the Fréchet derivative of f at x0 is equal to −L.

Let ε > 0 and find 1 > 0 so that

2(u)−2(u0) ≤ L(u− u0)+
ε

3
‖u− u0‖

for ‖u− u0‖ ≤ 1. By continuity of ψ , there is δ0 > 0 such that

|ψ(x)− ψ(x0)| <
ε1

3
for ‖x − x0‖ ≤ δ0. Finally, let δ > 0 be such that both δ(1+ ‖u0‖/1) < δ0 and

|f (x0 + tu0)− f (x0)− f
′(x0; tu0)| ≤

ε1

3
|t |

for |t | ≤ δ/1.
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Assume that v ∈ X with ‖v‖ < δ. We denote for the moment t = ‖v‖/1 and
u = (1/t)v + u0. Since h(x, u) attains its minimum at (x0, u0) one can write, for every
x ∈ [x0 − tu0, x0 + v], that

f ′(x; u)+2(u)+ ψ(x) ≥ f ′(x0; u0)+2(u0)+ ψ(x0).

Hence, using that ‖x−x0‖ ≤ ‖v‖+ t‖u0‖ ≤ ‖v‖(1+‖u0‖/1) < δ0 and ‖u−u0‖ = 1,
we obtain

f ′(x; u) ≥ f ′(x0; u0)− (2(u)−2(u0))− (ψ(x)− ψ(x0))

≥ f ′(x0; u0)− L(u− u0)−
ε

3
‖u− u0‖ −

ε1

3

= f ′(x0; u0)−
1
t
L(v)−

ε

3t
‖v‖ −

ε

3t
‖v‖ = f ′(x0; u0)−

1
t
L(v)−

2ε
3t
‖v‖.

So

f (x0 + v)− f (x0 − tu0) ≥ t inf{f ′(x; u) | x ∈ [x0 − tu0, x0 + v]}

≥ f ′(x0; tu0)− L(v)−
2ε
3
‖v‖. (7)

Since |t | ≤ δ/1, we also have

f (x0 − tu0)− f (x0) ≥ −f
′(x0; tu0)−

ε1

3
t = −f ′(x0; tu0)−

ε

3
‖v‖.

Adding this to (7), we get

f (x0 + v)− f (x0) ≥ −L(v)− ε‖v‖.

To obtain the upper estimate of this increment, we proceed in a completely symmetric
way. Let t be as above but this time we let u = −(1/t)v + u0. For every x ∈ [x0 + v,

x0 + tu0], using again that

f ′(x; u)+2(u)+ ϕ(x) ≥ f ′(x0; u0)+2(u0)+ ϕ(x0),

we get

f ′(x; u) ≥ f ′(x0; u0)− (2(u)−2(u0))− (ψ(x)− ψ(x0))

≥ f ′(x0; u0)− L(u− u0)−
ε

3
‖u− u0‖ −

ε1

3

= f ′(x0; u0)+
1
t
L(v)−

2ε
3t
‖v‖.

So

f (x0 + tu0)− f (x0 + v) ≥ t inf{f ′(x; u) | x ∈ [x0 + v0, x0 + tu0]}

≥ f ′(x0; tu0)+ L(v)−
2ε
3
‖v‖.
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Subtracting this from

f (x0 + tu0)− f (x0) ≤ f
′(x0; tu0)+

ε1

3
t

we get

f (x0 + v)− f (x0) ≤ −L(v)+
2ε
3
‖v‖ +

ε1

3
t = −L(v)+ ε‖v‖. ut

Clearly, the above argument works under considerably less stringent assumptions. For
example, the upper Fréchet differentiability of 2 was used at u0 only, and much of the
assumed Gâteaux differentiability of f remained unused. Since in applications u0 is not
known in advance, the former observation has little influence on what follows, but the
latter, after a technical improvement, is in the very heart of our approach to the general
case.

The observation below represents the specific feature of our approach. The directional
derivative f ′(x; u) is not continuous as a function in two variables x, u but it is (d, d0)-
continuous for suitable choice of metrics d and d0.

Observation 3.3. Let X be a Banach space and f : X→ R a Lipschitz and everywhere
Gâteaux differentiable function. Let M := X ×X be equipped with the metric

d((x, u), (y, v)) =
√
‖x − y‖2 + ‖u− v‖2

and with the continuous pseudometric

d0((x, u), (y, v)) = ‖x − y‖.

Then the map (x, u) 7→ f ′(x; u) from M to R is (d, d0)-continuous.

Proof. We will define the following strategies δj : Mj+1
→ (0,∞) witnessing the

(d, d0)-continuity. Let δ0(x0, u0) = 1. Given j ≥ 1 and the pairs (x0, u0), . . . , (xj , uj ),
we find

0 < δ ≤ 1
2δj−1((x0, u0), . . . , (xj−1, uj−1))

so that ∣∣f (xj + tuj )− f (xj )− f ′(xj ; tuj )∣∣ ≤ |t |/j
whenever |t | ≤ jδ. Then we put δj ((x0, u0), . . . , (xj , uj )) = δ.

We have to show that f ′(xj ; uj ) converge to f ′(x; u)whenever the pairs (xj , uj ) ∈ M
d-converge to (x, u) ∈ M and

‖xj+1 − xj‖ ≤ δj ((x0, u0), . . . , (xj , uj )).

To simplify the notation we let δj = δj ((x0, u0), . . . , (xj , uj )).
Since δj+1 ≤

1
2δj , we have ‖x − xj‖ ≤ 2δj and also jδj → 0. Let ε > 0. One can

find j ∈ N so that

Lip(f )‖u− uj‖ < ε,
1+ 4 Lip(f ))

j
< ε,
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and ∣∣f (x + tu)− f (x)− f ′(x; tu)∣∣ ≤ ε|t | for |t | ≤ jδj .

Let t ∈ R with |t | = jδj . Then we obtain the following estimate:

|f ′(x; tu)− f ′(xj ; tuj )| ≤ |f (x + tu)− f (x)− f (xj + tuj )+ f (xj )| + ε|t | + |t |/j

≤ |f (x + tu)− f (xj + tuj )| + |f (xj )− f (x)| + ε|t | + |t |/j

≤ 2 Lip(f )‖x − xj‖ + Lip(f )‖u− uj‖|t | + ε|t | + |t |/j

≤

(
4 Lip(f )δj
|t |

+ Lip(f )‖u− uj‖ + ε +
1
j

)
|t |

=

(
1+ 4 Lip(f )

j
+ Lip(f )‖u− uj‖ + ε

)
|t | ≤ 3ε|t |. ut

Proof of Theorem 3.1. Since the dual spaceX∗ is separable, the spaceX admits a Fréchet
smooth norm ‖ · ‖ (see e.g. [4, Theorem 3.1]). We plan to apply our variational principle,
Theorem 2.4, on the metric space M = X ×X equipped with the metric d ,

d((x, u), (y, v)) =

√
‖x − y‖2 + ‖u− v‖2,

and with the pseudometric d0,

d0((x, u), (y, v)) = ‖x − y‖.

The space (M, d) is complete and so (d, d0)-complete as well. We choose the functions

Fj ((x, u), (y, v)) := 2−jd2((x, u), (y, v)) = 2−j (‖x − y‖2 + ‖u− v‖2)

and constants rj = 2−j , j ≥ 0. Then clearly

inf{Fj ((x, u), (y, v)) | d((x, u), (y, v)) > rj } > 0.

Theorem 2.4 will be used to find a suitable minimum attaining perturbation of the function

g(x, u) := f ′(x; u)+ ‖u‖2.

For this, we still need to check the remaining assumptions. First, Observation 3.3 guar-
antees that the function g is (d, d0)-continuous. It is also bounded from below, since
g(x, u) ≥ −Lip(f )‖u‖ + ‖u‖2; this was the reason for adding ‖u‖2. The choice of the
starting point and of the parameters εj controlling the speed of convergence is irrelevant
in our situation, with the exception of the case j = 0 when we have an assumption to
verify. Thus we set, e.g., εj = 2−j and we find the starting point (x0, u0) so that

g(x0, u0) < ε0 + inf
(x,u)∈M

g(x, u).

Theorem 2.4 provides us with a sequence of pairs (xj , uj ) converging to some (x∞, u∞)
and a d0-continuous function ϕ : X ×X→ R such that the function

h(x, u) = f ′(x, u)+ ‖u‖2 + ϕ(x, u)+

∞∑
j=0

2−j (‖x − xj‖2 + ‖u− uj‖2)



396 J. Lindenstrauss et al.

attains its minimum at (x∞, u∞). Notice that d0-continuity of ϕ means that the function
ϕ depends only on the variable x. An appeal to Observation 3.2 with ψ(x) = ϕ(x) +∑
∞

j=0 2−j‖x − xj‖2 and

2(u) = ‖u‖2 +

∞∑
j=0

2−j‖u− uj‖2

gives that f is Fréchet differentiable at x∞. ut

4. A one-dimensional ‘mean value’ estimate

We will need a certain variant of standard estimates of a maximal operator which is easily
deduced from the weak type (1, 1) inequality for the Hardy–Littlewood maximal operator.
Recall that the Hardy–Littlewood maximal operator for an integrable function f : R→ R
is defined by

Mf (t) = sup
r>0

1
2r

∫ t+r

t−r

|f (s)| ds,

and it satisfies the weak type (1, 1) estimate

L 1
{t ∈ R | Mf (t) > λ} ≤

2
λ
‖f ‖L1 for all λ > 0.

Lemma 4.1. Let h : [a, b] → R be a Lipschitz function with h(a) = h(b). Denote, for
t ∈ [a, b],

H(t) = sup
{
|h(β)− h(α)|

β − α

∣∣∣∣ a ≤ α ≤ t ≤ β ≤ b, α < β

}
.

Then for every λ > 0,

L 1
{t ∈ [a, b] | H(t) > λ} ≤

8
λ

∫ b

a

max{0, h′(t)} dt.

Proof. Let λ > 0. Since clearly H(t) ≤ 2Mh′(t), we obtain

L 1
{t ∈ [a, b] | H(t) > λ} ≤

4
λ

∫ b

a

|h′(t)| dt.

The condition h(a) = h(b) implies, however, that∫
{t |h′(t)>0}

h′(t) dt =

∫
{t |h′(t)<0}

−h′(t) dt,

i.e. ∫ b

a

|h′(t)| dt = 2
∫ b

a

max{0, h′(t)} dt. ut

Lemma 4.2. Let h : [a, b] → R be a Lipschitz function, h(b) = h(a) = 0, and let
κ = Lip(h). Then there is a set S ⊂ [a, b] such that 3κL 1S ≥ ‖h‖∞ and for every
ξ ∈ S,
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(i) h is differentiable at ξ ;
(ii) h′(ξ) ≥ ‖h‖∞/3(b − a);

(iii) |h(t)− h(ξ)| ≤ 48
√
κh′(ξ)|t − ξ | for every t ∈ [a, b].

Proof. Denote by S ⊂ [a, b] the set of all points ξ ∈ (a, b) for which (i)–(iii) hold and
suppose to the contrary that L 1S < 1

3κ ‖h‖∞. Then for a.e. t ∈ [a, b] \ S either

h′(t) <
‖h‖∞

3(b − a)
or h′(t) ≥

‖h‖∞

3(b − a)
and H(t) > 48

√
κh′(t).

Recalling also that h′ ≤ κ , we see that for a.e. t ∈ [a, b],

max{0, h′(t)} < max{0, h′(t)}χS(t)+
‖h‖∞

3(b − a)
+min

{
κ,

1
482κ

H 2(t)

}
.

Hence we get with the help of Lemma 4.1 a contradiction by estimating

∫ b

a

max{0, h′(t)} dt

<

∫
S

max{0, h′(t)} dt +
∫ b

a

‖h‖∞

3(b − a)
dt +

∫ b

a

min
{
κ,

1
482κ

H 2(t)

}
dt

≤ κL 1S +
1
3
‖h‖∞ +

∫ κ

0
L 1

{
t ∈ [a, b]

∣∣∣∣ 1
482κ

H 2(t) > λ

}
dλ

≤
2
3
‖h‖∞ +

∫ κ

0

1

6
√
κλ
dλ

∫ b

a

max{0, h′(t)} dt

≤
2
3

∫ b

a

max{0, h′(t)} dt +
2
6

∫ b

a

max{0, h′(t)} dt

=

∫ b

a

max{0, h′(t)} dt. ut

Corollary 4.3. Let g, h : [−δ, δ]→ R be functions, 0 < a ≤ δ, and let h(t) = g(t) for
a ≤ |t | ≤ δ. Suppose further that h is κ-Lipschitz and that the parameter 0 < τ ≤ κ is
such that

|h(0)− g(0)| ≥ 13τa and |g(t)− g(0)| ≤
1
κ
τ 2
|t | for |t | ≤ δ.

Then there is ξ ∈ (−a, a) \ {0} with the following properties:

(i) h is differentiable at ξ ;
(ii) h′(ξ) ≥ τ ;

(iii) |h(t)− h(ξ)| ≤ 99
√
κh′(ξ) |t − ξ | for every t ∈ [−δ, δ].
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Proof. Assume that Lip(h) > 0. Since neither the assumptions nor the conclusion change
when we add the same constant to the functions g, h, we may subtract g(0) from both of
them, and so assume that g(0) = 0. Define h0 : [−a, a]→ R by

h0(t) = h(t)−
a − t

2a
h(−a)−

a + t

2a
h(a).

Notice that Lip(h0) < 2 Lip(h). We apply Lemma 4.2 to the function h0 and κ0 = Lip(h0)

to get a subset S ⊂ [−a, a] such that 3κ0L 1S ≥ ‖h0‖ and for every ξ ∈ S,

(a) h0 is differentiable at ξ ;
(b) h′0(ξ) ≥ ‖h0‖∞/6a;
(c) |h0(t)− h0(ξ)| ≤ 48

√
κ0h
′

0(ξ)|t − ξ | for every t ∈ [a, b].

In order to see what (a), (b), and (c) imply for the original function h, denote η = τ 2/κ

and observe that, clearly, η ≤ τ and η ≤ κ . Now

sup
t∈[−a,a]

|h0(t)− h(t)| = max{|h(a)|, |h(−a)|} = max{|g(a)|, |g(−a)|} ≤ ηa, (8)

and for t, s ∈ [−a, a],

|(h(t)− h(s))− (h0(t)− h0(s))| ≤
|t − s|

2a
|h(a)− h(−a)|

=
|t − s|

2a
|g(a)− g(−a)| ≤ η|t − s|. (9)

In particular, ‖h0‖∞ ≥ ‖h|[−a,a]‖∞ − ηa ≥ |h(0)| − ηa ≥ 13τa − ηa = 12τa. Since
κ0 < 2κ it follows that

L 1([−a, a] \ [−a + τa/κ, a − τa/κ]) =
2τa
κ
≤
‖h0‖∞

6κ
<
‖h0‖∞

3κ0
≤ L 1S.

Thus we can find a point ξ ∈ S ∩ [−a + τa/κ, a − τa/κ] \ {0}. Since h′0(ξ) exists, h′(ξ)
exists as well. By (9) and (b) we also have

h′(ξ) ≥ h′0(ξ)− η ≥
‖h0‖∞

6a
− η ≥ 2τ − η ≥ τ,

which gives (ii). Moreover, it also gives

h′0(ξ) ≤ h
′(ξ)+ η ≤ h′(ξ)+ τ ≤ 2h′(ξ).

Let t ∈ [−a, a]. Then by (9) and (c) we obtain

|h(t)− h(ξ)| ≤ |h0(t)− h0(ξ)| + η|t − ξ | ≤ (48
√
κ0h
′

0(ξ)+ η)|t − ξ |

≤ (48
√

2κ2h′(ξ)+ η
√
h′(ξ)/τ)|t − ξ |

= (96+ η/
√
κτ)

√
κh′(ξ)|t − ξ | ≤ 97

√
κh′(ξ)|t − ξ |. (10)
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Hence (iii) holds for t ∈ [−a, a]. It remains to show that (iii) holds also for t ∈ [−δ, δ] \
[−a, a]. Let s be the (unique) point of (ξ, t)∩{−a, a}. Since ξ ∈ [−a+τa/κ, a−τa/κ],
we have |s − ξ | ≥ τ |s|/κ and so

|t − ξ | = |t − s| + |s − ξ | ≥
τ

κ
|t − s| +

τ

κ
|s| =

τ

κ
|t |.

Hence

|h(t)− h(s)| = |g(t)− g(s)| ≤ η(|t | + |s|) ≤ 2η|t |

≤
2ηκ
τ
|t − ξ | = 2τ |t − ξ | ≤ 2

√
κh′(ξ)|t − ξ |.

Since (10) implies

|h(s)− h(ξ)| ≤ 97
√
κh′(ξ)|s − ξ | ≤ 97

√
κh′(ξ)|t − ξ |,

we get the required

|h(t)− h(ξ)| ≤ |h(t)− h(s)| + |h(s)− h(ξ)| ≤ 99
√
κh′(ξ)|t − ξ |. ut

5. Proof of Theorem 1.1

We will prove the following variant of Theorem 1.1. The main difference is that we have
replaced the assumption that X be Asplund by existence of a suitably smooth bump func-
tion. In fact, our argument uses only the weaker assumption, but in view of the separable
reduction arguments (cf. [7] or [5]), such conditions do not bring anything new. However,
as pointed out at the final comments, they may be useful in studying other derivatives.

Proposition 5.1. Let f : G → R be a Lipschitz function defined on a non-empty open
subset G of a Banach space X. Assume that X admits a locally Lipschitz, everywhere
upper Fréchet differentiable function 2 : X→ [0,∞) such that

2(0) = 0, and inf
‖z‖>s

2(z) > 0 for every s > 0.

Then f has a point of Fréchet differentiability.
More precisely, if x0 ∈ G and u0 ∈ X are such that f ′(x0; u0) exists, then for every

r0 > 0 there are x ∈ G and u ∈ B(u0, r0) such that f is Fréchet differentiable at x and
f ′(x; u) ≤ f ′(x0; u0).

The first statement of Theorem 1.1 follows immediately from this. For the second state-
ment, we let u0 = b− a and notice that the function t 7→ f (a+ tu0) is Lipschitz. Hence
there is a point x0 ∈ [a, b] so that f ′(x0; u0) exists and

f ′(x0; u0) ≤ f (b)− f (a).
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To finish the proof of Theorem 1.1, we use Proposition 5.1 with some r0 > 0 such
that r0 Lip(f ) < ε. Then

f ′(x; u0) ≤ f
′(x; u)+ Lip(f )‖u− u0‖ < f ′(x0; u0)+ ε ≤ f (b)− f (a)+ ε,

as required.
The rest of this section is devoted to the proof of Proposition 5.1.

The space M . We shall assume that ‖u0‖ = 1 and that 0 < r0 < 1 is so small that
B(x0, r0) ⊂ G and 2 is Lipschitz on B(0, r0). We let r = 1

3 r0 and denote B = {x ∈ X |
‖x − x0‖ ≤ r}, U = {u ∈ X | ‖u− u0‖ ≤ r}, and

M = {(x, u) ∈ B × U | f ′(x; u) exists}.

We intend to define a new metric onM not topologically equivalent to the metric resulting
from its embedding into X × X which will enable us to use the variational principle. To
define it, we map M into the function space

P = {g : (−r, r)→ R | g is Lipschitz, g(0) = 0}

by assigning to (x, u) the function fx,u : (−r, r)→ R given as

fx,u(t) = f (x + tu)− f (x). (11)

We equip P with the distance %(g, h) defined by

%(g, h) = sup
t∈(−r,r)\{0}

|g(t)− h(t)|

|t |
.

Notice that %(g, h) ≤ Lip(g) + Lip(h), hence % is finite. The wished-for metric d on M
is

d((x, u), (y, v)) = max{‖x − y‖, ‖u− v‖, %(fx,u, fy,v)}. (12)

The idea behind this approach is that the convergence in the metric d allows control of
the increments f (x + tu) − f (x), thus making it possible to deduce that f ′(x; u) exists
whenever there is a sequence (xk, uk) d-converging to (x, u) such that all f ′(xk; uk) exist.

In the first lemma, we notice that our construction has the additional advantages
that M is complete and that the function mapping (x, u) ∈ M to f ′(x; u) is continuous.
Hence the variational principle will be used in the simpler form, without the pseudomet-
ric d0.

Lemma 5.2. The space (M, d) is complete and the real-valued function (x, u) 7→f ′(x; u)
is d-continuous and bounded from below on M .
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Proof. Suppose that a sequence (xk, uk) ∈ M is d-Cauchy. Then the points xk norm
converge to some x ∈ B, the directions uk norm converge to some u ∈ U and the
functions fxk,uk converge in the space P to some function g. The last assertion means
that

sup
t∈(−r,r)\{0}

|fxk,uk (t)− g(t)|

|t |
→ 0. (13)

Since on the set (−r, r) the functions fxk,uk converge pointwise to fx,u, we see that g(t) =
fx,u(t). Hence fxk,uk converge to fx,u in (P, %), which implies that (xk, uk) converge to
(x, u) in (B × U, d).

It remains to verify that f ′(x; u) exists and that f ′(xk; uk)→ f ′(x; u). The fact that

lim
t→0

fxk,uk (t)

t
= f ′(xk; uk)

exists for each k and the condition (13), which says that fxk,uk (t)/t converge to fx,u(t)/t
uniformly, imply that the limit

lim
t→0

fx,u(t)

t
= f ′(x; u)

exists, and is equal to limk→∞ f
′(xk; uk). So (x, u) ∈ M and the function (x, u) 7→

f ′(x; u) is d-continuous on M . ut

The three statements of the next lemma relate some ordinary topological or metric notions
in B × U to those coming from the metric %. The first two are quite natural, the third is
rather technical and geared toward its use in the final stages of the proof.

Lemma 5.3. The metric % has the following three properties, the latter two with a suit-
able constant C ∈ (0,∞):

(i) For any (x, u) ∈ B × U , the function y 7→ %(fx,u, fy,u) is norm lower semicontin-
uous on B.

(ii) For any (x, u), (x, v) ∈ B × U , %(fx,u, fx,v) ≤ C‖u− v‖.
(iii) For every x, y, z ∈ B, u ∈ U and δ > 0,

%(fx,u, fy,u) ≤ max
{
%(fx,u, fz,u)+

C

δ
‖y − z‖,

sup
0<|t |<δ

inf
w∈U

(
C‖u− w‖ +

∣∣∣∣fx,u(t)− fy,w(t)t

∣∣∣∣)}.
Proof. (i) Notice that for any fixed t , the function

y 7→ |fx,u(t)− fy,u(t)|/|t |

is continuous. Supremum of continuous functions is lower semicontinuous and we are
done.

(ii) Obvious by taking C ≥ Lip(f ).
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(iii) If |t | ≥ δ then

|fx,u(t)− fy,u(t)|

|t |
≤
|fx,u(t)− fz,u(t)|

|t |
+

2 Lip(f )
|t |

‖y − z‖

≤ %(fx,u, fz,u)+
2 Lip(f )

δ
‖y − z‖.

If |t | < δ, then for every w ∈ U ,

|fx,u(t)− fy,u(t)|

|t |
≤ Lip(f )‖u− w‖ +

|fx,u(t)− fy,w(t)|

|t |
.

Hence the statement holds for any constant C ≥ 2 Lip(f ). ut

Use of the variational principle. Choose ε0 > 0 so that f ′(x0; u0) ≤ ε0+ inf{f ′(x; u) |
(x, u) ∈ M} and find λ0 > ε0 so large that

ε0

λ0
<
r

2
and 2(z) >

ε0

λ0
for ‖z‖ ≥

r

2
. (14)

Denote
κ = (1+ Lip(f )+ 2λ0 Lip(2|B(0,r0)))(2+ r).

We will also choose a constant C > 0 for which the estimates of Lemma 5.3(ii) and (iii)
hold. Further, let

σ0 = min
{
λ0,

1
20κ

}
and for i ≥ 1 define

σi = σ
3
i−1, λi = σi and εi = σ

3
i .

We will often use the following (very rough) estimate:

∞∑
i=1

σi ≤
2
3
σ0. (15)

To define our last sequence of parameters, si , we start by letting

ti = inf{t > 0 | 2(z) > σ 2
i for ‖z‖ > t}

and observe that ti is a decreasing sequence, 0 < ti ≤
1
2 r by the choice of r , and 2(z) >

σ 2
i = εi/λi for ‖z‖ > ti . Moreover, limi→∞ ti > 0, since for every s > 0 there is j such

that 2(z) > σ 2
j for ‖z‖ > s, hence ti ≤ s for i ≥ j . It follows that

si := max{(1+ 10C)ti, 5(σ0 + κ)σi/σ0, 990
√
κεi}.

form a sequence decreasing to zero such that

s0 ≥ max{5κ, 495
√

2κε0}
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and for i ≥ 1,

si ≥ max{5σi, 990
√
κεi} and 2(z) >

εi

λi
for ‖z‖ ≥

si

10C
.

We intend to use the variational principle of Theorem 2.4 with the perturbation func-
tions Fi : M ×M → [0,∞),

Fi((x, u), (y, v)) = 8i(x, y)+9i(u, v)+Qi((x, u), (y, v))+1i((x, u), (y, v)),

where

8i(x, y) = λi‖x − y‖, 9i(u, v) = λi2(u− v),

Qi((x, u), (y, v)) = σi(f
′(x; u)− f ′(y; v))2

and
1i((x, u), (y, v)) = min{λi,max{0, %(fx,u, fy,u)− si}}.

Notice that the peculiarity in the definition of 1i is not a misprint: 1i really does not
depend on v.

We have to verify the assumptions of Theorem 2.4.

Lemma 5.4. The functions Fi are non-negative, d-lower semicontinuous in the second
variable, satisfy Fi((x, u), (x, u)) = 0 and there are ri ↘ 0 such that

inf{Fi((x, u), (y, v)) | d((x, u), (y, v)) ≥ ri} > 0.

Proof. Clearly, Fi ≥ 0 and Fi((x, u), (x, u)) = 0. Lower semicontinuity of the functions
1i in the second variable follows directly from Lemma 5.3(i). Since the remaining func-
tions from which Fi consists are continuous (the functionsQi by Lemma 5.2), this shows
the lower semicontinuity of Fi in the second variable.

For the last statement, let ri = (C + 2)si . We show that

inf{Fi((x, u), (y, v)) | d((x, u), (y, v)) ≥ ri} ≥ min{λi, si, λisi, inf
‖z‖≥si

λi2(z)}. (16)

Recall that

d((x, u), (y, v)) = max{‖x − y‖, ‖u− v‖, %(fx,u, fy,v)}.

The estimate (16) is obvious if ‖x − y‖ ≥ si or ‖u − v‖ ≥ si . If ‖x − y‖ < si and
‖u− v‖ < si , then

%(fx,u, fy,v) ≥ (C + 2)si .

Lemma 5.3(ii) implies that

%(fx,u, fy,u) ≥ %(fx,u, fy,v)− %(fy,u, fy,v) ≥ (C + 2)si − C‖u− v‖ ≥ 2si .

Hence 1i((x, u), (y, v)) ≥ min{λi, si}. ut
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By the variational principle, (x0, u0) is the starting term of a sequence (xj , uj ) ∈ M
which d-converges to some (x∞, u∞) ∈ M and has the properties that, denoting ε∞ = 0
and

hi(x, u) = f
′(x; u)+

i−1∑
j=0

Fj ((xj , uj ), (x, u)), (17)

we have
h∞(x∞, u∞) ≤ min{hi(xi, ui), εi + inf

(x,u)∈M
hi(x, u)} (18)

for 0 ≤ i ≤ ∞. Notice that for i = ∞ this inequality is just a complicated way of saying
that h∞ attains its minimum on M at (x∞, u∞).

Recalling the definition of the functions Fi , we have

h∞(x, u) = f
′(x; u)+8(x)+9(u)+Q(x, u)+1(x), (19)

where

8(x) =

∞∑
i=0

8i(xi, x) =

∞∑
i=0

λi‖xi − x‖,

9(u) =

∞∑
i=0

9i(ui, u) =

∞∑
i=0

λi2(ui − u),

Q(x, u) =

∞∑
i=0

Qi((xi, ui), (x, u)) =

∞∑
i=0

σi(f
′(xi; ui)− f

′(x; u))2,

1(x) =

∞∑
i=0

1i((xi, ui), (x, u));

to justify the last definition we recall the independence of 1i from the last variable. Ob-
serve that all these functions are positive and finite, 8, 9 and Q are d-continuous on M
(for Q recall Lemma 5.2), and 9 is everywhere upper Fréchet differentiable.

Since we already know that f ′(x∞; u∞) ≤ f ′(x0; u0) by (18) with i = 0, the proof
of the proposition will be completed once we show that f is Fréchet differentiable at x∞.
We first collect several estimates, all easily following from (18), that will be needed in
what follows.

Lemma 5.5. ‖x∞−x0‖ <
1
2 r , ‖u∞−u0‖ <

1
2 r and for each 0 ≤ i <∞, ‖ui −u∞‖ ≤

1
10C si and |f ′(x∞; u∞)− f ′(xi; ui)| ≤ 1

5 si .

Proof. The definition of hi in (17) and the condition (18) imply

hi(x∞, u∞)+8i(xi, x∞)+9i(ui, u∞)+Qi((xi, ui), (x∞, u∞))

≤ h∞(x∞, u∞) ≤ εi + hi(x∞, u∞). (20)

Hence, for i = 0 we obtain

‖x∞ − x0‖ =
1
λ0
80(x0, x∞) ≤

ε0

λ0
<
r

2



Fréchet differentiability of Lipschitz functions via a variational principle 405

and
2(u0 − u∞) =

1
λ0
90(u0, u∞) ≤

ε0

λ0
,

which implies that ‖u∞ − u0‖ <
1
2 r . For the case of general index i we deduce that

2(ui−u∞) ≤ εi/λi , and the choice of si implies that ‖u∞−ui‖ < 1
10C si . By the choice

of s0 we have

|f ′(x∞; u∞)− f
′(x0; u0)| ≤ Lip(f )(‖u∞‖ + ‖u0‖) ≤ Lip(f )(2+ r) ≤ κ ≤ s0/5.

Finally, for i ≥ 1 we infer from (20) that

(f ′(x∞; u∞)− f
′(xi; ui))

2
=

1
σi
Qi((xi, ui), (x∞, u∞)) ≤

εi

σi
= σ 2

i ≤

(
si

5

)2

. ut

Assuming that f ′(x∞) exists, we easily guess its value from the fact that the function
H(u) = h∞(x∞, u) attains its minimum at u = u∞. Let L9 be an upper Fréchet deriva-
tive of 9 at u∞. By (19), H is upper differentiable at u = u∞, with upper derivative

f ′(x∞)+ L9 + κf ′(x∞),

where

κ = 2
∞∑
i=0

σi(f
′(x∞; u∞)− f

′(xi; ui)).

Since the upper derivative of H at u∞ is equal to zero, this gives

f ′(x∞) =
−L9

1+ κ
.

Recalling that |f ′(x∞; u∞)− f ′(xi; ui)| ≤ σi , i ≥ 1, we find with the help of (15) that

|κ| ≤ 2
∞∑
i=0

σ 2
i ≤ 2

(
σ0κ +

∞∑
i=1

σ 2
i

)
≤ 2

(
σ0κ +

2
3
σ0

)
≤ 2

(
1

20
+

2
3

1
20

)
=

1
6
.

Hence, if we put L := −L9/(1+κ), the functional L is well-defined. Since all ui belong
to U , i.e. ‖ui − u0‖ ≤ r , we get the estimate of the norm of L:

‖L‖ ≤
6
5
‖L9‖ ≤

6
5

Lip(9|U ) ≤
6
5

∞∑
i=0

λi Lip(2|B(0,r0))

=
6
5

(
λ0 +

∞∑
i=1

σi

)
Lip(2|B(0,r0)) ≤ 2λ0 Lip(2|B(0,r0)). (21)

We are now ready to prove that, indeed, f ′(x∞) = L. Before embarking on the
main part of the proof, we make a simple but important observation: The above heuristic
argument is correct when restricted to the direction u∞, giving that the derivative of f at
the point x∞ in the direction u∞ agrees with the value of the linear form L at u∞.
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Lemma 5.6. f ′(x∞; u∞) = L(u∞).

Proof. By Lemma 5.5 the vector su∞ belongs to U for s ∈ (1 − τ, 1 + τ) and suitable
0 < τ < 1, so the pair (x∞, su∞) is in M . Hence the function ψ : (1− τ, 1+ τ)→ R,

ψ(s) = f ′(x∞; su∞)+8(x∞)+9(su∞)+1(x∞)

+

∞∑
i=0

σi(f
′(x∞; su∞)− f

′(xi; ui))
2

attains its minimum at s = 1. Since ψ is upper differentiable at s = 1 with upper deriva-
tive f ′(x∞; u∞)+ L9u∞ + κf ′(x∞; u∞), we get

f ′(x∞; u∞)+ L9u∞ + κf ′(x∞; u∞) = 0,

yielding

f ′(x∞; u∞) = −
L9u∞

1+ κ
= Lu∞

as required. ut

Final step. The rest of the proof is devoted to fulfilling the above stated goal, that is,
to showing that f is Fréchet differentiable at x∞ and f ′(x∞) = L. We will argue by
contradiction, and so from now on we make the following

Assumption. There is η > 0 such that for every δ > 0 there is v ∈ X with 0 < ‖v‖ < δ

and
|f (x∞ + v)− f (x∞)− L(v)| > η‖v‖. (22)

We intend to use this assumption to find a vector v satisfying (22) whose norm is so
small that it will beat various error estimates. To quantify these estimates, we start by
finding 0 < δ0 <

1
2 r so that

(α) for every ‖u− u∞‖ ≤ δ0,

9(u) ≤ 9(u∞)+ L9(u− u∞)+
1

234η‖u− u∞‖.

Then we choose an index k > 0 so large that

(β) β :=
78εk
η
≤ min

{
δ0,

r

2
,

sk

10C + 5‖L‖

}
and 10σ0‖L‖

2β2
≤ εk .

Finally, we denote τ = 6εk and find 0 < δ < r
2(1+r) so that

(γ ) for every ‖x − x∞‖ ≤ (‖u∞‖ + β)δ,

8(x) < 8(x∞)+
1
3εk;

(δ) for each i = 0, 1, . . . , k, for i = ∞ and for every |t | ≤ δ,

|f (xi + tui)− f (xi)− tf
′(xi; ui)| ≤ min

{
sk

5
,
τ 2

κ

}
|t |.
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Let v ∈ X be a vector with

0 < ‖v‖ < δβ min
{

1
2
,

εk

2(k + 1)C(β + ‖u∞‖)

}
for which (22) holds. Let a = 1

β
‖v‖ and define γ : [−δ, δ]→ X by

γ (t) = x∞ + tu∞ +max{0, 1− |t |/a}v.

We notice that ‖γ (t) − x∞‖ ≤ δ‖u∞‖ + δβ ≤ δ(1 + r/2 + r/2) < r/2, hence by
Lemma 5.5,

‖γ (t)− x0‖ ≤ ‖γ (t)− x∞‖ + ‖x∞ − x0‖ < r.

It follows that the curve γ is contained in the interior of the ball B. Further, let g, h :
[−δ, δ]→ R be defined by

g(t) = −f (x∞ + tu∞)+ L(tu∞) and h(t) = −f (γ (t))+ L(γ (t)− x∞).

Then the assumptions of Corollary 4.3 hold: clearly, a ≤ δ/2 and the inequalities

|h(0)− g(0)| > η‖v‖ = 13τa and |g(t)− g(0)| ≤ τ 2/κ for |t | ≤ δ

follow directly from (22), (β) and from (δ) with i = ∞. Also,

τ = 6εk ≤ 6σ0 ≤ κ.

The remaining assumption is that h is κ-Lipschitz. Using (21),

Lip(h) ≤ Lip(f )Lip(γ )+ ‖L‖Lip(γ ) ≤ (Lip(f )+ ‖L‖)(‖u∞‖ + β)
≤ (Lip(f )+ 2λ0 Lip(2|B(0,r0)))(1+ r) ≤ κ.

So we may apply Corollary 4.3 to find ξ ∈ (−a, a) \ {0} such that

(a) h is differentiable at ξ ;
(b) h′(ξ) ≥ 6εk;
(c) |h(t)− h(ξ)| ≤ 99

√
κh′(ξ) |t − ξ | for every t ∈ [−δ, δ].

Let x = γ (ξ) and u = γ ′(ξ); so u = u∞ ± βv/‖v‖.

Lemma 5.7. (x, u) ∈ M .

Proof. We have already proved that ‖x− x0‖ = ‖γ (ξ)− x0‖ < r and, using the fact that
‖u− u∞‖ = β ≤

1
2 r , we see that also

‖u− u0‖ ≤ ‖u0 − u∞‖ + ‖u− u∞‖ < r.

Moreover, since h′(ξ) exists we find that f ′(x; u) exists as well and

f ′(x; u) = −h′(ξ)+ Lu.

This says that the pair (x, u) belongs to M . ut

We wish to show that h∞(x, u) < h∞(x∞, u∞) to contradict that h∞ attains its minimum
at (x∞, u∞). For this, we first compare the terms not containing the function 1. Let us
denote them by

G(y, v) = f ′(y; v)+8(y)+9(v)+Q(y, v).
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Lemma 5.8. G(x, u) < − 1
2h
′(ξ)+G(x∞, u∞).

Proof. We estimate all three terms Q(x, u), 9(u) and 8(x) in G(x, u). With the help of
Lemma 5.6 we have

Q(x, u) =

∞∑
i=0

σi[f ′(xi; ui)− f ′(x∞; u∞)+ f ′(x∞; u∞)− f ′(x; u)]2

= Q(x∞, u∞)+κ(f ′(x; u)− f ′(x∞; u∞))+
∞∑
i=0

σi(f
′(x; u)− f ′(x∞; u∞))

2

= Q(x∞, u∞)+κ(−h′(ξ)+L(u− u∞))+
∞∑
i=0

σi(−h
′(ξ)+L(u− u∞))

2

≤ Q(x∞, u∞)−κh′(ξ)+κL(u− u∞)+ 10
3 σ0(h

′(ξ))2+ 10
3 σ0(L(u− u∞))

2.

Since h is κ-Lipschitz the choice of σ0 gives

10
3 σ0h

′(ξ) ≤ 10
3 σ0κ ≤

1
6 .

Also |κ| ≤ 1
6 and 10

3 σ0L(u − u∞)
2
≤

10
3 σ0‖L‖

2β2
≤

1
3εk . This allows us to continue

the above estimate to obtain

Q(x, u) ≤ Q(x∞, u∞)+ κL(u− u∞)+ 1
3h
′(ξ)+ 1

3εk.

Since ‖u− u∞‖ = β ≤ δ0, we see from (α) that

9(u) ≤ 9(u∞)+ L9(u− u∞)+
1

234η‖u− u∞‖

= 9(u∞)− (1+ κ)L(u− u∞)+ 1
234ηβ

= 9(u∞)− (1+ κ)L(u− u∞)+ 1
3εk.

Finally, the last needed inequality8(x) < 8(x∞)+
1
3εk follows from (γ ), since we have

‖x − x∞‖ ≤ (‖u∞‖ + β)δ. Using all three just established estimates of Q(x, u), 9(u)
and 8(x) and recalling that εk ≤ 1

6h
′(ξ), we get

G(x, u) = f ′(x; u)+8(x)+9(u)+Q(x, u)

< f ′(x; u)+8(x∞)+9(u∞)+Q(x∞, u∞)− L(u− u∞)+
1
3h
′(ξ)+ εk

= − h′(ξ)+ Lu+8(x∞)+9(u∞)+Q(x∞, u∞)− Lu+ f
′(x∞; u∞)

+
1
3h
′(ξ)+ εk

= −
2
3h
′(ξ)+G(x∞, u∞)+ εk ≤ −

1
2h
′(ξ)+G(x∞, u∞). ut

The next lemma provides us with a certain control of the function 1.

Lemma 5.9. For each 0 ≤ i ≤ k,

(Ai) 495
√
κh′(ξ) ≤ si;

(Bi) 1i((xi, ui), (x, u)) ≤ 1i((xi, ui), (x∞, u∞))+ 1
k+1εk.
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Proof. We first prove that for each i, 0 ≤ i ≤ k, (Ai) implies (Bi). By the definition of1i
it suffices to show that

%(fxi ,ui , fx,ui ) ≤ max
{
si, %(fxi ,ui , fx∞,ui )+

1
k + 1

εk

}
. (23)

By Lemma 5.3(iii) with δ/2 instead of δ we have

%(fxi ,ui , fx,ui ) ≤ max
{
%(fxi ,ui , fx∞,ui )+

2C
δ
‖x − x∞‖,

sup
0<|t |<δ/2

inf
w∈U

(
C‖ui − w‖ +

∣∣∣∣fx,w(t)− fxi ,ui (t)t

∣∣∣∣)}.
The choice of ‖v‖ shows that

‖x − x∞‖ ≤ a‖u∞‖ + ‖v‖ =

(
1
β
‖u∞‖ + 1

)
‖v‖ ≤

δεk

2(k + 1)C
.

So the first term in the maximum is at most %(fxi ,ui , fx∞,ui ) +
1
k+1εk . To estimate the

second term, we consider any 0 < |t | < δ/2 and estimate the expression

C‖ui − w‖ +

∣∣∣∣fx,w(t)− fxi ,ui (t)t

∣∣∣∣ (24)

for w = 1
t
(γ (ξ + t)− γ (ξ)). (Notice that ξ + t still belongs to the interval (−δ, δ) where

γ is defined.) Our goal is to show that it is smaller than si , since then (23) holds and in
fact this term does not contribute to the value of 1i((xi, ui), (x∞, u∞)).

Observe first that by the definition of γ , ‖u∞ − w‖ ≤ ‖v‖/a = β. Together with
Lemma 5.5 this gives

C‖ui − w‖ ≤ C‖ui − u∞‖ + C‖u∞ − w‖ ≤
1

10 si + Cβ ≤
1
5 si .

The second summand of (24) is controlled as follows:∣∣∣∣fx,w(t)− fxi ,ui (t)t

∣∣∣∣ ≤ ∣∣∣∣fx,w(t)t
+ L(w)

∣∣∣∣+ |L(w)+ f ′(x∞; u∞)|
+ |f ′(x∞; u∞)− f

′(xi; ui)| +

∣∣∣∣f ′(xi; ui)− fxi ,ui (t)t

∣∣∣∣.
We will estimate each of the four terms in the sum above. By (Ai),∣∣∣∣fx,w(t)t

+ L(w)

∣∣∣∣ = |h(ξ + t)− h(ξ)||t |
≤ 99

√
κh′(ξ) ≤ 1

5 si;

the choice of β guarantees

|L(w)+ f ′(x∞; u∞)| = |L(w)− L(u∞)| ≤ ‖L‖β ≤
1
5 si;
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the estimate
|f ′(x∞; u∞)− f

′(xi; ui)| ≤
1
5 si

follows from Lemma 5.5; and finally (δ) yields∣∣∣∣fxi ,ui (t)t
− f ′(xi; ui)

∣∣∣∣ ≤ 1
5 si .

Adding these inequalities we get

C‖ui − w‖ +

∣∣∣∣fx,w(t)− fxi ,ui (t)t

∣∣∣∣ ≤ si .
Hence the second term in the maximum is at most si and (Bi) follows.

To prove (Ai), we infer from Lemma 5.8 and (18) that

1
2h
′(ξ) ≤ G(x∞, u∞)−G(x, u) = h∞(x∞, u∞)−1(x∞, u∞)−G(x, u)

≤ εi + hi(x, u)−1(x∞, u∞)−G(x, u)

≤ εi +

i−1∑
j=0

(
1j ((xj , uj ), (x, u))−1j ((xj , uj ), (x∞, u∞))

)
.

With i = 0 this gives h′(ξ) ≤ 2ε0, hence

495
√
κh′(ξ) ≤ 495

√
2κε0 ≤ s0

by the choice of s0. Proceeding by induction, we infer from the first part of this proof that

1j ((xj , uj ), (x, u))−1j ((xj , uj ), (x∞, u∞)) ≤
εk

k + 1
for j < i.

Hence we conclude that

h′(ξ) ≤ 2εi + 2
i−1∑
j=0

εk

k + 1
≤ 4εi,

which, by the choice of si , gives

495
√
κh′(ξ) ≤ 990

√
κεi ≤ si . ut

Corollary 5.10. 1(x, u) ≤ 3εk +1(x∞, u∞).

Proof. First recall that the functions 1i are bounded by λi by their very definition. Fur-
ther, the choice of εi and λi implies that for i ≥ 1, λi = εi−1 and εi ≤ 1

2εi−1. It follows
that for i > k,

1i((xi, ui), (x, u)) ≤ λi = εi−1 ≤ 2k−i+1εk.
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Hence the previous lemma gives

1(x, u) =

k∑
i=0

1i((xi, ui), (x, u))+

∞∑
i=k+1

1i((xi, ui), (x, u))

≤

k∑
i=0

(
1i((xi, ui), (x∞, u∞))+

εk

k + 1

)
+ 2εk

≤

∞∑
i=0

1i((xi, ui), (x∞, u∞))+ 3εk = 1(x∞, u∞)+ 3εk. ut

Adding the inequalities from Lemma 5.8 and Corollary 5.10 and using that h′(ξ) ≥ 6εk
leads to

h∞(x, u) = G(x, u)+1(x, u)

< (− 1
2h
′(ξ)+G(x∞, u∞))+ (1(x∞, u∞)+ 3εk)

= −
1
2h
′(ξ)+ 3εk + h(x∞, u∞) ≤ h∞(x∞, u∞).

Recalling that h∞ attains its minimum at (x∞, u∞) and noticing the strict inequality on
the second line, we have the desired contradiction.

6. Generalizations and extensions

In this section we announce several results which generalize Theorem 1.1 and which will
be proved in the book [6].

There is a notion of a monotone real-valued function on a Banach space. Let X be
a Banach space with a closed cone K with vertex 0 and non-empty interior. A function
f : X → R is called cone monotone (with respect to the cone K) if y ∈ x + K implies
f (y) ≥ f (x). This notion goes back to the early 20th century. In [3] this notion was
considered from the point of view of differentiability. The authors proved that such a
function on a separable spaceX is a.e. Gâteaux differentiable. They also raise the question
of existence of Fréchet derivatives of such functions if X is Asplund. The proof given
above in Section 5 allows us to prove that indeed every cone monotone function on an
Asplund space has points of Fréchet differentiability and that also a natural variant of the
mean value theorem for Fréchet derivative holds in this context. The only change in the
proof given here concerns the metric used in the space M . In the monotone case we use
a metric which is related to the one used by Skorokhod in a different context. This makes
the proof a little more involved.

Theorem 1.1 is not an a.e. result. Therefore it does not imply that any two Lipschitz
functions on X have a common point of Fréchet differentiability (or equivalently, that
a Lipschitz map from X to R2 has a point of differentiability). We were however able
to prove that any Lipschitz map from a Hilbert space X into R2 has points of Fréchet
differentiability and that even an appropriate mean value theorem for Fréchet derivatives
holds. We do not know whether every Lipschitz map from a Hilbert space into R3 has



412 J. Lindenstrauss et al.

points of Fréchet differentiability. An example appearing in [10] (or in a refined and
stronger form in [6]) shows however that in this case there is no longer a mean value
theorem for Fréchet derivatives.

It is easy to see that if the function 2 in Proposition 5.1 is assumed to be locally
Lipschitz and everywhere Gâteaux differentiable our proof provides a point of Gâteaux
differentiability for every Lipschitz function. Of course, there are better Gâteaux differen-
tiability results for separable spaces, but this statement has its interest in the non-separable
situation, when it was proved before only on spaces with Gâteaux smooth norms.

An everywhere Gâteaux differentiable function f : X → R is necessarily Lipschitz
on a non-empty open set. Thus in the illustrative example of Section 3 the assumption
that f be Lipschitz was redundant. More generally, if f : X→ Y satisfies

lim sup
t→0

‖f (x + tu)− f (x)‖

|t |
<∞

for every x in a non-empty open subset of a Banach space and for every unit vector u,
then it is Lipschitz on a non-empty open set. This can be proved by a standard application
of the Baire Category Theorem.
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J. Eur. Math. Soc. 2, 199–216 (2000) Zbl 0968.58006 MR 1776937
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