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This paper is an outline of the main results obtained by the authors on
this subject in recent years. The proofs of many of those results are very
technical and involved. The complete proofs will be presented in a research
monograph the authors are preparing at present. The content of this article
is closely related to talks presented by the first named author at conferences:
Banach spaces and their applications in analysis, Oxford, Ohio, 2006 and
New trends in Banach space theory, Caceres, Spain, 2006.

1 Preliminaries

We start with the definition of porous sets and related notions.

Definition 1.1. A set E in a metric space (X, d) is said to be c-porous,
0 < c < 1, if for every x ∈ E and 0 < ε < c there is a z ∈ X \ E such that
d(x, z) ≤ ε and B(z, cd(x, z)) ∩ E = ∅. A set which is c-porous for some
0 < c < 1 is called porous.

If X is a Banach space and Y a subspace of X we can talk of a porous
set in the direction of Y . A set E ⊂ X is c-porous in the direction of Y
if for every x ∈ E and 0 < ε < c there is a y ∈ Y , 0 < ‖y‖ ≤ ε, such
that B(x + y, c‖y‖) ∩ E = ∅. A set which is porous in the direction of a
1-dimensional subspace of X will be called directionally porous.

A countable union of porous sets is called σ-porous. Similarly we define
the notion of σ-directionally porous sets in a Banach space.
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We will use in the sequel several notions of null sets in separable Banach
spaces X. The most simple notion is that of a Haar null set. A Borel set
E ⊂ X is said to be Haar null if there is a Borel probability measure µ on
X such that µ(x + E) = 0 for all x ∈ X. If dim X < ∞ a set is Haar null iff
it is Borel and its Lebesgue measure is 0. This fact will be true also for the
other notions of null sets we shall encounter in the future except for the class
Ã mentioned below, where it is still open at present. For more informations
on Haar null sets as well as most of the notions which appear in this section,
and for references to original papers we refer to the book [1].

A map f defined on an open set in a Banach space X into a Banach space
Y is said to be Gâteaux differentiable at a point x0 if

(1) lim
t→0

f(x0 + tu)− f(x0)

t
= Tu

exists for every u ∈ X and T is a bounded linear operator from X to Y . The
operator T is called the Gâteaux derivative and is denoted by Df(x0).

If for some fixed u ∈ X the limit

f ′(x0; u) := lim
t→0

f(x0 + tu)− f(x0)

t

exists we call it the directional derivative of f at x0 in the direction u. Thus
f is Gâteaux differentiable at x0 if and only if f ′(x0; u) exists for every u and
forms a bounded linear operator as a function of u. In this case we have

f ′(x0; u) = Df(x0)u.

A Banach space is said to have the Radon Nikodým property, RNP for
short, if every Lipschitz map f : R −→ X has a derivative almost everywhere.
This is known to be equivalent to the requirement that every such f has at
least one point of differentiability.

It is well known that every Lipschitz map f from a separable space X
into a space Y with RNP has many points of Gâteaux differentiability. More
precisely,

Theorem 1.2. Every Lipschitz map f : X −→ Y with X separable and Y
having the RNP is Gâteaux differentiable almost everywhere.

This theorem has many versions which depend only on the nature of the
notion “almost everywhere”, i.e. on the nature of the exceptional sets. One
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can take as the exceptional sets Haar null sets. A stronger result is obtained
by taking a smaller class of exceptional sets, namely Gauss null sets. A Borel
set E in a separable Banach space X is said to be Gauss null if for every
non degenerate (i.e. not supported on a closed hyperplane of X) Gaussian
measure µ on X we have µ(E) = 0. At present the strongest known result
of Theorem 1.2 (i.e. the smallest class of exceptional sets) is due to Preiss

and Zaj́ıček [10]. They define a class Ã of exceptional sets. The definition
of this class is somewhat involved and since we are not going to use it we do
not reproduce the definition here.

We now pass to the definition of the main notion considered in this paper.

Definition 1.3. A function f : G −→ Y defined on an open set G in a
separable Banach space X into a Banach space Y is said to be Fréchet differ-
entiable at a point x0 ∈ G if there is a bounded linear operator T : X −→ Y
so that

f(x0 + u) = f(x0) + Tu + o(‖u‖), u → 0.

Of course, if f is Fréchet differentiable at x0 then f is Gâteaux differen-
tiable at x0 and the operator T above is necessarily Df(x0). Stated otherwise:
f is Fréchet differentiable at x0 iff it is Gâteaux differentiable there and the
limit in (1) exists uniformly on the unit sphere {u | ‖u‖ = 1}. The notion
of Fréchet derivative is the most natural and useful notion of a derivative.
If dim X < ∞ and f is Lipschitz then the notions of Fréchet derivative and
Gâteaux derivative coincide. This fails if dim X = ∞.

To get a feeling of the difference between these two notions consider the
simple example of the function f : L2[0, 1] −→ L2[0, 1] defined by f(u) =
sin u. This function is everywhere Gâteaux differentiable with Df(u) = cos u
(i.e. Df(u)x = x cos u), but as it can be easily checked nowhere Fréchet
differentiable.

It is an unfortunate fact that existence theorems for Fréchet derivatives
are quite rare and usually quite hard to prove.

In the context of Fréchet differentiability we have to assume in existence
results that the dual space X∗ is separable, i.e. X is what is called an Asplund
space. It is known, for example, that if X is separable with X∗ non separable,
there is an equivalent norm ‖ ·‖ on X so that the convex continuous function
f : X −→ R defined by f(u) = ‖u‖ is nowhere Fréchet differentiable. On the
other hand if X is Asplund every convex f : X → R is Fréchet differentiable
on a dense Gδ subset of X, actually even outside a σ-porous set. We should
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point out in this connection that there is a continuous convex f : `2 −→ R
which is Fréchet differentiable only on a Gauss null set. (For these results
and references to original papers we refer as before to [1].)

In view of the difficulty in proving existence results for Fréchet derivatives
it is of interest to use some related weaker notions where existence proofs are
more accessible (but often also not simple).

Definition 1.4. The function f : X −→ Y is said to be ε-Fréchet differ-
entiable at x0, ε > 0, if there is a δ > 0 and a bounded linear operator
T : X −→ Y so that

‖f(x0 + u)− f(x0)− Tu‖ ≤ ε‖u‖

if ‖u‖ ≤ δ.

If f is ε-Fréchet differentiable at some x0 for every ε > 0 then clearly f
is Fréchet differentiable at x0. However, if we know only that for every ε > 0
there is a point xε at which f is ε-Fréchet differentiable then it is not clear
that f is Fréchet differentiable at some point because xε depend on ε and in
general there is no way to control how xε changes with ε.

Another notion which we find convenient to introduce in this paper is
asymptotic Fréchet differentiability.

Definition 1.5. A function f : X −→ Y is said to be asymptotically Fréchet
differentiable at x0 if there is a bounded linear operator T : X −→ Y so that
for every ε > 0 there is δ > 0 and a subspace Z ⊂ X of finite codimension
so that

‖f(x0 + z)− f(x0)− Tz‖ ≤ ε‖z‖
whenever z ∈ Z and ‖z‖ < δ.

We would like to point out a simple connection between the notions of
differentiability and the notions of porous set introduced in the beginning of
this section. If E ⊂ X is a porous set then the Lipschitz function f : X −→ R
defined by

f(x) := dist(x, E)

is nowhere Fréchet differentiable on E. Indeed, since f attains its minimum
on E the only possible derivative of f at a point x ∈ E is 0. However, by the
definition of c-porosity there are points z in X arbitrarily close to x with

‖f(z)− f(x)‖ = dist(z, E) ≥ c‖z − x‖.
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Similarly if E is directionally porous then dist(x, E) is not Gâteaux differ-
entiable at any point of E and thus E is negligible in any sense in which
Theorem 1.2 is valid.

Our results below depend on some smoothness assumptions. Let us recall
here the basic notions. A Banach space X is uniformly smooth if

ρX(t) := sup
‖x‖=1

sup
‖y‖≤t

(
‖x + y‖+ ‖x− y‖ − 2

)
= o(t), t ↘ 0.

For example, let X = Lp and t ∈ [0, 1]. If 1 < p ≤ 2 then ρLp(t) ≤ Cpt
p. If

p = 2 then ρL2(t) = 2t2 and for 2 < p < ∞ we have ρLp(t) ≤ Cpt
2 and none

of these estimates can be improved.
A variant of this notion which was introduced in [3] is asymptotic uniform

smoothness. The modulus of asymptotic uniform smoothness of a space X
is defined by

ρ̄X(t) := sup
‖x‖=1

inf
dim X/Y <∞

sup
y∈Y
‖y‖≤t

(
‖x + y‖ − 1

)
.

Clearly a uniformly smooth space is asymptotically uniform smooth but the
converse is false since e.g. for X = c0 the modulus ρ̄X(t) ≡ 0. There are duals
to these notions (uniform convexity and asymptotic uniform convexity). We
shall not need these notions so we do not define them here. On the other
hand we shall need the extension of these notions for general convex functions
Θ: X −→ R. The modulus of smoothness of Θ at the point x ∈ X is defined
by

ρΘ(x, t) := sup
‖y‖≤t

(
Θ(x + y) + Θ(x− y)− 2Θ(x)

)
.

The modulus of asymptotic smoothness of Θ at the point x is defined by

ρ̄Θ(x, t) := inf
Y⊂X

dim X/Y <∞

sup
y∈Y
‖y‖≤t

(
Θ(x + y) + Θ(x− y)− 2Θ(x)

)
.

Up to a constant factor this extends the previous notions defined for norms,
for example ρ̄X(t) ≤ sup‖x‖=1 ρ̄‖·‖(x, t) ≤ 2ρ̄X(t).

An important existence theorem for points of Fréchet differentiability is
known for scalar valued Lipschitz functions.

Theorem 1.6. Let X be an Asplund space and f : X −→ R a Lipschitz
function. Then f is Fréchet differentiable on a dense set in X.
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This theorem is proved in [8]. A somewhat simplified proof (but not
simple either) is presented in [6]. This is not an almost everywhere result.
The proof in both papers is achieved by a (complicated) iterative construction
of a sequence of points xn which are shown to converge to a point x of
Fréchet differentiability. Because the nature of the set of points of Fréchet
differentiability is not known we do not know for example if two Lipschitz
functions from X to R have a common point of Fréchet differentiability.
Stated otherwise, it is not known if a Lipschitz map f : X −→ R2 must have
a point of Fréchet differentiability. This is the source of difficultly for the
arguments in Section 5 where the difficulty is overcome in the most important
case, namely for X being a Hilbert space.

Both proofs of Theorem 1.6 yield also a mean value theorem for Fréchet
derivatives.

Theorem 1.7. Let f be a Lipschitz function on an open set G in an Asplund
space X into the real line. Then for every pair of points u, v ∈ G such that
the line segment connecting them is in G we have

inf
{
Df(x)(v − u)

∣∣ x ∈ G, f is Fréchet differentiable at x
}

≤ f(v)− f(u)

≤ sup
{
Df(x)(v − u)

∣∣ x ∈ G, f is Fréchet differentiable at x
}
.

The mean value theorem will have an important role in the coming sec-
tions.

In the paper [5] an investigation was carried out on the existence of
Fréchet derivatives for functions with a more general range space. In this
connection a new class of null sets in Banach spaces was defined as a notion
combining measure and category.

Let T = [0, 1]N be endowed with the product topology and the product
Lebesgue measure µ. Let Γ(X) be the space of all continuous mappings
γ : T −→ X having continuous partial derivatives ∂γ

∂ti
with respect to all the

variables (with one-sided derivatives at the points where the i-th coordinate
is 0 or 1). The elements of Γ(X) will be called (∞-dimensional) surfaces in
X. We equip Γ(X) with the topology generated by the semi-norms

‖γ‖0 = sup
t∈T

‖γ(t)‖, ‖γ‖i = sup
t∈T

∥∥∥∥∂γ

∂ti
(t)

∥∥∥∥ , 1 ≤ i < ∞.

The space Γ(X) with this topology is a Fréchet space (in particular it is a
complete separable metric space).
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A Borel set E in X will be called Γ-null if

µ{t ∈ T | γ(t) ∈ E} = 0

for residually many γ ∈ Γ(X).
This class can be easily shown to have the requirements we put on null

sets. In particular, Theorem 1.2 is valid Γ almost everywhere (actually any

set belonging to the class Ã in sense of [10] is Γ null).
For the statement of the main result of [5] we need also the notion of a

regular point of a function. Let f be a map from an open set in X to a
Banach space Y . We say that x ∈ X is a regular point of f if for every ∈ X
for which f ′(x; v) exists

lim
t→0

f(x + tu + tv)− f(x + tu)

t
= f ′(x; v)

uniformly for ‖u‖ ≤ 1.
We can now state the main result of [5].

Theorem 1.8. Suppose that G is an open set in a separable Banach space
X. Let L be a norm separable subspace in the space of all bounded linear
operators L(X,Y ). Let f : G −→ Y be a Lipschitz function. Then f is
Fréchet differentiable at Γ almost every point x ∈ X at which it is regular,
Gâteaux differentiable and Df(x) ∈ L.

It is not hard to show that for convex continuous f : X −→ R every point
x is regular. For a general Lipschitz function f : X −→ Y the set of irregular
points of f is σ-porous. As a consequence we have

Corollary 1.9. If X is an Asplund space then every convex continuous
f : X −→ R is Γ almost everywhere Fréchet differentiable.

Comparing this result with the example of a convex function f : `2 −→ R
which was mentioned above (being Fréchet differentiable only on a Gauss
null set) we get that Γ null sets may be “orthogonal” to Gauss null sets in
the sense that the subset E of `2 on which f is Fréchet differentiable is Gauss
null while `2 \ E is Γ null.

Corollary 1.10. Let X be an Asplund space. Then every Lipschitz function
from X to R is Γ almost everywhere Fréchet differentiable if and only if every
porous set in X is Γ null.
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The “only if” part follows from the observation made above concerning
the function f(x) = dist(x, E) with E porous. It was proved in [5] that
the class of spaces X in which every porous set is Γ null includes C(K)
spaces with K scattered, subspaces of c0 and even some reflexive infinite
dimensional Banach spaces (but not `p for 1 < p < ∞, in particular not the
Hilbert space). For spaces satisfying the condition in Corollary 1.10 we can
restate Theorem 1.8 as follows

Theorem 1.11. Let G be an open set in a separable Banach space X in
which every porous set is Γ null, L a norm separable subspace of L(X, Y )
and f : G −→ Y a Lipschitz map. Then f is Fréchet differentiable at Γ
almost every point in which f is Gâteaux differentiable and Df(x) ∈ L.

There is also a formulation of Theorem 1.8 connected to the mean value
theorem. This formulation involves slices of the set of Gâteaux derivatives.
Let Υ be a subset of L(X, Y ). By a slice S of Υ we mean a set of the form

S(Υ, v1, . . . , vm, y∗1, . . . , y
∗
m, δ) =

{
T ∈ Υ

∣∣∣ m∑
i=1

y∗i (Tvi) > α− δ
}

,

where m ∈ N, v1, . . . , vm ∈ X, y∗1, . . . y
∗
m ∈ Y ∗, δ > 0 and

α = sup
T∈Υ

m∑
i=1

y∗i (Tvi).

The following is proved in [5].

Theorem 1.12. Let f : G −→ Y be a Lipschitz map which is Fréchet dif-
ferentiable at Γ almost every point of an open set G of X. Then for every
slice S of the set of Gâteaux derivatives of f the set of points x at which f
is Fréchet differentiable and Df(x) ∈ S is not Γ null.

To clarify that this is a mean value theorem note that if the range is
1-dimensional then slices are the sets of the form {T ∈ Υ | Tx > α − δ}
where α = sup{Tx | T ∈ Υ}.

As already pointed out, porous sets are not necessarily Γ-null in spaces
such as `p, 1 < p < ∞. In such spaces, before the work announced here, there
were no results asserting Fréchet differentiability of Lipschitz maps into even
two dimensional spaces. However, existence of points of ε-Fréchet differen-
tiability of Lipschitz maps from super-reflexive spaces into finite dimensional
spaces was shown in [4] and this result was extended to asymptotically uni-
formly smooth spaces in [3].
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Theorem 1.13. Let f : X −→ Y be a Lipschitz map, where X is asymptot-
ically uniformly smooth and Y is finite dimensional. Then for every ε > 0
there is x ∈ X at which f is both Gâteaux differentiable and ε-Fréchet dif-
ferentiable.

In the coming sections we shall announce some of the main results of our
recent investigation.

2 Γn-null sets and a variational principle

We first introduce the notions of Γn-null sets, n ≥ 1. These are similar
to the notion of Γ-null sets from [5] mentioned above in which the infinite
dimensional surfaces in X are replaced by the n-dimensional ones.

Let Tn = [0, 1]n be endowed with the product topology and product
Lebesgue measure µn. We denote by Γn(X) the space of n-dimensional sur-
faces in X, i.e., functions γ : [0, 1]n → X which are continuous and contin-
uously differentiable (except for the boundary points where we require only
the appropriate one sided derivatives). We norm Γn(X) by the norm

sup
t∈Tn

|γ(t)|+
n∑

j=1

sup
t∈Tn

∣∣∣∣ ∂γ

∂tj
(t)

∣∣∣∣ .

With this norm Γn(X) becomes a Banach space. A Borel set E in X will be
called Γn-null if

µn{t ∈ Tn | γ(t) ∈ E} = 0

for residually many γ ∈ Γn(X).
One dimensional surfaces are called, as usual, curves.
There is a natural connection between Γn-null sets and Γ-null sets as the

following simple Proposition shows.

Proposition 2.1. If a Gδ set E in X is Γn-null for infinitely many values
of n then it is Γ-null.

Our aim is to show that under suitable assumptions, given a (porous) set
E ⊂ X we can modify a surface γ ∈ Γn(X) a little so that it cuts E only by
a set of measure zero. A natural way of doing this is to construct a sequence
(γj)

∞
j=1 so that the measure of {t ∈ Tn | γj(t) ∈ E} decreases to zero while

keeping control of some parameter (“energy”) associated with γj (e.g., in the
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case of curves we may use their length) and in the limit to get a surface γ̃
which intersect E in a set of measure zero and, thanks to the control of the
“energy,” is close to γ.

Instead of working with sequences, we found it useful to work with a
variational principle. The main difference between this principle and the
previous ones is that we need to work in an incomplete metric space (the set
of surfaces that meet a given Gδ set in a set of large measure) and we need
to minimize a function f that is not lower semi-continuous. Fortunately, this
set S of surfaces is a Gδ subset of Γn(X) even if Γn(X) is equipped just
with the norm supt∈Tn

|γ(t)|. So in S, Cauchy sequences satisfying a mild
additional assumption converge. A similar observation handles the problem
of semi-continuity of f .

Proposition 2.2. Suppose that X is a set equipped with two metrics d0 ≤ d,
X is d-complete, S ⊂ X is Gδ in (X, d0) and f : S → R is d0-upper semi-
continuous. Then there are functions δj(x1, . . . , xj) : Sj → (0,∞) such that
every d-Cauchy sequence (xj)

∞
j=1 in S with

d0(xj, xj+1) ≤ δj(x1, . . . , xj)

converges in the metric d to some x ∈ S and

f(x) ≤ lim inf
j→∞

f(xj).

This leads us to a variational principle for spaces equipped with two
metrics, which contains the variational principle from [2] as a special case
(when d0 = 0).

Theorem 2.3. Let S be a set equipped with two metrics d0 ≤ d and let
f : S → R be a function bounded from below. Suppose further that there
are functions δj(x1, . . . , xj) : Sj → (0,∞) with the following property: every
d-Cauchy sequence (xj)

∞
j=1 in S such that

d0(xj, xj+1) ≤ δj(x1, . . . , xj),

converges in the d metric to some x ∈ S and

f(x) ≤ lim inf
j→∞

f(xj).
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Let F : S × S → [0,∞] be d lower semi-continuous in the second variable
with F (x, x) = 0 for all x ∈ S and infd(x,y)>s max(F (x, y), d0(x, y)) > 0 for
each s > 0.

Then for every sequence of positive numbers (λj)
∞
j=1 there is a sequence

(xj)
∞
j=1 in S such that for some d0 continuous ϕ : S → [0,∞), the function

h(x) := f(x) + ϕ(x) +
∞∑

j=1

λjF (xj, x)

attains its minimum on S.

Using a somewhat more detailed version of this principle we get the fol-
lowing results.

Theorem 2.4. Suppose that X admits a convex function Θ which is smooth
with modulus of smoothness o(tn logn−1(1/t)) (as t ↘ 0) at every point and
satisfies Θ(0) = 0 and inf‖x‖>s Θ(x) > 0 for every s > 0. Then every porous
set E in X is Γn-null.

Theorem 2.5. In an Asplund space every porous set is Γ1-null.

Theorem 2.6. Every σ-directionally porous subset of any Banach space is
Γ1-null as well as Γ2-null.

Theorem 2.7. Let X be a separable Banach space with

ρ̄X(t) = o(tn logn−1(1/t)) as t → 0.

Then every porous set in X is contained in a union of a σ-directionally porous
set and a Γn-null Gδ set.

By combining these results with Proposition 2.1 we get

Theorem 2.8. Every porous set in a separable Banach space X with ρ̄X(t) =
o(tn) for each n is Γ-null.

This gives a somewhat more general class of examples of spaces for which
Theorem 1.11 holds.
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3 Criteria of ε differentiability

To state the main result of this section, we use the following notation for
slices of the set of Gâteaux derivatives of Rn valued Lipschitz maps. For a
Lipschitz map f = (f1, . . . , fn) of a non-empty open set G ⊂ X of a separable
Banach space X into Rn we denote by D(f) the set of points in G at which
f is Gâteaux differentiable. Then slices of the set of Gâteaux derivatives of
f are sets of the form

S(f, (ui)
n
i=1, δ) =

{
Df(x)

∣∣∣ x ∈ D(f),
n∑

i=1

f ′i(x; ui) > α− δ
}

,

where (ui)
n
i=1 are points in X and

α = sup
x∈D(f)

n∑
i=1

f ′i(x; ui).

To understand the connection between smallness of porous sets and differ-
entiability, we recall that Corollary 1.10 says that once we know that porous
sets in X are Γ-null, Fréchet differentiability of Lipschitz maps into finite
dimensional spaces follows. It is therefore natural to hope that in spaces in
which porous sets are Γn-null, Fréchet differentiability of Lipschitz maps into
at least spaces of small finite dimension can be shown. In view of the mean
value estimates, we may even hope that in these spaces, all slices of the set
of Gâteaux derivatives of any Lipschitz map into a space with dimension not
exceeding n contain Fréchet derivatives. (See the following Section for exam-
ples showing that in this context the dimension of the target space cannot
exceed n.)

These statements remain open, but we were able to prove them after
replacing Fréchet derivatives with ε-Fréchet derivatives.

Theorem 3.1. Suppose that the Asplund space X has the property that every
porous set in X can be covered by a union of a Haar null set and a Γn-null
Gδ set. Let f be a Lipschitz map from a non-empty open set G ⊂ X to a
Banach space of dimension not exceeding n. Then for every ε, δ > 0 and
(ui)

n
i=1 ∈ X, the slice

S(f ; u1, . . . , un; δ)

contains a point of ε-Fréchet differentiability of f .
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4 Examples of big porous sets and not too

often Fréchet differentiable maps

In this section we announce the existence of big porous sets and Lipschitz
maps into finite dimensional spaces which have no ε-Fréchet derivatives in
some slices of their sets of Gâteaux derivatives. This shows that the results
of Sections 2 and 3 are quite sharp. We use here the word “quite” firstly
to indicate that instead of working in spaces that are not asymptotically
smooth with modulus of smoothness o(tn logn−1(1/t)) we work in spaces that
are asymptotically convex with a slightly bigger modulus, and secondly to
indicate that instead of uniform convexity in the space we work with uniform
convexity in the dual with the dual modulus o(tn/(n−1) logβ(1/t)), β > 1,
(which may be a stronger requirement when the space is not reflexive).

The starting point of these examples is the following observation.

Example 4.1. In `1 there is a σ-porous set whose complement meets every
curve in a set of 1-dimensional Hausdorff measure zero. In particular, this
set has Γ1-null complement and is not Haar null.

Its construction is based on a connection between size of porous sets on
curves and existence of functions that are close to being non-differentiable at
points where some directional derivative is positive.

Example 4.2. For every ε > 0 there is a porous set E in `1 and a function
f : `1 → [0, ε] with Lip(f) ≤ 1 such that f is increasing in the first coordinate
direction e1 and f ′(x; e1) = 1 whenever x /∈ E.

It follows that for suitable η > 0, E has small measure on every curve γ
with ‖γ′(t) − e1‖ < η, from which it is easy to finish the argument showing
Example 4.1. Also, it would be easy to use Example 4.2 to find a Lipschitz
function f : `1 → R such that f is increasing but not constant in the di-
rection e1 but, however small ε > 0 may be, there is no point of ε-Fréchet
differentiability with f ′(x; e1) > ε. Of course, since `1 is not Asplund, such an
example may be found in an easier way by starting from a nowhere ε-Fréchet
differentiable function. However, an analogous argument for maps into Rn

gives similar, but considerably more interesting, examples in, e.g., `p spaces
for 1 < p < ∞. (See Theorem 4.5.)

Returning to Example 4.1 we remark that the method indicated above
can be used to show that any space containing `1 has a σ-porous subset with
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Γ1-null complement. By a very different approach, namely by a surprising
use of the theory of Lipschitz quotients, this result was proved in [7]. In spite
of these results, the question whether the converse to Theorem 2.5 holds, i.e,
whether in any non-Asplund space there is a σ-porous subset with Γ1-null
complement, remains open.

Let w be an Orlicz function and use in the Orlicz space associated to w
the norm

‖{ci}∞i=1‖w = inf{λ > 0 |
∞∑
i=1

w(|ci|/λ) ≤ 1}.

A sequence of elements {xi}∞i=1 in a Banach space X is said to satisfy the
upper w estimate if there is a constant A so that for every sequence {ci}∞i=1

of real numbers and k ∈ N

‖
k∑

i=1

cixi‖ ≤ A‖{ci}k
i=1‖w.

In case w(t) ≈ tq as t → 0 we speak about the upper q estimate.
The following is a rather simple proposition

Proposition 4.3. A Banach space which is asymptotically uniformly smooth
with modulus w contains a normalized sequence {xi}∞i=1 which satisfies the
upper w estimate.

Note that the converse to Proposition 4.1 is false since C[0, 1] contains
for any w a normalized sequence satisfying the upper w estimate while it is
not isomorphic to an asymptotically smooth space (e.g. since it is not an
Asplund space).

The following are the main results in this section.

Theorem 4.4. Let X be a separable Banach space and let n > 1 . Suppose
that for some β > 1, X∗ contains a normalized sequence satisfying the upper
tn/(n−1)/ logβ(1/t) estimate. Then X contains a σ-porous set whose comple-
ment meets every n-dimensional surface in a set of n-dimensional Hausdorff
measure zero.

In particular, the σ-porous set from this Theorem has Γn-null complement
and is neither Haar null nor Γn null.

The construction of such a σ-porous set resembles a construction in [9]. In
the same paper there is also a much simpler construction in every separable
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infinite dimensional space of a σ-porous set whose complement has measure
zero on every line (see also [1], Chapter 6). Such a set obviously cannot be
Haar null.

Theorem 4.5. Let X be a separable Banach space and let n > 1. Suppose
that for some q > n/(n − 1), X∗ contains a normalized sequence satisfying
the upper q estimate. Then there is a Lipschitz map f : X → Rn and a
continuous linear functional y∗ on L(X, Rn) so that y∗(Df(x)) ≥ 0 whenever
f is Gâteaux differentiable at x and for every small ε > 0 the set

{Df(x) | f is Gâteaux differentiable at x with y∗(Df(x)) > ε}

is a nonempty slice of the set of all Gâteaux derivatives of f which contains
no ε-Fréchet derivative of f .

5 Asymptotic Fréchet differentiability for

Lipschitz maps into Rn

The main result in this section actually is concerned with proper Fréchet
differentiability.

Theorem 5.1. Assume that the space X admits a continuous convex function
Θ such that for some n ≥ 1

(i) inf{Θ(x); ‖x‖ > s} > Θ(0) for all s > 0,

(ii) supx∈X ρΘ(x, t) = O(tn logn−1(1/t)) as t ↘ 0,

(iii) for every x ∈ X , ρΘ(x, t) = o(tn logn−1(1/t)) as t ↘ 0.

Let f be a Lipschitz map from a nonempty open set G of X to a space of
dimension not exceeding n. Then every slice of the set of Gâteaux derivatives
of f contains a Fréchet derivative.

For n = 1, this theorem is just a restatement of Theorems 1.7. Condition
(iii) above can only hold for n ≤ 2 since affine maps are the only convex
functions which satisfy ρΘ(x, t) = o(t2) at every x ∈ X even if X = R
(clearly affine maps fail to satisfy (i)). The proof of Theorem 5.1 resembles
the proof in [8]. It involves a delicate iterative construction of a sequence
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{xn}∞n=1 in X which is shown to converge to a point x at which f is Fréchet
differentiable.

The main special case of Theorem 5.1 is

Corollary 5.2. Every pair (f,g) of real valued Lipschitz functions defined
on an open set G of a Hilbert space possesses a common point of Fréchet
differentiability. Moreover, for any u, v ∈ X and c ∈ R the existence of a
common point x of Gâteaux differentiability of f and g such that

f ′(x, u) + g′(x, v) > c

implies the existence of such a point of Fréchet differentiability.

Using a similar argument to the proof of Theorem 5.1 we obtain a result
which is meaningful for every finite n.

Theorem 5.3. Assume that the space X admits a continuous convex function
Θ such that for some n ≥ 1

(i) inf{Θ(x); ‖x‖ > s} > Θ(0) for all s > 0,

(ii) supx∈X ρΘ(x, t) = O(tn logn(1/t)) as t ↘ 0,

(iii) For every x ∈ X, ρΘ(x, t) = o(tn logn−1(1/t)) as t ↘ 0.

Then every Lipschitz map f from a nonempty open set G in X to a space
of dimension not exceeding n is asymptotically Fréchet differentiable at some
points in G.
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Almost Fréchet differentiability of Lipschitz mappings between infinite
dimensional Banach spaces, Proc. London Math. Soc. (3) 84 (2002), 711-
746.

16



[4] Lindenstrauss J., Preiss D., Almost Fréchet differentiability of
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