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Abstract

Existing negative results on invalidity of analogues of classical Density
and Differentiation Theorems in infinite dimensional spaces are considerably
strengthened by a construction of a Gaussian measure γ on a separable Hilbert
space H for which the Density Theorem fails uniformly, i.e., there is a set
M ⊂ H of positive γ-measure such that

lim
r↘0

sup
x∈H

γ(B(x, r) ∩M)

γB(x, r)
= 0.

Keywords. Gaussian measures on Hilbert spaces, Density Theorem

1 Introduction
Our aim here is to show that already for Gaussian measures on separable Hilbert
spaces the classical Density Theorem may fail in a very strong, and perhaps surpris-
ing, way. Recall that for a given locally finite Borel measure µ on a metric space X
the validity of this Theorem means that for every Borel set M ⊂ X,

lim
r↘0

µ(B(x, r) ∩M)

µB(x, r)
= 1M(x) for µ almost every x ∈ X. (1.1)

This was first proved by Lebesgue for the Lebesgue measure on the real line. Nowa-
days there is a number of different short arguments showing this result of Lebesgue,
for example [18] and [4], but most textbook proofs have as their main step the
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Vitali Covering Theorem. These proofs or their simple modification can show the
Density Theorem for measures absolutely continuous with respect to the Lebesgue
measure on any finite dimensional Banach space. However, the Density Theorem is
known to hold for every locally finite Borel measure on every finite dimensional Ba-
nach space, which is most usually proved using much stronger covering result than
Vitali’s, namely the Besicovitch-Morse covering theorem. (See, for example, [7].)

When one abandons the assumption of finite dimensionality the situation be-
comes quite different. Since it is not difficult to see that in every infinite dimensional
Banach spaces there are measures for which the Density Theorem fails, the main
question is whether it or similar results hold for measures that in some questions
act as a suitable infinite dimensional replacement for the Lebesgue measure. Gaus-
sian measures are the most natural candidate, both because of their importance
in mathematics (for which see, for example, [2, Chapter 7]) and because of their
known use in geometric problems of nature similar to the Density Theorem. For
example, an analogue of Rademacher’s Theorem on almost everywhere differentia-
bility of real-valued (and even some vector-valued) Lipschitz functions holds (with
Gateaux derivatives) in every separable Banach space for every non-degenerated
Gaussian measure. (See [10] or [1] for further results in this direction.) Nearer to our
theme, [16] shows that some Gaussian measures are so well approximated by finite
dimensional ones that it is possible to use the dimension independent estimate of
the Hardy–Littlewood maximal operator from [15] to show the following Theorem
giving a class of infinite dimensional Gaussian measures on a Hilbert space for which
the Differentiation Theorem holds for all Lp functions with p > 1. The quality of
the approximation of a given Gaussian measure by finite dimensional ones may be
measured, for example, by the speed of decrease of the eigenvalues of its covariance
operator. (We will actually not use the covariance operator but a representation of
Gaussian measures on Hilbert spaces in which these eigenvalues are directly related
to the norm, see Section 2.)

Theorem T (Tišer 1988). Suppose the eigenvalues λk of the covariance operator of
a non-degenerated Gaussian measure γ on a separable Hilbert space H satisfy

lim
k→∞

ks
λk+1

λk
= 0

for some s > 5/2. Then for every f ∈ Lp(γ) where p > 1,

lim
r↘0

1

γB(x, r)

∫
B(x,r)

f dγ = f(x) (1.2)

for γ almost every x ∈ H.

The first negative result related to our problem was a simple observation made
in [11] that the Vitali Covering Theorem need not hold for Gaussian measures on
infinitely dimensional separable Hilbert spaces. This result was strengthened in [17]
by showing that this theorem fails for every infinite dimensional Gaussian measure
on a separable Hilbert space and in [12] by showing that even the Density Theorem
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may fail for Gaussian measures on Hilbert spaces: there are a Gaussian measure γ
on a separable Hilbert space and a Borel set M with γM > 0 such that the limit in
(1.1) is equal to zero γ almost everywhere. Since the set{

x ∈M
∣∣∣ lim
r↘0

γ(B(x, r) ∩M)

γB(x, r)
= 0

}
is γ measurable and has strictly positive γ measure, it contains a compact set of
strictly positive γ measure, and we easily see that for this set the limit in (1.1) is
equal to zero everywhere.

The above negative results left open the possibility that at least a (very) weak
version of the Density Theorem holds for any Gaussian measure γ on a separable
Hilbert space H, namely, that for any Borel set M ⊂ H with γM > 0, and any
η > 0, there are arbitrarily small balls B(x, r) such that

γ(B(x, r) ∩M)

γB(x, r)
> 1− η. (1.3)

An analogous question for the Differentiation Theorem was answered in a surprising
way in [13] by providing a rather artificial example of a Gaussian measure γ on a
separable Hilbert space H together with an integrable function f ∈ L1(γ) so that

lim
r↘0

inf

{
1

γB(x, r)

∫
B(x,r)

f dγ
∣∣∣ x ∈ H

}
= ∞. (1.4)

In other words, the averages of an integrable function over balls may, instead of
converging to the function almost everywhere as in (1.2), tend to infinity uniformly
over points of the space.

Here we refute even the above very weak version of the Density Theorem in
perhaps the strongest possible way: not only that for small balls the ratio on the
left of (1.3) is not bigger than 1 − η, but, as r tends to zero, it converges to zero
uniformly over points of H. Rather naturally, based on Theorem T, one expects that
this may hold for those Gaussian measures that are badly approximated by finite
dimensional ones. The following main result of this note shows that this is indeed the
case. Moreover, the Gaussian measures for which we show that the Density Theorem
(and, as we will see shortly, also the Differentiation Theorem) fails in so strong way
are no more artificial, they include the Gaussian measures whose eigenvalues of the
covariance operator are k−s where 1 < s < 6/5.

Theorem 1. Suppose the eigenvalues λk of the covariance operator of a non-degen-
erated Gaussian measure γ on a separable Hilbert space H form a non-increasing
sequence satisfying

lim sup
k→∞

k

(
λk
λk+1

− 1

)
<

6

5
.

Then for every ε > 0 there is a Borel set M ⊂ H such that γ(H \M) < ε and

lim
r↘0

sup

{
γ(B(x, r) ∩M)

γB(x, r)

∣∣∣ x ∈ H

}
= 0.
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This Theorem will be proved at the end of this note as a consequence of the
rather technical Proposition 14 which can be used to provide a host of other exam-
ples of Gaussian measures with the same property. (See the remark following this
Proposition.) Nevertheless, our methods do not allow us to decide what happens
when the eigenvalues are k−s where s ≥ 6/5.

As it is customary, and often more convenient, to state the Density Theorem in
an equivalent form for the complement Q := H \M , we also point it out.

Corollary 2. Suppose γ satisfies the assumptions of Theorem 1. Then for every ε > 0
there is a Borel set Q ⊂ H such that γQ < ε and

lim
r↘0

inf

{
γ(B(x, r) ∩Q)

γB(x, r)

∣∣∣ x ∈ H

}
= 1.

A simple consequence of our main result is that a function satisfying (1.4) can
actually belong to all Lp(γ) for 1 ≤ p <∞. To see it, it suffices to use the following
Corollary with φ(x) := ex.

Corollary 3. Suppose γ satisfies the assumptions of Theorem 1 and φ : [0,∞) −→
[0,∞) is non-decreasing. Then there is a function f ∈ L1(γ) such that

∫
φ(|f |) dγ <

∞ and
lim
r↘0

inf

{
1

γB(x, r)

∫
B(x,r)

f dγ
∣∣∣ x ∈ H

}
= ∞.

Proof. Let ψ(x) := x + φ(x) and choose numbers ε1 ≥ ε2 ≥ · · · > 0 such that∑∞
k=1 εkψ(k

2) <∞. By Corollary 2 we choose sets Qn with γQn < 2−nεn satisfying

lim
r↘0

inf

{
γ(B(x, r) ∩Qn)

γB(x, r)

∣∣∣ x ∈ H

}
= 1.

Put Ak :=
∪∞

n=kQn and f =
∑∞

k=1 k1Ak
. Then γAk ≤ εk and f(x) ≤ k2 for

x ∈ Ak \ Ak+1, hence∫
ψ(f) dγ ≤

∞∑
k=1

ψ(k2)γ(Ak \ Ak+1) ≤
∞∑
k=1

εkψ(k
2) <∞,

which shows that f ∈ L1(γ) and that
∫
φ(|f |) dγ <∞.

To prove the remaining statement, fix any n and choose sn small enough to satisfy

inf

{
γ(B(x, r) ∩Qn)

γB(x, r)

∣∣∣ x ∈ H

}
≥ 1

2
,

for all 0 < r < sn. Then, since f ≥ n1Qn , for any x ∈ H and 0 < r < sn,

1

γB(x, r)

∫
B(x,r)

f dγ ≥ n
γ(B(x, r) ∩Qn)

γB(x, r)
≥ 1

2
n.
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2 Gaussian measures, other notions and notation
We collect some of the notions and results used throughout the paper. We will use
two notations for norms in vector spaces, | · | and ∥ · ∥. Both will be induced by a
scalar product, the one giving | · | will be denoted by ⟨·, ·⟩ but we will not need any
notation for the one inducing ∥ · ∥. For the Euclidean norm in Rn we will always use
the symbol | · |. If U is a closed linear subspace of a Hilbert space H, then the same
symbol U will denote the orthogonal projection from H onto U . In particular, Ux
is the orthogonal projection of an element x ∈ H onto U . By B(x, r) we denote the
closed ball centred at x with radius r > 0. We may use the same symbol for balls
in different spaces (or different norms); when it is not clear from the context which
space is intended, we will specify it.

It will be convenient to use in any finite dimensional Hilbert space (H, |·|) notions
that we introduce only in Euclidean spaces. All that we need may be obtained by
choosing an orthonormal basis of H and identifying H with Rn in the usual way
(the result will not depend on the choice of the basis). In particular, the Lebesgue
measure Ln on H may be defined in this way; or it may be defined as the Hausdorff
measure Hn of dimension n = dimH.

We will often use the special case of the coarea formula, or of the polar coordi-
nates, saying that for every non-negative Borel function f on an (n+1)-dimensional
Hilbert space H, ∫

H

f(x) dLn+1(x) =

∫
W

∫ ∞

0

f(sw)snds dHn(w) (2.1)

where W := {w ∈ H | |w| = 1}. In particular, for every Borel set E ⊂ R,∫
{x∈H| |x|∈E}

e−c|x|2dLn+1(x) = ωn

∫
E

e−cs2snds (2.2)

where ωn := Hn{w ∈ Rn+1 | |w| = 1}.
The term “measure” will be used only for locally finite Borel measures on separa-

ble Banach spaces; such measures are often called Radon measures (In fact, with the
exception of the Lebesgue and Hausdorff measures all our measures will be finite.)
The support of a measure µ is defined as the set of x such that µB(x, r) > 0 for
every r > 0.

An important role in our arguments is played by log-concave measures and func-
tions. Out of a number of equivalent definitions of log-concavity of measures we
choose, as in [6], the one that is easiest to apply, namely the requirement that it
satisfies the Prékopa-Leindler inequality. So a measure on a separable Banach space
X will be called log-concave provided that∫

X

f dµ ≥
(∫

X

g dµ
)s(∫

X

h dµ
)t

(2.3)

whenever 0 < s, t < 1, s + t = 1 and f, g, h are non-negative Borel measurable
functions satisfying

f(sx+ ty) ≥ g(x)sh(y)t (2.4)
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for every x, y ∈ X. Notice that the usual statement of the Prékopa-Leindler inequal-
ity says that Ln is a log-concave measure on Rn. (See [9, 14].)

A Borel measurable function f : X −→ [0,∞) is said to be log-concave if the
function x 7→ − log f(x) is convex. Here we let log t = −∞ for t ≤ 0 and allow
convex function to attain also the value +∞.

The following properties of log-concave measures and functions, which we will
freely use, follow immediately from the definition.

• If µ is a log-concave measure on X and f a µ-integrable log-concave function
on X, the measure µE :=

∫
E
f dµ is log-concave.

• If µ is a log-concave measure on Y and f a log-concave function on X × Y
such that y 7→ f(x, y) is µ-integrable for all x ∈ X, the function g(x) :=∫
Y
f(x, y) dµ(x) is log-concave.

We will make a deep use of some basic instances of the concentration of mea-
sure phenomenon. (See, for example, [8] for the basic techniques and uses of this
important concept.) At this moment it suffices to say that what we need originates
in the special case of the concentration phenomenon according to which in high
dimensional spaces for any given point x log-concave measures and so (integrals of)
log-concave functions tend to be concentrated close to some sphere {y | |y−x| = c}.
Unusually, it will be important for us to relate the values of c for two concentra-
tion problems (in spaces of different dimension). For that, the main tool will be
concentration of log-concave functions close to their maximum.

To gain information on the position of the point at which given log-concave
functions attain maximum, the subdifferential criterion for a convex function to
attain its minimum will become useful. Recall that, when f is a convex function on
Rn and f(x) <∞, the subdifferential of f at x is defined as the set

∂f(x) = {x∗ ∈ Rn | ⟨x∗, y − x⟩ ≤ f(y)− f(x) for all y ∈ Rn}.

Clearly, f attains its minimum at x if and only if zero belongs to ∂f(x).
There is a vast literature on Gaussian measures, both on finite dimensional spaces

and on Banach spaces; see, for example, [2] and references there. We will remind
ourselves only of the notions that we need.

Definition 4. The standard Gaussian measure on Rn is defined by

γF =
1

(2π)n/2

∫
F

exp
(
−|x|2

2

)
dx

for Borel sets F ⊂ Rn. The standard Gaussian measure on RN is defined as the
countable product of the one-dimensional standard Gaussian measures.

Gaussian measures on infinitely dimensional situation will be seriously used only
in Section 6, but we introduce them already now in order to enable an informal
presentation of the thinking behind the proof of Theorem 1 in the next Section. Up
to an isomorphism, non-degenerated Gaussian measures on infinitely dimensional
separable Hilbert spaces are fully described in the following way.
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Gaussian measures on Hilbert spaces. The measure γ is the restriction of the stan-
dard Gaussian measure from RN to

H :=
{
x ∈ RN

∣∣∣ ∞∑
i=1

λix
2
i <∞

}
equipped with the norm

∥x∥ :=
( ∞∑

i=1

λix
2
i

)1/2

,

where λ1 ≥ λ2 ≥ · · · > 0 satisfy
∑∞

i=1 λi <∞.
The summability condition on the series of λi is sufficient (as well as necessary)

for γ to be a Borel measure on H. In this representation, the λi are precisely the
eigenvalues of the covariance operator of γ that have been used in the statements of
Theorem T and Theorem 1. The corresponding eigenvectors are ui := (δi,j)j∈N ∈ H,
where δi,j = 1 when i = j and δi,j = 0 otherwise. We will also denote

|x| =
( ∞∑

i=1

x2i

)1/2

and ⟨x, y⟩ =
∞∑
i=1

xiyi provided that |x|, |y| <∞

and point out that, perhaps somewhat illogically,

B(x, r) = {y ∈ H | ∥y − x∥ ≤ r}

denotes a ball in the norm ∥ · ∥.
Finally, we recall that Gaussian measures are log-concave. Indeed, on each of

the spaces Hn := span{u1, . . . , un} the function x 7→ e−|x|2/2 is log-concave and
integrable with respect to the log-concave measure Ln. Hence the standard Gaussian
measure on Hn is log-concave, and by [6, Corollary 5] so is their weak limit γ.

3 Sketch of main arguments
Although some of our arguments may seem to be quite technical, the basic idea
behind them is rather simple. We choose mutually orthogonal finite dimensional
subspaces Hi of H, each spanned by a subset of the uj, with dimHi = ni ↗ ∞ and
for suitable τi > 0 define

M :=
∞∩
i=1

Mi where Mi :=
{
y ∈ H

∣∣ ∣∣|Hiy| −
√
ni

∣∣ ≤ τi
}
.

By the well known result on concentration of norm for the standard Gaussian mea-
sure (which will be also given in Corollary 7) the set M has positive γ measure
for τi much smaller that √

ni, for example for τi = 2
√
log ni. Given any z ∈ H,

r > 0 and ε > 0, the concentration phenomenon should also provide constants
ci such that the restriction of γ to the ball B(z, r) is concentrated close to the
{y ∈ B(z, r) | |Hiy| = ci}. In other words there are (small) σi > 0 such that

γ
{
y ∈ B(z, r)

∣∣ ∣∣|Hiy| − ci
∣∣ > σi

}
≤ εγB(z, r).
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Provided that |√ni−ci| > τi+σi for some i, we get that γ(M∩B(z, r)) ≤ εγB(z, r),
and provided that for all small r > 0 this can be done for all z, we are done.

The main source of the technicalities in our arguments is that the ci are not
easy to estimate. We therefore explain the reasoning that lead us to the conclusion
that with suitable choices of λi and Hi the above approach may go through. For
simplicity we will assume that, when restricted to Hi, ∥ · ∥ is a constant multiple
of | · |; this corresponds to what was used in [12] and [13] and what we called artificial
examples.

We first look at what happens when we fix some i and use Fubini’s Theorem to
calculate the measures γB(z, r) and γ(Mi ∩ B(z, r)). After letting n = ni, x = Hiz
and T :=

{
y ∈ Hi

∣∣ ∣∣|y| − √
n
∣∣ ≤ τi

}
, it gives

γB(z, r) =

∫
Hi

Φ(y)e−|y|2/2 dLn(y) and γ(Mi ∩B(z, r)) =

∫
T

Φ(y)e−|y|2/2dLn(y)

where Φ: Hi −→ [0,∞) and Φ(y) depends only on distance of y to x in the norm
∥ · ∥ and so also in the norm | · |. (Without loss of any significant details we may
assume that Φ is the indicator of some ball about x.) Moreover, Φ is log-concave and
so the concentration phenomenon gives that for some ρ = ρi(z, r) > 0 its integral is
concentrated close to the sphere {y ∈ Hi | |y − x| = ρ}. The situation is illustrated
in Figures 1 and 2 where we ignore the widths of concentration (the constants τi
and σi) as they are much smaller than the radii of concentration (√ni and ρ).

We will distinguish several cases, one “good” (for failing the Density Theorem)
in the sense that it shows γ(Mi ∩ B(z, r)) ≤ εγB(z, r), and three “bad” in the
sense that they do not. For their explanation, we will denote by S(y, t) the sphere
in Hi centred at y with radius t and use two basic instances of the concentration
phenomenon: in any cone C in Hi with vertex at the origin, the standard Gaussian
measure is concentrated close to C ∩S(0,

√
n) and the (n− 1) dimensional measure

of a spherical cap is concentrated close to its boundary. So, for example, if C has
spherical base, we may approximate γC by κne−n/2tn−2 where t is the radius of the
sphere S(0,

√
n) ∩ ∂C and κn is a constant depending on n only.

x

C√
n

ϱ

0

Figure 1. Concentration outside S(0,
√
n).
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√
n

x

ϱ

0

C

Figure 2. Concentration on S(0,
√
n).

Figures 1 and 2 indicate a “good” and a “bad” case, respectively. We explain
them as (a) and (b) below, and add two additional simple “bad”cases.

(a) Figure 1 gives an example of a “good” case. To explain it, we pick a suitable
s > 0 whose choice will be indicated shortly, and let U := S(0,

√
n+s)∩S(x, ρ).

(In Figure 1, U is the boundary of the dashed spherical cap, or equivalently
its intersection with S(x, ρ).) Also let

W := S(0,
√
n) ∩ S(x, ρ) and V := S(0,

√
n) ∩ ∂C.

We notice that U, V,W are n − 2 dimensional spheres and denote their radii
u, v, w, respectively. The way in which S(0,

√
n) and S(x, ρ) intersect (as op-

posed to the way in which they intersect in Figure 2) gives that v ≥ w + cs
where c > 0 is a (small) constant independent of n. Hence

u = (1 + s/
√
n)v ≥ (1 + s/

√
n+ cs/w)w.

Since Φ is constant on S(x, ρ), the concentration arguments indicated above
show that

γ(M ∩B(z, r)) ≤ κne
−n/2wn−2 and γB(z, r) ≥ κne

−(
√
n+s)2/2un−2.

Hence

γ(M ∩B(z, r)) ≤ es
√
n+s2/2(1 + s/

√
n+ cs/w)−n+2γB(z, r).

For suitable s (and under reasonable assumptions on the sizes involved in
Figure 1), expansion of the coefficient in front of γB(z, r) leads to the main
term e−ncs/w, which is a small number.

(b) As stated above, inside the whole cone C the standard Gaussian measure is
concentrated close to the sphere S(0,

√
n)∩∂C. But S(0,

√
n)∩∂C is contained

in S(x, ρ) which is contained in C. Since Φ is constant on S(x, ρ), the integral
of Φ(y)e−|y|2/2 is also concentrated close to S(0,

√
n) ∩ ∂C.
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(c) Another “bad” case occurs when x is close to S(0,
√
n) and ρ is small, for

example because then the support of Φ may be contained in T .

(d) Final “bad” case occurs when the set S(0,
√
n)∩x⊥ (close to which the Gaus-

sian measure on the whole of Hi is concentrated) is (almost) contained in
S(x, ρ).

Understanding of these cases was enough to show that the almost everywhere
version of the Density Theorem fails for some Gaussian measures. Since the centre
belongs to M , the situation from (b) cannot occur for any i (or, more precisely, it
is subsumed in (c)) and, since r is small, (c) occurs for small i. Hence the only way
in which the density ratio may be close to one is that (c) occurs for some i while
(d) occurs for i+ 1. Roughly, this would mean that ρi(x, r) should be about τi and
ρi+1(x, r) about

√
2ni+1. But this is impossible when the dimensions of Hi and Hi+1

as well as the ratios of ∥ · ∥ and | · | on these spaces are not too far from each other.
The reason for this is best seen by noticing that if both these dimensions and ratios
were the same, symmetry would show that ρi(x, r) is very close to ρi+1(x, r).

√
n

x

ϱ

0

C

Figure 3. Concentration far from S(0,
√
n) ∩ x⊥.

The above programme was realized in [12] and in [13] it was refined to get a
function satisfying (1.4). Nevertheless, these ideas were too weak to show Theorem 1
till the second named author made several key observations that we summarize in
the following two points.

(R1) The possibility (b) for the choice of “bad” centre and radius is also far
from (d). As illustrated in Figure 3, when we are in the situation from (b)
then, even if ρ is quite close to |x|2+n (which means that S(0,

√
n)∩S(x, ρ)

is close to S(0,
√
n)∩x⊥), the integral of Φ(y)e−|y|2/2 is concentrated close to

the hyperplane indicated by the dash line which is far from x⊥. The only way
in which this discrepancy may disappear is to have ρ very big, but this should
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imply that |x| is big. As we are treating only small values of r, this should
mean that B(x, r) is far from S(0,

√
n), implying that γ(M ∩ B(x, r)) = 0.

However, both the size of x and r are measured in the norm ∥ · ∥ (which is a
small multiple of | · |), so this argument needs refining. For this, consider the
dash line in Figure 3 as representing the hyperplane {y ∈ Hi | ⟨y, x⟩ = α}
close to which the restriction of the function ⟨·, x⟩ to the ball B(x, r) is con-
centrated. In Lemma 12(iii) we get not only that |x| is big, but obtain a
lower bound α ≥ n/4. (Incidentally, α has the same lower bound also in the
case (c), since then |x| =

√
n and B(x, ρ) is a small ball around x. So the

two “bad” cases, (b) and (c) may be treated as one, which will allow us to
reduce the number of cases in Lemmas 12 and 13 from four to three.)

(R2) For one index i, (R1) does not give a strong enough estimate. However,
assuming the case (a) never occurs, there is a chain of indexes k, k+ 1, . . . , l
starting at (b), ending at (d) such that for every i = k, . . . , l − 1 either (b)
or (c) occurs. A strengthened discrepancy argument (see below) shows that
this chain is long, and (R1) provides a lower estimate of ∥Hiz∥ for mutually
orthogonal vectors Hiz, i = k, . . . , l−1. Under conditions that are reflected in
our assumptions on the eigenvalues of the covariance operator of the Gaussian
measure γ, this finally gives that ∥z∥ is big and, since r has an upper bound,
B(z, r) does not meet M and so γ(M ∩B(z, r)) = 0.

As pointed out, in (R2) we need a strengthened discrepancy argument of [12].
More precisely, we need to understand, given z, r, what happens in Hi+1 provided
that (b) occurred for Hi. Calculating γB(z, r) and γ(Mi ∩ Mi+1 ∩ B(z, r)) using
Fubini’s Theorem, we are faced with two concentration problems for a function, say,
Ψ in the space Hi ⊕Hi+1, namely with the problem of relation of the concentration
constant of |Hiy| to the concentration constant of |Hi+1y|. As we need rather sharp
estimates, we use that Ψ(y) depends only on four variables: ⟨y,Hiz⟩, ⟨y,Hi+1z⟩, the
shortest distances of Hiy to a multiple of Hiz and the shortest distances of Hi+1y to
a multiple of Hi+1z. This allows us to transform the problem to a four dimensional
one for a new function that happens to be logarithmically concave. For this function
we use that its integral is concentrated close to its maximum, which relatively easily
allows comparison of concentration constants for different functions.

The above discussion assumed a simplifying condition that on each Hi the norms
∥ · ∥ and | · | are multiple of each other. As this cannot be the case for the most
interesting choices of the eigenvalues in Theorem 1 including λk = k−s for 1 <
s < 6/5, the estimates we need are more technical than needed for the simplified
case. We therefore use the following Section 4 to show basic results on concentration
of integrals of log-concave functions close to their maximum. One of the standard
results on concentration of Gaussian measures is given in Corollary 7 as an immediate
consequence. The following Section 5 contains the main technical estimates needed
to prove Theorem 1. There we introduce a class of log-concave functions that can
appear by an application of Fubini’s Theorem alluded to above. This allows us to
reduce the dimension of the spaces in which the concentration is needed to either
two or four. In order to estimate concentration of these functions, we obtain an
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equation for their maximum in Lemma 11, and prove the corresponding variant
of the discrepancy between the “bad” cases in Lemma 12, where (i) corresponds
to (a), (ii) to (d) and (iii) to joined (b) and (c). The main Lemma 13 of this Section
considers a longer sum of the spaces Hi to realize the idea of (R2).

Finally Proposition 14 of Sections 6 does in a more general form what was in-
dicated here. It gives a rather technical criterion for uniform failure of the Density
Theorem that involves the behaviour of the eigenvalues λk. Theorem 1 as well as
other results indicated in the final Remark easily follow.

4 Concentration around maximum
Results on concentration of log-concave functions are nowadays standard (see, for
example, [3]). Most often, they treat concentration about mean value or median,
while to prove our main concentration estimates in Section 5, concentration about
maximum is considerably more convenient. To make our proof complete, we therefore
provide the full basic argument.

Lemma 5. Let g : R −→ [0,∞) be log-concave, a ∈ R and g(a) > 0. Then for t ≥ 0,∫ ∞

a+t

g(s) ds ≤ g(a+ t)

g(a)

∫ ∞

a

g(s) ds

and for t ≤ 0, ∫ a+t

−∞
g(s) ds ≤ g(a+ t)

g(a)

∫ a

−∞
g(s) ds.

Proof. We show only the first statement, the second being analogous. The case
g(a + t) ≥ g(a) is obvious, since the integral on the left is clearly bounded by the
integral on the right, and so is the case g(a + t) = 0 since then g(s) = 0 for all
s ≥ a+ t. So assume 0 < g(a+ t) < g(a) and let

h(s) := −αs+ β

be an affine function passing through the two points
(
a, log g(a)

)
and

(
a+t, log g(a+

t)
)
. Since log g(a+ t) < log g(a), the coefficient α > 0. Further, by concavity of log g

we have log g(s) ≥ h(s) for s ∈ (a, a + t) and log g(s) ≤ h(s) for s ∈ (a + t,∞).
Equivalently,

g(s) ≥ e−αs+β and g(s) ≤ e−αs+β

for s belonging to (a, a+t) and (a+t,∞), respectively. Denote A = 1/α. Integrating
the first inequality over (a, a+ t) and the second over (a+ t,∞), we get∫ a+t

a

g(s) ds ≥ A(g(a)− g(a+ t))

and ∫ ∞

a+t

g(s) ds ≤ Ag(a+ t).
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Combining these two estimates we obtain∫ a+t

a

g(s) ds ≥ g(a)− g(a+ t)

g(a+ t)

∫ ∞

a+t

g(s) ds =
g(a)

g(a+ t)

∫ ∞

a+t

g(s) ds−
∫ ∞

a+t

g(s) ds,

and the statement follows by adding
∫∞
a+t

g(s) ds.

Lemma 6. Suppose φ : [0,∞) −→ [0,∞) is log-concave and c, r ≥ 0.

(i) If t → φ(t)ect
2 is non-increasing on [r,∞), then for every s ≥ r and 0 ≤ k ≤

2cr2, ∫ ∞

s

φ(t) tk dt ≤ e−c(s−r)2
∫ ∞

r

φ(t) tk dt.

(ii) if t → φ(t)ect
2 is non-decreasing on (0, r], then for every 0 < s ≤ r and

k ≥ 2cr2, ∫ s

0

φ(t) tk dt ≤ e−c(s−r)2
∫ r

0

φ(t) tk dt.

Proof. First notice that the case c = 0 is trivial and the statement (ii) is vacuously
true when r = 0. Also, under the assumption of (i),

φ(t)ect
2 ≥ φ(t+ s)ec(t+s)2 ≥ φ(t+ s)ect

2+cs2

for every t, s ≥ 0. Thus φ(t + s) ≤ φ(t)e−cs2 and integrating over t ∈ (0,∞) shows
that the inequality (i) holds with r = 0. Hence we may assume that c, r > 0.

Notice that the integrand φ(t)tk is log-concave. We multiply the inequality φ(s)ecs2 ≤
φ(r)ecr

2 , which holds in both cases, by e−cs2 to get

φ(s) ≤ ecr
2−cs2φ(r).

Also,

k log s = k log r + k log(1 + (s− r)/r) ≤ k log r + k(s− r)/r, i.e. sk ≤ rkek(s−r)/r.

Combining the last two inequalities and using that our assumptions imply k(s −
r)/r ≤ 2c(s− r)r, we get

φ(s) sk ≤ ecr
2−cs2φ(r) rkek(s−r)/r ≤ ecr

2−cs2+2c(s−r)rφ(r) rk = e−c(s−r)2φ(r) rk.

By the first statement of Lemma 5 with a = r and a+ t = s,∫ ∞

s

φ(t) tk dt ≤ φ(s) sk

φ(r) rk

∫ ∞

r

φ(t) tk dt ≤ e−c(s−r)2
∫ ∞

r

φ(t) tk dt,

which is (i). The second statement of Lemma 5 with the same choice establishes
(ii).
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Corollary 7. Let n ∈ N, c > 0 and r =
√

(n− 1)/2c. Then for every λ > 0,∫
{x∈Rn| ||x|−r|>λ}

e−c|x|2dLn(x) ≤ e−cλ2

∫
Rn

e−c|x|2dLn(x).

Proof. Using (2.2) we get∫
{x∈Rn| ||x|−r|>λ}

e−c|x|2dLn(x) = ωn−1

∫ r−λ

0

e−ct2tn−1 dt+ ωn−1

∫ ∞

r+λ

e−ct2tn−1 dt

(4.1)
where

∫ r−λ

0
e−ct2tn−1 dt is set equal to zero if λ ≥ r. We apply Lemma 6 to φ(t) =

e−ct2 and k = 2cr2 = n− 1. Observe that φ meets the assumptions of both (i) and
(ii). Hence the estimate (4.1) may be continued by

≤ ωn−1e
−cλ2

∫ r

0

e−ct2tn−1 dt+ ωn−1e
−cλ2

∫ ∞

r

e−ct2tn−1 dt = e−cλ2

∫
Rn

e−c|x|2dLn(x).

Lemma 8. Let φ : Rn −→ [0,∞) attain its maximum at p ∈ Rn. Assume further
that a positive semi-definite quadratic form Q on Rn is such that the function
x 7→ φ(x) eQ(x) is log-concave. Then ψ(x) := φ(x)eQ(x−p) is log-concave and attains
its maximum at p.

Proof. The function ψ is log-concave since ψ(x) = φ(x) eQ(x)eh(x) where the function
h(x) := Q(x− p)−Q(x) is affine. Hence g(x) := − logψ(x) = − logφ(x)−Q(x− p)
is a convex function. Assuming, as we may, φ(p) > 0, we see that − logφ attains its
minimum at p. Using it, we infer

lim inf
t→0

g(p+ tx)− g(p)

t
= lim inf

t→0

− logφ(p+ tx) + logφ(p)−Q(tx)

t

≥ lim inf
t→0

−t2Q(x)
t

= 0.

This estimate means that zero belongs to the subdifferential of g at p. Hence g
attains its minimum at p and, consequently, ψ = e−g attains its maximum at p.

Lemma 9. Suppose φ : Rn −→ [0,∞) attains its maximum at p ∈ Rn and a positive
semi-definite quadratic form Q on Rn is such that the function x 7→ φ(x)eQ(x) is
log-concave. Then for every τ ≥ (n− 1)/2,∫

{x∈Rn|Q(x−p)≥τ}
φ dLn ≤ e−σ

∫
Rn

φ dLn. (4.2)

where σ :=
(√

τ −
√

(n− 1)/2
)2.

Proof. Clearly, only the situation when φ(p) > 0 and the integral on the right of
(4.2) is finite needs treatment. By Lemma 8, ψ(x) := φ(x)eQ(x−p) is log-concave and
attains its maximum at p.
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Let S =
{
u ∈ Rn

∣∣ |u| = 1, Q(u) > 0
}

. For u ∈ S define φu : R −→ [0,∞) by
φu(t) := φ(p+ tu). Given τ ≥ (n− 1)/2, we let for u ∈ S,

ru :=
( τ

Q(u)

)1/2

−
( σ

Q(u)

)1/2

and su :=
( τ

Q(u)

)1/2

.

Then by (2.1),∫
{x∈Rn|Q(x−p)≥τ}

φdLn =

∫
S

∫ ∞

su

φu(t) t
n−1dt dHn−1(u). (4.3)

We estimate the inner integral on the right side of this inequality by an application
of Lemma 6 (i) with φu(t) = ψ(p+tu)e−Q(tu), c = Q(u), r = ru, s = su and k = n−1.
To see that its assumptions hold is straightforward: since ψ is log-concave, φu(t) and
φu(t)e

ct2 are also log-concave. Together with the assumption that φu(t)e
Q(tu) attains

its maximum at t = 0 this gives that φu(t)e
ct2 is non-increasing on [0,∞). Finally,

by an assumption, 2cr2 = 2(
√
τ −

√
σ)2 = n− 1 = k and, clearly, 0 ≤ r ≤ s. Hence,

using first Lemma 6 (i) and then (2.1) we can finish the estimates started at (4.3),

≤
∫
S

e−Q(u)(su−ru)2
∫ ∞

ru

φu(t) t
n−1dt dHn−1(u)

= e−σ

∫
S

∫ ∞

ru

φu(t) t
n−1dt dHn−1(u)

≤ e−σ

∫
Rn

φdLn.

5 Main concentration estimates
We recall from Section 2 that both | · | and ∥ · ∥ are used to denote a norm induced
by a scalar product on a vector space H and that ⟨·, ·⟩ denotes the scalar product
inducing | · |. Additionally, it will be convenient to let ⟨u, v⟩+ := max{0, ⟨u, v⟩}. To
indicate the reason for distinguishing the two norms, we notice that |·| is used for the
norm related to the standard Gaussian measure γ (so it is the Euclidean norm in Rn

or the usual norm in ℓ2 in the infinite dimensional situation) while ∥ · ∥ is used for a
norm in which γ is σ-additive or for its approximation in the finite dimensional case.
In statements in which only one norm is used, and so this distinction is immaterial,
we try to use the notation that corresponds best to later usage.

When H is equipped with ∥·∥ and x ∈ H, we denote by F(H, ∥·∥, x) the collection
of bounded log-concave ∥ · ∥-upper semi-continuous functions Ψ: H −→ [0,∞) such
that Ψ(u) depends only on ∥u−x∥ and Ψ(u) > 0 for all u from a ∥·∥-neighbourhood
of x. In the case when ∥u∥ = ⟨u,A(u)⟩1/2 where A is a bounded positive definite
symmetric linear operator on (H, | · |), we will write ∥ · ∥A and F(H,A, x) instead of
∥ · ∥ and F(H, ∥ · ∥, x), respectively.
Lemma 10. Let V be a closed subspace of the Hilbert space (H, ∥·∥), Z its orthogonal
complement, and ν a finite log-concave Borel measure on Z. Suppose further that
x ∈ H is such that Zx belongs to the support of ν and Ψ ∈ F(H, ∥ · ∥, x). Then the
function Φ(v) :=

∫
Z
Ψ(v + z) dν(z) belongs to F(V, ∥ · ∥, V x).
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Proof. As noticed in Section 2, Φ is log-concave. Clearly, it is bounded and, using
that Ψ is bounded and upper semi-continuous, we infer from Fatou’s Lemma that
Φ is upper semi-continuous. Since Ψ(y) = f(∥y − x∥2) for some f , we have

Φ(v) =

∫
Z

f(∥v + z − x∥2) dν(z) =
∫
Z

f(∥v − V x∥2 + ∥z − Zx∥2) dν(z).

Hence Φ(v) depends on the value of ∥v − V x∥ only.
Finally, to show that Φ > 0 on a neighbourhood of V x, let r > 0 be such that

Ψ > 0 on B(x, r). Then Ψ(v + z) > 0 whenever v ∈ V B
(
x, 1

2
r
)

and z ∈ ZB
(
x, 1

2
r
)
.

Since ν ZB
(
x, 1

2
r
)
> 0, we see that Φ(v) > 0 for v ∈ V B

(
x, 1

2
r
)
.

Lemma 11. Suppose that A is a positive definite symmetric linear operator on a
finite dimensional Hilbert space (H, | · |), x ∈ H, and Ψ ∈ F(H,A, x). Suppose
further that I is a finite index set, and for each i ∈ I we are given ni ∈ N and
wi ∈ H such that ⟨x,wi⟩ ≤ 0 and

{u ∈ H | Ψ(u) > 0} ∩
∩
i∈I

{u ∈ H | ⟨u,wi⟩ > 0} ̸= ∅. (5.1)

Then there is a unique point p ∈ H at which the log-concave function

f(u) := e−|u|2/2Ψ(u)
∏
i∈I

⟨u,wi⟩ni
+

attains its maximum. Moreover, ⟨p, wi⟩ > 0 for each i ∈ I and there is λ ≥ 0 such
that

p+ λA(p− x)−
∑
i∈I

niwi

⟨p, wi⟩
= 0.

Proof. Recall that h(u) := − log Ψ(u) is a convex function depending only on ∥u−
x∥A. Since h is even with respect to x (i.e. h(u) = h(2x−u)) it attains its minimum
at x. Consider any point p ∈ H such that p ̸= x and h(p) < ∞. We show that
any y ∈ ∂h(p) is a non-negative multiple of A(p − x). For this, it suffices to show
that ⟨y, u⟩ ≤ 0 whenever ⟨u,A(p − x)⟩ < 0. So assume that u ∈ H is such that
⟨u,A(p− x)⟩ < 0. Then for small t > 0,

∥tu+ p− x∥2A = t2∥u∥2A + 2t⟨u,A(p− x)⟩+ ∥p− x∥2A ≤ ∥p− x∥2A.

It follows that h(tu+ p) ≤ h(p) and so

⟨tu, y⟩ ≤ h(tu+ p)− h(p) ≤ 0.

So indeed ⟨y, u⟩ ≤ 0 whenever ⟨u,A(p − x)⟩ < 0, and we infer that y = λA(p − x)
for some λ ≥ 0.

To finish the proof, we introduce the function g := − log f , i.e.

g(u) = |u|2/2 + h(u)−
∑
i∈I

ni log⟨u,wi⟩+.
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The function g is convex, lower semi-continuous, and not identically +∞ due to the
condition (5.1). Moreover g(u) tends to infinity when |u| → ∞ and hence g attains
its minimum at some point p ∈ H. From 5.1 we see that g(p) < ∞ and, observing
that g is strictly convex on the set {u ∈ H | g(u) < ∞}, that p is unique. Since
g(p) < ∞, we have ⟨p, wi⟩ > 0 for all i ∈ I and so p ̸= x. Further, zero belongs
to the subdifferential of g at p. Since |u|2/2 −

∑
i∈I ni log⟨u,wi⟩ is smooth on a

neighbourhood of p, the latter condition implies that

0 = p+ y −
∑
i∈I

niwi

⟨p, wi⟩

for some y ∈ ∂h(p). Recalling that y = λA(p− x) we obtain

p+ λA(p− x)−
∑
i∈I

niwi

⟨p, wi⟩
= 0.

Lemma 12. Let {v, w} be an orthonormal basis of a 2-dimensional Hilbert space
(U, | · |) and let A be a symmetric linear operator on U with eigenvalues α ≥ β ≥
8α/9 > 0. Suppose further that n ∈ N, 0 < τ ≤ 2−6

√
n, and x is a multiple of v

satisfying |x| ≤ 2−6n/τ and (α − β)|x| ≤ α
√
n/18. Finally, let λ ≥ 0 and p ∈ U

satisfy ⟨p, w⟩ > 0 and
p+ λA(p− x)− nw

⟨p, w⟩
= 0. (5.2)

Then at least one of the following statements holds:

(i)
∣∣|p| − √

n
∣∣ > 2τ ;

(ii) λα ≤ 23τ/
√
n and |p−

√
nw| ≤ 25τ(1 + |x|/

√
n);

(iii) λα ≥ 2−3n/(
√
n+ |x|)2 and |⟨p, x⟩| ≥ n/4.

Proof. If λ = 0 we get p =
√
nw and (ii) holds. Hence we may assume λ > 0 and,

replacing A by λA, that λ = 1. Observe that

|⟨z, Au⟩| ≤ α|z||u|, ⟨u,Au⟩ ≥ β|u|2 and |⟨u,Az⟩ − α⟨u, z⟩| ≤ (α− β)|u||z|.

These inequalities will be used without a reference.
Suppose that (i) fails. Then, letting κ := 1 + 2−5, we have

|p| ≤
√
n+ 2τ ≤ κ

√
n (5.3)

and ∣∣|p|2 − n
∣∣ = ∣∣|p| − √

n
∣∣(|p|+√

n) ≤ 2τ(κ
√
n+

√
n) ≤ 4κτ

√
n. (5.4)

Multiplying (5.2) by v we obtain

|⟨p, v⟩| = |⟨v, A(p− x)⟩| ≤ α|p− x| ≤ α(|p|+ |x|)
≤ α(κ

√
n+ |x|) ≤ 2α(

√
n+ |x|). (5.5)
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If α ≤ 23τ/
√
n, (5.5) shows

|⟨p, v⟩| ≤ 24τ(1 + |x|/
√
n).

By the assumptions 0 < τ ≤ 2−6
√
n and |x| ≤ 2−6n/τ this implies |⟨p, v⟩| ≤

√
n/2.

So ⟨p, v⟩2 ≤ |⟨p, v⟩|
√
n/2 and, using also (5.4) and (5.5), we obtain the second

inequality in (ii) by estimating

|p−
√
nw| ≤ |

√
n−

√
|p|2 − ⟨p, v⟩2|+ |⟨p, v⟩| ≤ |n− |p|2 + ⟨p, v⟩2|√

n
+ |⟨p, v⟩|

≤ 4κτ + 3
2
|⟨p, v⟩| ≤ 4κτ + 24τ(1 + |x|/

√
n) ≤ 25τ(1 + |x|/

√
n).

It remains to assume α > 23τ/
√
n and show (iii). Multiplying (5.2) by p and

using (5.4) we get

⟨p,Ax⟩ = ⟨p,Ap⟩+ |p|2 − n ≥ β|p|2 + |p|2 − n ≥ 8α

9

(
n− 4κτ

√
n)
)
− 4κτ

√
n

≥ 8αn

9
(1− 2−4κ)− αn

2
κ =

(8− 5κ)αn

9
,

where we have estimated the first occurrence of τ by τ ≤ 2−6
√
n and the second by

τ ≤ 2−3α
√
n. Using (α− β)|x| ≤ α

√
n/18, (5.3) and κ ≤ 23/22, we get

α|⟨p, x⟩| ≥ |⟨p,Ax⟩| − (α− β)|p||x| ≥ (8− 5κ)αn

9
− α

√
n

18
κ
√
n

=
(16− 11κ)αn

18
≥ αn

4
.

Since α > 0, this gives the second inequality in (iii). Using also (5.5) and the
assumption that x is a multiple of v, we get the first inequality of (iii) by estimating

2α(
√
n+ |x|)2 ≥ |x||⟨p, v⟩| = |⟨p, x⟩| ≥ n/4.

Lemma 13. Let I = {k, k + 1, . . . , l} where k, l ∈ N, k ≤ l. For each i ∈ I, let
{vi, wi} be an orthonormal basis of a 2-dimensional Hilbert space (Ui, | · |) and Ai

a symmetric linear operator on Ui with eigenvalues αi ≥ βi ≥ 8αi/9 > 0. Suppose
further that ni ∈ N, τi ≥ 4, xi is a multiple of vi satisfying (αi − βi)|xi| ≤ αi

√
ni/18

and

165τj(1 + |xi|/
√
ni)

2 ≤ √
njαj/αi when k ≤ i ≤ j ≤ min{i+ 1, l}. (5.6)

Let U denote the orthogonal direct sum of the Ui, A =
∑

i∈I Ai ◦ Ui, x =
∑

i∈I xi,
Ψ ∈ F(U,A, x) and µ be the Borel measure on U defined by

µE :=

∫
E

e−|u|2/2Ψ(u)
∏
i∈I

⟨u,wi⟩ni
+ dL2s(u), where s = l − k + 1. (5.7)

Then at least one of the following statements holds:
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(i) µ
{
u ∈ U

∣∣ |Uku−
√
nkwk| ≥

√
nk/2

}
≤ e−τ2k/4µU .

(ii) µ
{
u ∈ U

∣∣ ∣∣|Uiu| −
√
ni

∣∣ ≤ τi
}
≤ e−τ2i /4µU for some i ∈ I.

(iii) µ
{
u ∈ U

∣∣ |⟨Uiu, xi⟩| ≤ ni/5
}
≤ e−τ2i /4µU for each i ∈ I.

Proof. The case µ ≡ 0 being trivial, we assume µ ̸≡ 0. In particular,

{u ∈ U | Ψ(u) > 0} ∩
∩
i∈I

{u ∈ U | ⟨u,wi⟩ > 0} ̸= ∅.

We will also assume that (i) and (ii) fail, i.e.

µ
{
u ∈ U

∣∣ |Uku−
√
nkwk| ≥

√
nk/2

}
> e−τ2k/4µU (5.8)

and for every i ∈ I,

µ
{
u ∈ U

∣∣ ∣∣|Uiu| −
√
ni

∣∣ ≤ τi
}
> e−τ2i /4µU. (5.9)

The proof will have five steps in which we will consider validity of inequalities

µ
{
u ∈ U

∣∣ |Uiu−
√
niwi| ≥ 33τi(1 + |xi|/

√
ni)

}
≤ e−τ2i /4µU (5.10)

and (iii), i.e.

µ
{
u ∈ U

∣∣ |⟨Uiu, xi⟩| ≤ ni/5
}
≤ e−τ2i /4µU. (5.11)

First we make a simple observation about the incompatibility of (5.10) and (5.11).
Then we show that for each i at least one of these two inequalities holds, and observe
that (5.10) fails for i = k. The last observation is then extended to all i, and finally,
this combined with the incompatibility of (5.10) and (5.11) easily finishes the proof.

Step 1. The inequalities (5.10) and (5.11) cannot both hold for the same i. Indeed,
the inequality (5.6) with j = i implies

33τi|xi|(1 + |xi|/
√
ni) ≤

|xi|
√
ni

5(1 + |xi|/
√
ni)

≤ ni

5
,

and so for each u ∈ U , either

|Uiu−
√
niwi| ≥ 33τi(1 + |xi|/

√
ni)

or

|⟨Uiu, xi⟩| = |⟨Uiu−
√
niwi, xi⟩| ≤ 33τi|xi|(1 + |xi|/

√
ni) ≤ ni/5.

Hence validity of both (5.10) and (5.11) would give a contradiction by

µU ≤ µ
{
u ∈ U

∣∣ |Uiu−
√
niwi| ≥ 33τi(1 + |xi|/

√
ni)

}
+ µ

{
u ∈ U

∣∣ |⟨Uiu, xi⟩| ≤ ni/5
}

≤ 2e−τ2i /4µU < µU. �
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Step 2. For each i ∈ I, either (5.10) or (5.11) holds. Fix i ∈ I. We apply Lemma 10
with H = U , V = Ui, Z =

⊕
m∈I\{i} Um, x and Ψ given in the assumptions, and the

Borel measure ν on Z defined by

νF =

∫
F

e−|z|2/2
∏

j∈I\{i}

⟨z, wj⟩
nj

+ dL2s−2(z).

Hence Φ(u) =
∫
Z
Ψ(u + z) dν(z) belongs to F(Ui, Ai, xi), and by Fubini’s Theorem

for every Borel set E ⊂ Ui.

µ(U−1
i E) =

∫
E

e−|u|2/2Φ(u)⟨u,wi⟩ni
+ dL2(u). (5.12)

By Lemma 11 the integrand of (5.12) attains its maximum at a point p ∈ Ui such
that ⟨p, wi⟩ > 0 and for some λ ≥ 0,

p+ λAi(p− xi)−
niwi

⟨p, wi⟩
= 0. (5.13)

Since the integrand multiplied by e|u|2/2 is log-concave, we may use Lemma 9 in R2

with Q(u) = |u|2/2 and τ = τ 2i /2. Since τi ≥ 4, we get

σ = (τi/
√
2− 1/

√
2)2 ≥ 1

2
τ 2i (1− 1

4
)2 ≥ τ 2i /4,

and so
µ
{
u ∈ U

∣∣ |Uiu− p| ≥ τi
}
≤ e−σµU ≤ e−τ2i /4µU. (5.14)

By Lemma 12 with the choice n = ni and τ = τi at least one of the following
statements holds:

(a)
∣∣|p| − √

ni

∣∣ > 2τi;

(b) |p−√
niwi| ≤ 25τi(1 + |xi|/

√
ni);

(c) |⟨p, xi⟩| ≥ ni/4.

If (a) holds, then {u ∈ U
∣∣ ∣∣|Uiu| −

√
ni

∣∣ ≤ τi
}
⊂

{
u ∈ U

∣∣ |Uiu − p| ≥ τi} and
hence (5.14) implies

µ
{
u ∈ U

∣∣ ∣∣|Uiu| −
√
ni

∣∣ ≤ τi
}
≤ µ

{
u ∈ U

∣∣ |Uiu− p| ≥ τi} ≤ e−τ2i /4µU.

Since this contradicts (5.9), we infer that (a) fails.
When (b) holds,{
u ∈ U

∣∣ |Uiu−
√
niwi| ≥ 33τi(1 + |xi|/

√
ni)

}
⊂

{
u ∈ U

∣∣ |Uiu− p| ≥ τi
}
,

and we get (5.10) by inferring from (5.14) that

µ
{
u ∈ U

∣∣ |Uiu−
√
niwi| ≥ 33τi(1 + |xi|/

√
ni)

}
≤ µ

{
u ∈ U

∣∣ |Uiu− p| ≥ τi
}

≤ e−τ2i /4µU.
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Finally, when (c) holds, we observe that xi ̸= 0 and use (5.6) to infer that τi ≤
ni/20|xi|. Hence |⟨Uiu, xi⟩| ≤ ni/5 implies

|Uiu− p| ≥ (|⟨p, xi⟩| − |⟨Uiu, xi⟩|)/|xi| ≥ ni/20|xi| ≥ τi

and we obtain (5.11) by estimating

µ
{
u ∈ U

∣∣ |⟨Uiu, xi⟩| ≤ ni/5
}
≤ µ

{
u ∈ U

∣∣ |Uiu− p| ≥ τi
}
≤ e−τ2i /4µU. �

Step 3. The inequality (5.10) fails for i = k. This follows from (5.8) since (5.6)
implies 33τk(1 + |xk|/

√
nk) <

√
nk/2,

Step 4. The inequality (5.10) fails for each k ≤ i ≤ l. By Step 3, if this is not the
case, there is k ≤ i < l such that (5.10) fails for i but holds for j := i + 1, and by
Step 1 this implies that (5.11) fails for j.

Let Ui,j := Ui ⊕ Uj, xi,j := xi + xj and Ai,j := Ai ◦ Ui +Aj ◦ Uj. Similarly to the
proof of Step 2, we use Lemma 10 with H = U , V = Ui,j, Z =

⊕
m∈I\{i,j} Um, the

given x and Ψ, and the Borel measure ν on Z defined by

νF =

∫
F

e−|z|2/2
∏

m∈I\{i,j}

⟨z, wm⟩nm
+ dL2s−4(z).

Hence Φ(u) =
∫
Z
Ψ(u+ z) dν(z) belongs to F(Ui,j, Ai,j, xi,j), and by Fubini’s Theo-

rem for every Borel set E ⊂ Ui,j.

µ(U−1
i,j E) =

∫
E

e−|u|2/2Φ(u)⟨u,wi⟩ni
+ ⟨u,wj⟩

nj

+ dL4(u). (5.15)

Again, similarly to Step 2 it suffices to make appropriate estimates of the integral
in (5.15).

By Lemma 11 the integrand of (5.15) attains its maximum at a point p = pi+pj,
where pi ∈ Ui and pj ∈ Uj, such that ⟨pi, wi⟩ > 0, ⟨pj, wj⟩ > 0 and for some λ ≥ 0,

p+ λAi,j(p− xi,j)−
niwi

⟨p, wi⟩
− njwj

⟨p, wj⟩
= 0. (5.16)

Notice that (5.16) holds coordinate-wise, i.e. for each ι = i, j,

pι + λAι(pι − xι)−
nιwι

⟨pι, wι⟩
= 0.

Hence by Lemma 12 for each ι = i, j at least one of the following statements holds:

(a) ||pι| −
√
nι| > 2τι;

(b) λαι ≤ 23τι/
√
nι and |pι −

√
nιwι| ≤ 25τι(1 + |xι|/

√
nι);

(c) λαι ≥ 2−3nι/(
√
nι + |xι|)2 and |⟨pι, xι⟩| ≥ nι/4.
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In a way completely similar to end of the proof of Step 2 we see that for each
ι = i, j, (a) fails, the condition (b) implies (5.10), and (c) implies (5.11). Since (5.10)
fails for i, we see that (b) fails and hence (c) holds for ι = i. Since (5.11) fails for j,
(c) fails and hence (b) holds for ι = j. Summarizing, (b) holds for ι = j and (c) for
ι = i. Moreover, the validity of (c) for ι = i implies that λ > 0, and we get the final
contradiction by using (5.6) to estimate

αj

αi

≤ 23τj√
nj

23(
√
ni + |xi|)2

ni

=
64τj√
nj

(
1 +

|xi|√
ni

)2

<
αj

αi

. �

Step 5. End of proof. By Step 4 and Step 2, (5.11) holds for each k ≤ i ≤ l,
which is exactly the statement of (iii).

6 Invalid density theorems
Proposition 14. Suppose that λj > 0, j ∈ N, are such that for some ni,mi ∈ N
satisfying mi+1 > mi + ni + 1 and some σi ≥ 1 and ξi, τi > 0,

(i) ξi ≤ λj ≤ ξiσi whenever mi ≤ j ≤ mi + ni + 1;

(ii) σi = 1 +O(
√
ξini);

(iii) τi = O
(
ξi
√
nimin{ni, ni−1}

)
;

(iv)
∑∞

i=1 e
−τ2i <∞.

Then for every Gaussian measure γ in a separable Hilbert space H whose covariance
operator has eigenvalues λj and for every ε > 0 there is a Borel set M ⊂ H with
γM > 1− ε such that

lim
r→0

sup
x∈H

γ(M ∩B(x, r))

γB(x, r)
= 0. (6.1)

Proof. Let C ∈ (0,∞) be such that σi ≤ 1+C
√
ξini and τi ≤ 1

4
Cξi

√
ni min{ni, ni−1},

and choose η ∈ (0, 1) such that

18Cη ≤ 1, and 8 · 165Cη2 ≤ 1.

Recalling that existence of γ implies
∑∞

j=1 λj <∞ and that limi→∞ τi = ∞ because
of (iv), we find i0 ∈ N such that mi0 > 1,

∑∞
j=mi0

λj < η2 and τi ≥ 1 for i ≥ i0.
Observing that then ξini < η2 for i ≥ i0 by (i), we shift the parameter i by redefining

(ni,mi, σi, ξi, τi) as (ni0+i,mi0+i, σi0+i, ξi0+i, 4τi0+i),

respectively, to achieve, in addition to (i), also validity of the following inequalities
for each i:

(v) ξini ≤ η2/16;
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(vi) σi ≤ 1 + C
√
ξini, so in particular σi ≤ 1 + Cη and σi ≤ 9/8;

(vii) τi ≤ Cξi
√
ni min{ni, ni−1} if i ≥ 2, in particular τi ≤

√
ni;

(viii) τi ≥ 4 and
∑∞

i=1 e
−τ2i /16 <∞.

We recall notation introduced in Section 2: H := {x ∈ RN |
∑∞

i=1 λix
2
i <

∞} equipped with the norm ∥x∥ = (
∑∞

i=1 λix
2
i )

1/2, γ is the restriction of the
countable product of the one-dimensional standard Gaussian measures to H, |x| =
(
∑∞

i=1 x
2
i )

1/2, ⟨x, y⟩ =
∑∞

i=1 xiyi when |x|, |y| <∞, B(x, r) = {y ∈ H | ∥y− x∥ ≤ r}
and uj ∈ H are defined by uj := (δi,j)i∈N, where δi,j = 1 when i = j and δi,j = 0
otherwise. Additionally, for i ∈ N we let Hi denote

Hi := span{uj ∈ H | mi ≤ j ≤ mi + ni + 1}.

The rest of the proof consists of three steps. In the first we define the desired set M ,
in the second step we introduce measures µw, and finally in the third step we apply
Lemma 13 to a µw for a suitably chosen parameter w.

Step 1. Our plan is to find for each ε > 0 a Borel set L = Lε ⊂ H and r0 > 0
such that γL > 1 − ε and γ(L ∩ B(x, r)) ≤ εγB(x, r) for every x ∈ H and 0 <
r < r0. Clearly, the set M required in the Proposition can then be obtained as
M =

∩∞
i=1 Lε/2i .

For the rest of the proof we fix ε > 0 and find k ∈ N, k ≥ 2, large enough that∑∞
i=k e

−τ2i /8 < ε. We let

L :=
∞∩
i=k

Mi,

where Mi :=
{
x ∈ H

∣∣ ∣∣|Hix| −
√
ni

∣∣≤ τi
}

. Since τi ≥ 1 ≥ 1/
√
ni, we see that

τi − (
√
ni + 1−

√
ni) ≥ τi − 1/(2

√
ni) ≥ τi/2.

Hence Mi ⊃
{
x ∈ H

∣∣ ∣∣|Hix| −
√
ni + 1

∣∣≤ τi/2
}

. Noticing that dimHi = ni +2, we
infer from Corollary 7 with c = 1/2, n = ni + 2 and λ = τi/2 that γMi ≥ 1− e−τ2i /8

and so

γL ≥ 1−
∞∑
i=k

e−τ2i /8 > 1− ε.

Let r0 =
√
ξknk/2 and suppose, for a contradiction, that γ(L ∩ B(x, r)) >

εγB(x, r) for some x ∈ H and 0 < r < r0. Fix such x and r and find ρ > 0
such that

γ(L ∩B(x, r)) > εγB(x, r) + ρ. (6.2)

Choose l > k such that e−τ2l /4/(1 − e−τ2l /4) < ρ and put I = {k, k + 1, . . . , l}
and J = N \ I. Let U be the linear span of

∪
i∈I Hi and Z the ∥ · ∥-closed linear

span of
∪

j∈J Hj. Also denote n := dimU =
∑

i∈I(ni + 2), s := #I = l − k + 1 and
q :=

∑
i∈I ni. Lemma 10 applied with V = U , x chosen above, Ψ = 1B(x,r), and the

standard Gaussian measure ν on Z shows that the function Φ(u) =
∫
Z
Ψ(u+z) dν(z)
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belongs to F(U, ∥·∥, Ux). Clearly, Φ ≤ 1, Φ(u) = 0 for ∥u−Ux∥ > r and by Fubini’s
Theorem for every Borel set E ⊂ U ,

γ{y ∈ B(x, r) | Uy ∈ E} = (2π)−n/2

∫
E

e−|u|2/2Φ(u) dLn(u). (6.3)

Step 2. For i ∈ I let xi := Hix. Notice that Mi∩B(xi, r) ̸= ∅ since Mi∩B(xi, r) =
∅ would imply L∩B(x, r) = ∅, which contradicts (6.2). Choosing u ∈Mi ∩B(xi, r)
and using that τi ≤

√
ni by (vii) and |u− xi| ≤ ∥u− xi∥/

√
ξi by (i), we use (v) and

r ≤ η/2 to get

|xi| ≤ |u|+ |u− xi| ≤
√
ni + τi + r/

√
ξi ≤ 2

√
ni + r/

√
ξi ≤ η/

√
ξi. (6.4)

Choose now vi ∈ Hi with |vi| = 1 such that xi = |xi|vi and put

W = {w ∈ U | ⟨w, vi⟩ = 0 and |Hiw| = 1 for every i ∈ I}.

As pointed out by one of the referees, it may help to notice that the set W , being a
product of mutually orthogonal spheres Si = {u ∈ Hi | ⟨u, vi⟩ = 0, |u| = 1}, i ∈ I,
has a torus structure.

Let w ∈ W , w = (wi)i∈I , wi ∈ Hi. We denote Uw := span{vj, wj | j ∈ I} and
define a Borel measure µw on Uw by

µwF = (2π)−n/2

∫
F

e−|u|2/2Φ(u)
∏
j∈I

⟨u,wj⟩
nj

+ dL2s(u). (6.5)

By (6.3) and iterated application of cylindrical coordinates, we obtain for every
Borel set E ⊂ U ,

γ{y ∈ B(x, r) | Uy ∈ E} =

∫
W

µw(E ∩ Uw) dHq. (6.6)

Using this with the orthogonal projection of L on U , so with the set

E1 := UL =
∩
i∈I

{
x ∈ H

∣∣ ∣∣|Hix| −
√
ni

∣∣≤ τi
}
,

and recalling (6.2), we get∫
W

µw(E1 ∩Uw) dHq = γ{y ∈ B(x, r) | Uy ∈ E1} ≥ γ(L∩B(x, r)) > εγB(x, r) + ρ.

Since (6.6) with E2 := U gives

γB(x, r) =

∫
W

µwUw dHq,

we conclude that∫
W

µw(E1 ∩ Uw) dHq ≥ γ(L ∩B(x, r)) >

∫
W

(
εµwUw + ρ (HqW )−1

)
dHq.
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So there is w ∈ W such that

µw(E1 ∩ Uw) ≥ εµwUw + ρ (HqW )−1. (6.7)

Step 3. We fix such a w and use Lemma 13 to show that this leads to a contra-
diction. First we define the remaining parameters needed for an application of this
Lemma. For i ∈ I we let (Ui, | · |) be the span of {vi, wi} (so Uw is the space denoted
by U in Lemma 13) and choose a positive definite symmetric linear operator Ai on
Ui such that ∥u∥2 = ⟨u,Aiu⟩ for u ∈ Ui. Using the last inequality from (vi), we see
that the eigenvalues αi ≥ βi of Ai satisfy

ξiσi ≥ αi ≥ βi ≥ ξi ≥ 8ξiσi/9 ≥ 8αi/9 > 0.

Since ni, τi and xi have been already defined and xi is a multiple of vi, we just need
to verify the remaining inequalities required in the assumptions of Lemma 13. The
inequality τi ≥ 4 is in (viii). Using the estimate of |xi| from (6.4) and (vi), we get

18(αi − βi)|xi| ≤ 18(σi − 1)ξiη/
√
ξi ≤ 18Cηξi

√
ni ≤ αi

√
ni.

Whenever i ≥ 1 and j = i or j = i+ 1 we use (6.4), ni ≤ η2/ξi (see (v)) and

4 · 165Cσiη2 ≤ 8 · 165Cη2 ≤ 1

to estimate

165τj(1 + |xi|/
√
ni)

2 ≤ 2 · 165Cξj
√
njni

(
1 + η2/ξini

)
≤ 2 · 165Cξj

√
njη

2/ξi + 2 · 165Cξj
√
njη

2/ξi

= 4 · 165Cσiξj
√
njη

2/σiξi

≤ √
njαj/αi.

Hence Lemma 13 may be applied and consequently at least one of the following
statements holds:

(a) µw

{
u ∈ Uw

∣∣ |Uku−
√
nkwk| ≥

√
nk/2

}
≤ e−τ2k/4µwUw.

(b) µw

{
u ∈ Uw

∣∣ ∣∣|Uiu| −
√
ni

∣∣ ≤ τi
}
≤ e−τ2i /4µwUw for some i ∈ I.

(c) µw

{
u ∈ Uw

∣∣ |⟨Uiu, xi⟩| ≤ ni/5
}
≤ e−τ2i /4µwUw for each i ∈ I.

We show that each of these possibilities leads to a contradiction.
Using that xk is a multiple of vk to infer that |xk −

√
nkwk| ≥

√
nk, and recalling

that Φ(u) = 0 when ∥u− Uwx∥ > r, we see that the support of µw is contained in{
u ∈ Uw

∣∣ ∥u− Uwx∥ ≤ r
}
⊂

{
u ∈ Uw

∣∣ ∥Uku− xk∥ ≤ r
}

⊂
{
u ∈ Uw

∣∣ |Uku− xk| ≤ r/
√
ξk
}

⊂
{
u ∈ Uw

∣∣ |Uku− xk| <
√
nk/2

}
⊂

{
u ∈ Uw

∣∣ |Uku−
√
nkwk| ≥

√
nk/2

}
,
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which clearly contradicts (a).
If (b) were true, then

µw(E1 ∩ Uw) ≤ µw

{
u ∈ Uw

∣∣ ∣∣|Uiu| −
√
ni

∣∣ ≤ τi
}
≤ e−τ2i /4µwUw < εµwUw,

which contradicts (6.7).
Finally, we show that (c) fails as well. To this aim we observe that for any i ∈ I

the standard formulas for the Γ-function and area of the sphere (see, e.g., [5, pages
250–251]) give,∫

Ui

e−|u|2/2⟨u,wi⟩ni
+ dL2(u) =

∫
R
e−t2/2dt ·

∫ ∞

0

e−t2/2tnidt = (2π)(ni+2)/2(HniWi)
−1,

where Wi := {u ∈ Hi | |u| = 1, ⟨u, vi⟩ = 0}. We look at i ̸= l and use the above
equality together with the facts that Φ ≤ 1 and n =

∑
i∈I(ni + 2) to get

µw

{
u ∈ Uw

∣∣ |⟨Ulu, vl⟩| ≥ τl
}

≤ (2π)−n/2

∫
{u∈Uw| |⟨u,vl⟩|≥τl}

e−|u|2/2
∏
i∈I

⟨u,wi⟩ni
+ dL2s(u)

=
(
(2π)(nl+2)/2

l−1∏
i=k

HniWi

)−1
∫
{u∈Ul| |⟨u,vl⟩|≥τl}

e−|u|2/2⟨u,wl⟩nl
+ dL2(u).

The last integrand attains its maximum at √
nlwl and its multiple by e|u|2/2 is log-

concave. Hence, Lemma 9 with n = 2, φ(u) = e−|u|2/2⟨u,wl⟩nl
+ , Q(u) = |u|2/2, and

τ = τ 2l /2 gives

µw

{
u ∈ Uw

∣∣ |⟨Ulu, vl⟩| ≥ τl
}

≤
(
(2π)(nl+2)/2

l−1∏
i=k

HniWi

)−1
∫
{u∈Ul| |⟨u,vl⟩|≥τl

} e−|u|2/2⟨u,wl⟩nl
+ dL2(u)

≤
(
(2π)(nl+2)/2

l−1∏
i=k

HniWi

)−1
∫
{u∈Ul| |u−

√
nlwl|≥τl

} e−|u|2/2⟨u,wl⟩nl
+ dL2(u)

≤
(
(2π)(nl+2)/2

l−1∏
i=k

HniWi

)−1

e−τ2l /4

∫
Ul

e−|u|2/2⟨u,wl⟩nl
+ dL2(u)

= e−τ2l /4(HqW )−1.

Since (6.4), (vii) and (v) imply τl|xl| ≤ ητl/
√
ξl ≤ Cη

√
ξlnlnl ≤ Cη2nl ≤ nl/5, we

have {
u ∈ Uw

∣∣ |⟨Ulu, vl⟩| ≤ τl
}
⊂

{
u ∈ Uw

∣∣ |⟨Ulu, xl⟩| ≤ nl/5
}
.

Hence, assuming (c) holds,

µwUw ≤ µw

{
u ∈ Uw

∣∣ |⟨u, vl⟩| ≤ τl
}
+ µw

{
u ∈ Uw

∣∣ |⟨u, vl⟩| ≥ τl
}

≤ e−τ2l /4µwUw + e−τ2l /4(HqW )−1.
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Hence
µwUw ≤ e−τ2l /4

1− e−τ2l /4
(HqW )−1.

Recalling that l satisfies e−τ2l /4/(1 − e−τ2l /4) < ρ, this yields µwUw ≤ ρ (HqW )−1,
which contradicts (6.7) and so finishes the proof.

7 Proof of Theorem 1
Choose m ∈ N and 1 < p < 6/5 such that k(λk/λk+1 − 1) < p for k ≥ m. Then for
every k ≥ m,

kpλk
(k + 1)pλk+1

<
1 + p/k

(1 + 1/k)p
< 1,

and hence the sequence kpλk is increasing for k ≥ m. If it is not already the case,
we increase m so that m ≥ 2 and (1 + (m2−p + 2)/m)p < 2.

We show that the assumptions of Proposition 14 hold with mi, ni, σi, ξi, τi defined
by

mi := mi,

ni := ⌈m2−p
i ⌉, i.e., ni ∈ N and m2−p

i ≤ ni < m2−p
i + 1,

σi := (1 + (ni + 1)/mi)
p,

ξi := λmi
/σi and

τi := m
3−5p/2
i .

For that, we observe that our assumptions on m imply σi ≤ 2 and make the following
estimates:

• For mi ≤ j ≤ mi + ni + 1, λj ≤ λmi
= ξiσi and λj ≥ (mi/j)

pλmi
≥ ξi; hence

ξi ≤ λj ≤ ξiσi.

• Clearly, σi − 1 = O(ni/mi) = O(m1−p
i ). On the other hand recalling that kpλk

is increasing we obtain mp
iλmi

≥ mpλm, hence λmi
≥ λmm

pm−p
i and

ξini ≥
λmi

2
m2−p

i ≥ λmm
p

2
m2−2p

i .

Hence σi = 1 +O(
√
ξini).

• If i > m and j = i or j = i− 1, then

ξi
√
ninj ≥ 1

2
λmi

m
1−p/2
i m2−p

j ≥ 1
2
m2p−2λmm

3−5p/2
i ,

and hence τi = O(ξi
√
nimin{ni, ni−1}).

•
∑∞

i=1 e
−τ2i <∞ since p < 6/5.

Hence the statement follows from Proposition 14.
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Remark. In addition to those given in Theorem 1 there are many other choices
of λj satisfying the conditions of Proposition 14. In the introduction we indicated
perhaps the simplest way of choosing them which may be realized, for example, by
letting λj = 32−i for 16i−1 ≤ j ≤ 16i, with the remaining parameters required by
Proposition 14 given by ni = mi = 16i, σi = 1, ξi = 32−i, and τi = 2i.
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