
Two unexpected examples concerning
differentiability of Lipschitz functions on
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In this note we present two examples illustrating some surprising rela-
tions between the known existence theorems concerning two main concepts
of differentiability of Lipschitz functions between Banach spaces. Recall that
these concepts are: Gâteaux derivative of a mapping ϕ : X 7→ Y at x ∈ X,
which is defined as a continuous linear map ϕ′(x) : X 7→ Y verifying

〈ϕ′(x), u〉 = lim
t→0

ϕ(x + tu)− ϕ(x)

t

for every u ∈ X, and Fréchet derivative which, in addition, requests that the
above limit be uniform for ‖u‖ ≤ 1.

The examples we give point out that our understanding of differentiability
properties of (real-valued) Lipschitz functions on Banach spaces is far from
being complete. Since the motivation behind each of them is quite different,
we will explain it in detail at the beginning of each of the two sections. Here
we will confine ourselves to basic motivational remarks in the case of an
infinitely dimensional separable Hilbert space H.

Our first example comes from the observation that the proof of existence
of a point of Fréchet differentiability of a Lipschitz function f : H 7→ R in [8]
appears to be unnatural in the sense that it doesn’t use the existing strong
results about Gâteaux differentiability: Since we know that f is Gâteaux
differentiable on a set E ⊂ H whose complement is “negligible”, the natural
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way would be to prove that any set with a negligible complement contains
a point of Fréchet differentiability of f . We show, however, that the natural
way has one disadvantage: It does not work, at least not with the presently
known notions of negligibility.

The original motivation behind our second example arose from a technical
point in the proof of the Fréchet differentiability result mentioned above; this
will be explained later. The first examples, however, suggested that the real
problem was how rich the set F of Fréchet derivatives of a Lipschitz mapping
f : H 7→ Rn has to be inside the set G of its Gâteaux derivatives. If n = 1,
the mean value theorem for Fréchet derivative (see [8]) implies that the sets F
and G have the same closed convex hull. For large n this completely fails: In
the second part of this paper we construct a Lipschitz mapping f : H 7→ R3

and three vectors e1, e2, e3 ∈ H such that

〈f ′1(x), e1〉+ 〈f ′2(x), e2〉+ 〈f ′3(x), e3〉 = 0

at every point x of Fréchet differentiability of f , but such that f is Gâteaux
differentiable at the origin and verifies

〈f ′1(0), e1〉+ 〈f ′2(0), e2〉+ 〈f ′3(0), e3〉 = 1.

1. Incompatibility of Gâteaux and Fréchet

differentiability results

We recall that the strongest present result about existence of Gâteaux deriva-
tive of Lipschitz functions due to Aronszajn [1] says that the set of points
of Gâteaux non-differentiability of a Lipschitz mapping f of a separable Ba-
nach space X into a Banach space Y with the Radon-Nikodým Property is
“small” in the following sense.

Definition 1. Let X be a separable Banach space. A set E ⊂ X is neg-
ligible in the sense of Aronszajn if for every sequence ei whose linear span
sp {e1, e2, . . . } is dense in X one can find Borel sets Ei covering E (i.e.,
E ⊂

⋃∞
i=1 Ei) such that the intersection of Ei with any line in the direction

ei has linear measure zero.

Remark. An easy way to see that E = X is not negligible (and therefore
that Aronszajn’s differentiability result gives non-trivial information) is to

2



observe that every set E negligible in the sense of Aronszajn is of measure
zero for any non-degenerated Gaussian measure in X (see [7]).

The converse problem, i.e., whether Borel sets E ⊂ X which are of mea-
sure zero for any non-degenerated Gaussian measure in X are necessarily
negligible in the sense of Aronszajn, is still open. According to a result of
Bogachev [3] the requirement that the sets Ei are Borel is not just a “formal”
measurability requirement: For every sequence ei whose linear span is dense
in X one can decompose X =

⋃∞
i=1 Xi such that the intersection of Xi with

any line in the direction ei has linear measure zero.
Bogachev uses his result to deduce that sets of measure zero for any

non-degenerated Gaussian measure in X are negligible if one replaces the
requirement that Ei be Borel by requiring only that they are measurable for
any non-degenerated Gaussian measure in X. The main part of his argument
is that any set E ⊂ X is decomposed as E =

⋃∞
i=1 E ∩ Xi. If now E is

null for any non-degenerated Gaussian measure, then clearly each E ∩Xi is
measurable for any such measure, and we obtain the required decomposition
of E.

This, however, seems to be far from solving the above mentioned prob-
lem: To see why, we may try to use the above argument for one fixed non-
degenerated Gaussian measure γ in X. Replacing Borel measurability of Ei

by their γ measurability, we conclude that the so defined negligible sets are
precisely sets of γ measure zero. But this is obviously false for negligibility
in the sense of Aronszajn.

The reason behind this is that the decomposition of X into Xi is badly
based on the axiom of choice. To see its analogy in the plane, we recall
that one of the tools Aronszajn uses is a simple corollary of Fubini’s theorem
saying that a Borel set E in the plane can be decomposed into two Borel sets
E1, E2 such that E1 is of linear measure zero on every line in the direction
of the x-axis and E2 is of linear measure zero on every line in the direction
of y-axis. The above argument can be modeled, e.g., by first using the
continuum hypothesis to decompose the plane into sets A and B such that A
is countable on every line in the direction of the x-axis and B is countable on
every line in the direction of y-axis and then considering the decomposition
E = (E ∩ A) ∪ (E ∩ B). If E is of Lebesgue measure zero, this decomposes
E into Lebesgue measurable sets which are not only of linear measure zero
but even countable on required lines, but this decomposition is surely of a
completely different nature than the Borel decomposition obtained by the
use of Fubini’s theorem.
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After this side remark, we may return back to the real theme of this
section. It is our intention to decompose every separable infinite dimensional
Banach space X into two Borel sets U and V such that U is negligible in
the sense of Aronszajn and V is negligible for whatever notion is appropriate
to handle Fréchet differentiability. The latter is achieved by constructing a
real-valued Lipschitz function f on X which is Fréchet non-differentiable at
any point of V .

Our example is, indeed, much stronger than this: U is not only negligible
in the sense of Aronszajn, but even of linear measure zero on every line and
V is a countable union of closed porous sets.

Definition 2. A set E ⊂ X is said to be porous if there is c ∈ (0, 1) such
that for every x ∈ E and every δ > 0 there is z ∈ X such that 0 < ‖z−x‖ < δ
and E ∩B(z, c‖z − x‖) = ∅.

We are really interested in countable unions of porous sets (usually termed
σ-porous). These have been studied quite extensively in Real Analysis; an
up-to-date survey can be found in [9]. Since we will not need any of the
results, we just remark that σ-porous sets are of the first category and in
case X is finite dimensional they are also of Lebesgue measure zero. Deeper
results say, for example, that the family of σ-porous sets is much smaller
than that of first category Lebesgue measure zero sets or that porosity could
have been defined with one fixed value of c, say c = 1/2. (This would, of
course, give a different notion of porosity, but it would lead to the same
notion of σ-porosity.) We will need only the following simple reformulation
of the definition of porosity for closed sets.

Lemma 1. If E is a closed porous set, then there are C > 1 and a dis-
jointed family B of closed balls of radii less then one whose union is dis-
joint from E and which has the property that for every δ > 0 the family
B ∪ {B(z, Cr); B(z, r) ∈ B, r ∈ (0, δ)} covers X.

Proof. Let Si ⊂ X \ E be maximal sets such that, whenever x ∈ Si, then
B(x, 2−i) ∩ E = ∅ and ‖y − x‖ > 2−i+2 for every y ∈ Si, y 6= x. By
induction, we define B0 as the family {B(z, 1); z ∈ S0} and Bi as the family
of those balls from {B(z, 2−i); z ∈ Si} which are disjoint from all balls
from the families Bj (j < i). We prove that the statement holds with B
being the union of the families B0,B1, . . . . Since for every δ > 0 the family
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B ∪ {B(z, Cr); B(z, r) ∈ B, r ∈ (0, δ)} obviously covers the union of B, let
x ∈ X be not in this union. Since the union of each family Bi is a closed set
(every two different balls from Bi are at distance at least 2−(i+1)), we may
start by finding σ ∈ (0, δ) such that every ball from B meeting B(x, σ) has
radius less than δ. If c is the number from the definition of porosity of E, we
find z ∈ X such that 0 < ‖z − x‖ < σ/4 and E ∩B(z, c‖z − x‖) = ∅. (Since
E is closed, we may find such z even if x /∈ E.) Let j be the least natural
number such that 2−j+2 < c‖z − x‖. Then the maximality condition implies
that there is a point u ∈ Sj ∩B(z, c‖z−x‖) ⊂ B(x, σ/2). Hence we may find
0 ≤ i ≤ j and a ball B(v, 2−i) ∈ Bi such that B(v, 2−i)∩B(u, 2−j) 6= ∅. Since
B(u, 2−j) ⊂ B(x, σ), we infer that B(v, 2−i) ∩ B(x, σ) 6= ∅. Hence 2−i < δ
and x ∈ B(z, ‖z − x‖) ⊂ B(z, 2−j+3c−1) ⊂ B(v, (18c−1)2−i). Consequently,
the statement holds with C = 18/c.

The connection between porosity and differentiability is given in the fol-
lowing proposition. We do not know if its third statement holds for σ-porous
sets and/or in non-separable spaces.

Proposition 1. (i) If E ⊂ X is porous, there is a real-valued Lipschitz
function f on X which is Fréchet non-differentiable at any point of E.

(ii) Any σ-porous set belongs to the σ-ideal generated by sets of points of
Fréchet non-differentiability of real-valued Lipschitz functions on X.

(iii) If X is separable and E ⊂ X is a subset of a countable union of closed
porous sets, then there is a real-valued Lipschitz function f on X which
is Fréchet non-differentiable at any point of E.

Proof. (i) Let f(z) be defined as the distance of the point z to the set
E. If x ∈ E and h is such that E ∩ B(x + h, c‖h‖) = ∅, then we have
f(x + h) + f(x− h)− 2f(x) ≥ f(x + h) ≥ c‖h‖. Hence

lim sup
h→0

f(x + h) + f(x− h)− 2f(x)

‖h‖
≥ c,

which easily implies that f is not Fréchet differentiable at x.
(ii) This follows immediately from (i).
(iii) If X is not an Asplund space, we may take for f any equivalent

norm which is nowhere Fréchet differentiable. (See [6] or [4, Chapter I,
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Theorem 5.3].) If X is an Asplund space, we may, according to the Asplund’s
theorem (see [2] or [4, Chapter II, Theorem 2.6(ii)]), assume that the norm
of X is differentiable away from the origin.

Let Ei be closed porous sets covering E and let Ci > 1 and families of balls
Bi be as in Lemma 1. We define a real-valued function fi on X by fi(x) = 0
if x does not belong to any of the balls from Bi and fi(x) = (r2−‖z−x‖2)/r
if x ∈ B(z, r) ∈ Bi. Then fi is a Lipschitz function on X with Lipschitz
constant at most two. It is clearly Fréchet differentiable at every point of
the union of the interiors of the balls from Bi. Whenever x does not belong
to this union, we have, similarly as in the proof of (i),

lim sup
h→0

fi(x + h) + fi(x− h)− 2fi(x)

‖h‖
≥ 1/Ci.

Let 0 < di < 2−i be such that

dj

Cj

> 4
∞∑

i=j+1

di

for every j and let f =
∑

i difi. If x ∈ E, we find the least j for which x does
not belong to the interior of any ball from Bj and use the differentiability of
fi (i < j) at x to estimate

lim sup
h→0

f(x + h) + f(x− h)− 2f(x)

‖h‖

= lim sup
h→0

∞∑
i=j

di
fi(x + h) + fi(x− h)− 2fi(x)

‖h‖

≥ lim sup
h→0

dj
fj(x + h) + fj(x− h)− 2fj(x)

‖h‖
− 2

∞∑
i=j+1

di Lip(fi)

≥ dj/Cj − 4
∞∑

i=j+1

di > 0.

Hence f is not Fréchet differentiable at x.

Lemma 2. Every infinite dimensional separable Banach space X has a sub-
set Z such that the balls B(z, 6) (z ∈ Z) cover X and

lim
s↗∞

sup

{
L([x, y] ∩

⋃
z∈Z B(z, 1))

‖y − x‖
; x, y ∈ X, ‖y − x‖ ≥ s

}
= 0.
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Proof. Let xn (n = 0, 1, . . . ) be a sequence dense in X. We let z0 = x0

and choose, by induction, a point zk ∈ X such that ‖xk − zk‖ ≤ 6 and
dist(zk, sp {z0, . . . , zk−1}) > 5. (This is where we use that X is infinitely
dimensional: Let x? ∈ X? be such that ‖x?‖ = 1, 〈x?, zi〉 = 0 for i < k and
〈x?, xk〉 ≥ 0. Choosing x ∈ X with ‖x‖ = 1 such that 〈x?, x〉 > 5/6, we see
that zk = xk+6x verifies dist(zk, sp {z0, . . . , zk−1}) ≥ 〈x?, zk〉 ≥ 6〈x?, x〉 > 5.)

Let p be a line in X and let n1 < n2 < . . . be all indices for which
dist(zni

, p) ≤ 1. We pick wi ∈ p such that ‖wi − zni
‖ ≤ 1 and prove that,

whenever i < j < k, then

dist(wk, [wi, wj]) > ‖wj − wi‖. (1)

Indeed, if dist(wk, [wi, wj]) ≤ ‖wj−wi‖, we have wk = αwi+βwj with |α| ≤ 2
and |β| ≤ 2. Hence dist(znk

, sp {z0, . . . , znk−1}) ≤ ‖znk
− (αzni

+ βznj
)‖ ≤

‖znk
−wk‖+ |α|‖zni

−wi‖+ |β|‖znj
−wj‖ ≤ 5, which contradicts the way in

which znk
has been defined.

We infer from (1) that any subset of the sequence w1, w2, . . . having at
least n ≥ 2 elements has diameter greater than 2n−1. Indeed, this is obviously
true for two element sets, since ‖wi − wj‖ > ‖zni

− znj
‖ − 2 > 2 if i 6= j.

The estimate follows therefore by induction, since (1) shows that adding the
element with the highest index multiplies the diameter by at least 2.

To finish the proof, assume for a while that m ≥ 2, x, y ∈ p, 2m−2 <
‖y − x‖ ≤ 2m−1 and L([x, y] ∩

⋃
z∈Z B(z, 1)) > 2m + 2. Then we would

infer from the estimate of the measure that the segment [x, y] would contain
a subset of the sequence w1, w2, . . . having at least m elements. But this
would imply that ‖y− x‖ is at least the diameter of this set which is greater
than 2m−1. This contradiction shows that

L([x, y] ∩
⋃

z∈Z B(z, 1))

‖x− y‖
≤ (m + 1)2−m+3,

which proves the statement of the lemma.

Theorem 1. Every infinite dimensional separable Banach space X may be
decomposed into two sets U and V such that U is of linear measure zero on
every line and V is a countable union of closed porous sets.

In particular, U is negligible in the sense of Aronszajn and there is a
Lipschitz real-valued function on X which is Fréchet non-differentiable at
every point of V .
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Proof. Let Z be the set from Lemma 2 and let G be the union of open
balls with radius one centred at Z. For every n = 0, 1, . . . let sn ∈ (1,∞)
be such that L([x, y] ∩ G) < 2−n‖y − x‖ whenever ‖y − x‖ ≥ sn. Defining
Gn = {z/(2nsn); z ∈ G}, we observe that L([x, y] ∩ Gn) < 2−n‖y − x‖
whenever ‖y − x‖ ≥ 2−n. Let

U =
∞⋂

k=0

∞⋃
n=k

Gn.

Whenever ‖y − x‖ ≥ 2−k, we may estimate

L([x, y] ∩ U) ≤
∞∑

n=k

L([x, y] ∩Gn) <
∞∑

n=k

2−n‖y − x‖ = 2−k+1‖y − x‖.

Consequently, U is of linear measure zero on every segment. Moreover, the
complement V of U is the union of the sets X \

⋃∞
n=k Gn which are clearly

closed and porous.

2. Strange difference between Fréchet differ-

entiability of Lipschitz functions and

of Lipschitz mappings

Even though we know that real-valued Lipschitz functions on Asplund spaces
possess Fréchet derivatives at some points (see [8]), it is still an open problem
if every finite (or countable) family of Lipschitz functions on such spaces (or
even only on a separable Hilbert space) possesses a common point of Fréchet
differentiability.

One of the facts behind the proof of the case of one function was the
observation that, if f is a real-valued Lipschitz function on a separable
Banach space X which is Gâteaux differentiable at x and if, in addition,
f ′(x) is a weak? strongly exposed point of the set of all f ′(y) (where y runs
through those points of X at which f is Gâteaux differentiable), then f
is Fréchet differentiable at x. (Recall that x? ∈ E? ⊂ X? is a weak? ex-
posed point of E? if there is e ∈ X such that the diameters of the sets
{y? ∈ E?; 〈y?, e〉 > 〈x?, e〉 − δ} tend to zero as δ ↘ 0.) It was observed dur-
ing a discussion of differentiability problems between the first named author
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and Joram Lindenstrauss that an analogy of this statement for more func-
tions (i.e., for mappings into Rn) is false. Here we strengthen this observation
by showing that the following basic fact about differentiability of Lipschitz
functions (proved in [8]) becomes false even for Lipschitz mappings of an in-
finitely dimensional Hilbert space into finitely dimensional spaces: Whenever
f is a real-valued Lipschitz function on a separable Asplund space, then for
every weak? slice S of the set of all Gâteaux derivatives of f (i.e., of the set
{f ′(x); f is Gâteaux differentiable at x}) there is a point x ∈ X at which f
is Fréchet differentiable and f ′(x) ∈ S. (Recall that a weak? slice of a set
E? ⊂ X? is any non-empty set of the form {x? ∈ E?; 〈x?, e〉 > c}, where
e ∈ X and c ∈ R.) In this section we prove

Theorem 2. Let 1 < p < ∞ and let n be a natural number greater than p.
Then there is a Lipschitz mapping f = (f1, . . . , fn) of `p to Rn such that

n∑
j=1

〈f ′j(x), ej〉 = 0 (2)

at every point x at which f is Fréchet differentiable, but which, at the same
time, is Gâteaux differentiable at the origin and verifies

n∑
j=1

〈f ′j(0), ej〉 = 1.

In addition, there are constants 0 < c, C < ∞ such that f has, at every
x ∈ `p, the following properties.

(i) For every linear mapping T = (T1, . . . , Tn) of `p to Rn

lim supy→x
‖f(y)−f(x)−〈T,y−x〉‖

‖y−x‖ ≥ c
∣∣∣∑n

j=1〈Tj, ej〉
∣∣∣ .

(ii) lim inft→0
1
t

∑n
j=1(fj(x + tej)− fj(x)) ≥ 0, and

lim supt→0
1
t

∑n
j=1(fj(x + tej)− fj(x)) ≤ 1.

(iii) ‖f ′(x)−f ′(0)‖ ≤ C
(
1−

∑n
j=1〈f ′j(x), ej〉

)(p−1)/p

whenever f is Gâteaux

differentiable at x.
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We remark that, in particular, for the set S of all Gâteaux derivatives
f ′(x) such that

∑n
i=1〈f ′i(x), ei〉 > 0 there is no point z ∈ X at which f is

Fréchet differentiable and f ′(z) ∈ S. Since S is a (weak?) slice of the set of all
Gâteaux derivatives of f (in the space of linear operators from `p to Rn), this
shows that the basic Fréchet differentiability result for real-valued functions
does not have a simple analogy for mappings into finitely dimensional spaces.
The difference between the higher dimensional and one dimensional ranges
is stressed by the fact that f is not Fréchet differentiable at the origin, even
though (ii) and (iii) imply that f ′(0) is a (weak?) exposed point of S.

Another way how to view this theorem is to consider it as a construction
of a strange solution to the partial differential equation (2). Namely, an
immediate consequence of the Gauss-Green Theorem ([5, 4.5.6]) is that, if
we consider (2) as an equation for an unknown Lipschitz function f between
finitely dimensional spaces, the solution set will be the same independently
of whether we require its validity for almost all x or for all x at which f is
differentiable. However, our mapping shows that even in the simplest infinite
dimensional situation the notion of solution depends on whether we require
(2) for points of Fréchet or Gâteaux differentiability.

We also remark that if n = 1 the validity of equation (2) at every point of
Fréchet differentiability implies that the function is constant. (This is true
in every Asplund space, see [8, Theorem 2.5].) So for 1 < p < 2 the theorem
gives an optimal result. However, in case of a Hilbert space we do not know
if such a mapping exists with n = 2. As far as we know, an example with
n = 2 could exist in every infinite dimensional Banach space.

We should also point out that the value of the main statement of this The-
orem may depend on time. It is possible that there exist nowhere Fréchet
differentiable Lipschitz mappings of `p into finite dimensional spaces. Once
such functions are discovered, one may just observe that they may be easily
modified to have the main properties stated in the theorem. However, ac-
cording to a (so far unpublished) result of the first named author, for every
Lipschitz mapping f of a space X with a uniformly rotund norm into a fi-
nite dimensional space Y there are points with an arbitrarily small error in
Fréchet differentiability. In other words, for every ε > 0 there are x ∈ X and
a continuous linear mapping T of X to Y such that

lim sup
z→x

‖f(z)− f(x)− 〈T, z − x〉‖
‖z − x‖

< ε. (3)

Nevertheless, because of (i), the mapping f from our example has the prop-
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erty that even the closed convex hull of the set of continuous linear mappings
T verifying (3) with ε = c/2 does not contain all Gâteaux derivatives of f .

We do not know if the construction of our mapping f can be modified to
strengthen the above discrepancy between the set of ε-approximating linear
mappings and Gâteaux derivatives to get, for a fixed ε > 0, that Gâteaux
differentiability of f at x and (3) with T = f ′(x) imply (2). Another inter-
esting open question is whether a mapping with the main properties from
Theorem 2 can be everywhere Gâteaux differentiable.

2.1. Preliminaries

Let 1 < p < ∞, 1
p

+ 1
q

= 1 and let n > p be an integer. We decompose the

set N of all positive integers into infinitely many disjoint sets N =
⋃

i≥0 Ni

such that N0 = {1, 2, . . . , n} and all Ni with i ≥ 1 are infinite. Then we
put Xi = `p(Ni) and observe that `p = ⊕∞

i=0Xi, where ⊕ means the `p sum.
Further, let

πm : `p 7→ Xm,

σm : `p 7→ ⊕m−1
i=1 Xi,

σ(m) : `p 7→ ⊕∞
i=m+1Xi

denote the corresponding canonical projections. We also define σ1 = 0. The
symbol ‖ · ‖ is used for the norm in `p and (ej), j ≥ 1 stands for the usual
basis of `p.

If ϕ : `p 7→ X0 is a map and v, z ∈ `p, then ϕ′(z; v) denotes the derivative
of ϕ at the point z in the direction v. In particular, the derivative of the
norm at the point z in the direction v is ‖ · ‖′(z; v). We will often use the
simple fact that −‖v‖ ≤ ‖ · ‖′(z; v) ≤ ‖v‖. We also define

Tr ϕ′(z) =
n∑

j=1

〈ϕ′(z; ej), e
?
j〉,

where (e?
j)

n
j=1 is the dual basis to (ej)

n
j=1.

Let h : [0, +∞) 7→ [0, +∞) be the C1−function defined by

h(t) = 1 for t ∈ [0, 1]
= p+1

tp
− p

tp+1 for t ∈ (1, +∞).
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Finally, let g : [0, +∞) 7→ [0, +∞) be another C1−function given by

g(t) =

(∫ +∞

t

γ(s) ds

)p

,

where
γ(t) = 0 for t ∈ [0, 1) ∪ [3, +∞)

= t− 1 for t ∈ [1, 2)
= 3− t for t ∈ [2, 3).

For convenience, all (easy to show) facts about these functions which will
be needed in the sequel are collected in the following lemma.

Lemma 3. The functions g and h are continuously differentiable on [0,∞)
and, for every t ≥ 0, verify

(i) h′(t) ≤ 0, 0 < h(t) ≤ 1, h(t) = 1 if t ≤ 1, and h(t) → 0 as t →∞,

(ii) h(t) t ≤ (p + 1)h
1
q (t),

(iii) n h(t) + h′(t) t ≥ (n− p)h(t),

(iv) h(t) + |h′(t)| t ≤ (p + 1)h(t),

(v) g′(t) ≤ 0, 0 ≤ g(t) ≤ 1, g(t) = 0 if t ≥ 3, and g(t) = 1 if t ≤ 1, and

(vi) |g′(t)| ≤ p g
1
q (t).

Let rm and sm be positive reals and let us define ϕm : `p 7→ X0 as

ϕm(z) =
1

n
g

(
‖πmz‖

rm

)
g

(
‖σmz‖

sm

)
h

(
‖π0z‖

rm

)
π0z.

Then we have the following lemma.

Lemma 4. The mappings ϕm have the following properties.

(i) ‖ϕm(z)‖ ≤ p+1
n

rm.

(ii) ϕm(z) = 0 provided that ‖πmz‖ ≥ 3rm or ‖σmz‖ ≥ 3sm.

(iii) n−p
n

h
(
‖π0z‖

rm

)
g
(
‖πmz‖

rm

)
g
(
‖σmz‖

sm

)
≤ Tr ϕ′m(z) ≤ h

(
‖π0z‖

rm

)
.

12



(iv) ‖ϕ′m(z; v)‖ ≤ n+1
n−p

Tr ϕ′m(z)‖v‖ for v ∈ X0,

‖ϕ′m(z; v)‖ ≤ p(p+1)
n

rm

sm

(
n

n−p
Tr ϕ′m(z)

) 1
q ‖v‖ for v ∈ ⊕m−1

i=1 Xi, and

‖ϕ′m(z; v)‖ ≤ p(p+1)
n

(
n

n−p
Tr ϕ′m(z)

) 1
q ‖v‖ for v ∈ Xm.

Proof. (i) Since 0 ≤ g ≤ 1, we have

‖ϕm(z)‖ ≤ h

(
‖π0z‖

rm

)
‖π0z‖

n
=

rm

n
h

(
‖π0z‖

rm

)
‖π0z‖

rm

≤ p + 1

n
rm,

where the last inequality follows from ((ii)) and ((i)) of Lemma 3.
(ii) Obvious since g(t) = 0 if t ≥ 3.
(iii) A direct calculation gives

Tr ϕ′m(z) =
1

n
g

(
‖πmz‖

rm

)
g

(
‖σmz‖

sm

)[
h′
(
‖π0z‖

rm

)
‖π0z‖

rm

+ nh

(
‖π0z‖

rm

)]
.

The upper estimate is now obvious, since h′ ≤ 0 and g ≤ 1. The desired
lower estimate follows directly from (iii) of Lemma 3.

(iv) Let v ∈ X0 and ‖v‖ = 1. Then

‖ϕ′m(z; v)‖ =
1

n
g

(
‖πmz‖

rm

)
g

(
‖σmz‖

sm

)
×
∥∥∥∥h(‖π0z‖

rm

)
π0v + h′

(
‖π0z‖

rm

)
‖ · ‖′(π0z; v)

rm

π0z

∥∥∥∥
≤ 1

n
g

(
‖πmz‖

rm

)
g

(
‖σmz‖

sm

)[
h

(
‖π0z‖

rm

)
+

∣∣∣∣h′(‖π0z‖
rm

)∣∣∣∣ ‖π0z‖
rm

]
.

Using (iv) of Lemma 3 and the already proven point (iii) of Lemma 4, this
can be estimated by

≤ p + 1

n
g

(
‖πmz‖

rm

)
g

(
‖σmz‖

sm

)
h

(
‖π0z‖

rm

)
≤ p + 1

n− p
Tr ϕ′m(z).
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Let v ∈ ⊕1≤i<mXi and ‖v‖ = 1. Then

‖ϕ′m(z; v)‖ =
1

n
g

(
‖πmz‖

rm

)
h

(
‖π0z‖

rm

)
‖π0z‖

∣∣∣∣g′(‖σmz‖
sm

)
‖ · ‖′(σmz; v)

sm

∣∣∣∣
≤ rm

nsm

g

(
‖πmz‖

rm

)
h

(
‖π0z‖

rm

)
‖π0z‖

rm

∣∣∣∣g′(‖σmz‖
sm

)∣∣∣∣ .
Using that 0 ≤ g ≤ 1 implies g ≤ g1/q, applying Lemma 3(vi) and (ii), and
using the estimate of Tr ϕ′m(z) from (iii) of this Lemma, we infer that

≤ rm

nsm

g
1
q

(
‖πmz‖

rm

)
(p + 1) h

1
q

(
‖π0z‖

rm

)
p g

1
q

(
‖σmz‖

sm

)
≤ p(p + 1)

n

rm

sm

(
n

n− p
Tr ϕ′m(z)

) 1
q

.

If v ∈ Xm and ‖v‖ = 1, we use the same arguments as in the preceding
case to estimate

‖ϕ′m(z; v)‖ =
1

n
g

(
‖σmz‖

sm

)
h

(
‖π0z‖

rm

)
‖π0z‖

∣∣∣∣g′(‖πmz‖
rm

)
‖ · ‖′(πmz; v)

rm

∣∣∣∣
≤ 1

n
g

(
‖σmz‖

sm

)
h

(
‖π0z‖

rm

)
‖π0z‖

rm

∣∣∣∣g′(‖πmz‖
rm

)∣∣∣∣
≤ 1

n
g

1
q

(
‖σmz‖

sm

)
(p + 1) h

1
q

(
‖π0z‖

rm

)
p g

1
q

(
‖πmz‖

rm

)
≤ p(p + 1)

n

(
n

n− p
Tr ϕ′m(z)

) 1
q

.

For each m ≥ 1 we choose a maximal set Em ⊂ Xm containing the origin
and such that ‖x1 − x2‖ ≥ 24rm whenever x1, x2 ∈ Em are different. Note
that the maximality means that for any z ∈ Xm there is x ∈ Em such that
‖x − z‖ < 24rm. To every point x ∈ Em we assign infinitely many points
y(m)(x, i) ∈ Xm, i ≥ 0 such that

(α) y(m)(x, 0) = x,

(β) ‖y(m)(x, i)− x‖ = 8rm, and

(γ) ‖y(m)(x, i)− y(m)(x, j)‖ ≥ 8rm whenever i 6= j.

We can obtain y(m)(x, i) by rearranging the points x + 8rmej (j ∈ Nm) into

a sequence. Let us denote, further, by (d
(m)
i )i≥0 a countable dense subset of

⊕m−1
i=0 Xi.

14



Lemma 5. Let m ≥ 1.

(i) Every open ball in `p of radius rm meets at most one of the supports of

the functions z 7→ ϕm(z − y(m)(x, i)− d
(m)
i ) (x ∈ Em, i ≥ 0).

(ii) For any choice of real coefficients c(x, i) the function

b(z) =
∑

x∈Em

∞∑
i=0

c(x, i)ϕm(z − y(m)(x, i)− d
(m)
i )

is well-defined and continuously differentiable on `p with derivative
given by

b′(z) =
∑

x∈Em

∞∑
i=0

c(x, i)ϕ′m(z − y(m)(x, i)− d
(m)
i ).

(iii) If the c(x, i) are bounded, then b is a bounded function with a bounded
uniformly continuous derivative.

(iv) If x ∈ Em and i ≥ 0, then b(z) = c(x, i)ϕm(z− y(m)(x, i)− d
(m)
i ) for all

z ∈ `p such that ‖πmz − y(m)(x, i)‖ < 4rm.

(v) b(z) = b((π0 + σm+1)(z)).

(vi) ‖b(z)‖ ≤ p+1
n

rm sup {|c(x, i)|; x ∈ Em, i ≥ 0}.

(vii) If c(x, i) ≥ 0 for all x ∈ Em and i ≥ 0, then Tr b′(z) ≥ 0 for all z ∈ `p.

(viii) If 0 ≤ c(x, i) ≤ 1 for all x ∈ Em and i ≥ 0, then
‖b′(z; v)‖ ≤ n+1

n−p
Tr b′(z)‖v‖ for v ∈ X0,

‖b′(z; v)‖ ≤ p(p+1)
n

rm

sm

(
n

n−p
Tr b′(z)

) 1
q ‖v‖ for v ∈ ⊕m−1

i=1 Xi, and

‖b′(z; v)‖ ≤ p(p+1)
n

(
n

n−p
Tr b′(z)

) 1
q ‖v‖ for v ∈ Xm.

Proof. Observing that

‖πm(y(m)(u, i) + d
(m)
i )− πm(y(m)(v, j) + d

(m)
j )‖

= ‖(y(m)(u, i)− y(m)(v, j)‖ ≥ 8rm,

whenever (u, i) 6= (v, j), we deduce (i)–(iv) immediately from Lemma 4(ii).
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The statement (v) follows from the definition of the mappings ϕm and
(vi) from (i) and from Lemma 4(i).

Finally, using (i) once more, we deduce (vii) from Lemma 4(iii) and (viii)
from Lemma 4(iv), where the only additional fact we need to observe is that
c(x, i) ≤ (c(x, i))1/q.

2.2. The construction

In the preliminary part we have worked for each m ≥ 1 separately with so
far free parameters rm and sm. Here we recursively choose their particular
values; these will be defined together with mappings Gm : `p 7→ X0 (m ≥ 0)
and bm : `p 7→ X0 (m ≥ 1); to determine them, we will also need recursively
defined real coefficients c(m)(x, i) (m ≥ 1, x ∈ Em, i ≥ 0).

We start by choosing the starting values:

(R0) G0(z) = 0 for all z ∈ `p, r1 = s1 = 1, and c(m)(x, 0) = 0 for all m ≥ 1
and x ∈ Em.

If r1, . . . , rm−1, and s1, . . . , sm−1 have been already fixed, and if Gm−1 has
been defined in such a way that it has a uniformly continuous derivative, we
choose the real parameter sm to verify

(R1) ‖G′
m−1(z1)−G′

m−1(z2)‖ ≤ 2−(m+1)n−1 whenever ‖z1 − z2‖ ≤ 6sm.

Then we choose rm small enough to satisfy the following two conditions:

(R2) rm ≤ 2−(m+2) min{sm, r1, . . . , rm−1}, and

(R3) h
(

3sm

rm

)
< 2−(m+1).

Once rm and sm have been fixed, the mappings ϕm are fixed as well and we
may use them in our final bunch of definitions:

(R4) c(m)(x, i) = 1− 2−m − Tr G′
m−1(d

(m)
i ) for x ∈ Em and i ≥ 1,

(R5) bm(z) =
∑

x∈Em

∑∞
i=0 c(m)(x, i)ϕm(z − y(m)(x, i)− d

(m)
i ), and

(R6) Gm(z) = Gm−1(z) + bm(z).
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We observe that this construction does not stop, since, once we know that
Gm−1 has a bounded uniformly continuous derivative (which we surely know
if m = 1), then we first use (R4) to infer that c(m)(x, i) are bounded, deduce
from Lemma 5(iii) that bm has a bounded uniformly continuous derivative,
and finally use (R6) to conclude that Gm has a bounded uniformly continuous
derivative as well.

2.3. Further properties

A simple combination of (R1) and Lemma 5(v) gives

Lemma 6. Whenever ‖(π0 + σm)(z1 − z2)‖ ≤ 6sm, then

(i) ‖G′
m−1(z1)−G′

m−1(z2)‖ ≤ 2−(m+1)n−1, and

(ii) |Tr G′
m−1(z1)− Tr G′

m−1(z2)| ≤ 2−(m+1).

Lemma 7. For every z ∈ `p the sequence Tr G′
m(z) is non-decreasing and

verifies 0 ≤ Tr G′
m(z) ≤ 1− 2−(m+1). In particular, 0 ≤ c(m)(x, i) ≤ 1− 2−m.

Proof. We prove the Lemma by induction with respect to m; the mono-
tonicity statement is considered as the inequality Tr G′

m(z) ≥ Tr G′
m−1(z).

Assume that m ≥ 1 and that 0 ≤ Tr G′
m−1(w) ≤ 1 − 2−m for every w ∈ `p.

(This is clearly true if m = 1.) Since c(m)(x, i) = 1 − 2−m − Tr G′
m−1(d

(m)
i )

for i ≥ 1 and c(m)(x, 0) = 0, we immediately infer that

0 ≤ c(m)(x, i) ≤ 1− 2−m.

Thus Lemma 5(vii) shows that Tr G′
m(z) ≥ Tr G′

m−1(z) and hence also that
Tr G′

m(z) ≥ 0.
To finish the proof of the only remaining statement, namely of the inequal-

ity Tr G′
m(z) ≤ 1 − 2−(m+1), we may assume that Tr G′

m(z) > Tr G′
m−1(z).

Then Lemma 5(i) and (ii) imply that there are x ∈ Em and i ≥ 0 such that

Tr G′
m(z) = Tr G′

m−1(z) + c(m)(x, i)Tr ϕ′m(z − y(m)(x, i)− d
(m)
i ),

and c(m)(x, i)Tr ϕ′m(z − y(m)(x, i) − d
(m)
i ) 6= 0; because of Lemma 4(ii) the

latter implies that ‖σmz − σmd
(m)
i ‖ ≤ 3sm.
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If we now assume also that ‖π0z − π0d
(m)
i ‖ < 3sm, we get

‖(π0 + σm)(z − d
(m)
i )‖ < 6sm.

Hence Lemma 6(ii) gives

|Tr G′
m−1(z)− Tr G′

m−1(d
(m)
i )| ≤ 2−(m+1).

Since c(m)(x, i) ≥ 0 and Tr ϕ′m ≤ 1 (see (iii) of Lemma 4), we have

Tr G′
m(z) = Tr G′

m−1(z) + c(m)(x, i)Tr ϕ′m(z − y(m)(x, i)− d
(m)
i )

≤ Tr G′
m−1(z) + c(m)(x, i)

= 1− 2−m + (Tr G′
m−1(z)− Tr G′

m−1(d
(m)
i ))

≤ 1− 2−(m+1).

In the remaining case when ‖π0z − π0d
(m)
i ‖ ≥ 3sm we use Lemma 4(iii)

and the fact that c(m)(x, i) ≤ 1 to infer that

Tr G′
m(z) = Tr G′

m−1(z) + c(m)(x, i)Tr ϕ′m(z − y(m)(x, i)− d
(m)
i )

≤ 1− 2−m + h

(
‖π0z − π0d

(m)
i ‖

rm

)

≤ 1− 2−m + h

(
3sm

rm

)
≤ 1− 2−(m+1),

where we also used that h is non-increasing and (R3).

Now we are ready to define (almost) the mapping we need by putting

G(z) = lim
m→∞

Gm(z) =
∞∑

m=1

bm(z).

The limit exists because the estimate of c(m)(x, i) in Lemma 7 and Lemma
5(vi) imply that ‖bm(z)‖ ≤ p+1

n
rm, and because (R2) shows that

∑∞
m=1 rm

converges.

Lemma 8. Whenever m = 1, 2, . . . and w ∈ `p, then

(i) ‖(G−Gm)(w)‖ ≤ 4rm+1,
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(ii) ‖Gm(w + u)−Gm(w)− 〈G′
m(w), u〉‖ ≤ 2−m‖u‖ for ‖u‖ ≤ 6sm+1, and

(iii) ‖1
2
(Gm(v) + Gm(w)) − Gm(1

2
(v + w))‖ ≤ 2−m‖v − w‖ provided that

‖v − w‖ ≤ 6sm+1.

Proof. (i) The estimate ‖bk‖ ≤ p+1
n

rk mentioned above, the obvious inequal-

ity p+1
n
≤ 2, and (R2) imply

‖(G−Gm)(w)‖ ≤
∞∑

k=m+1

‖bk(w)‖ ≤ p+1
n

∞∑
k=m+1

rk ≤ 4rm+1.

(ii) Using the mean value estimate and (R1), we get

‖Gm(w + u)−Gm(w)− 〈G′
m(w), u〉‖

≤ sup{‖〈G′
m(w + tu)−G′

m(w), u〉‖; 0 ≤ t ≤ 1}
≤ 2−m‖u‖.

(iii) Using (ii) with u = v − w and with u = 1
2
(v + w) − w = 1

2
(v − w),

we get

‖1
2
(Gm(v) + Gm(w))−Gm(1

2
(v + w))‖

≤ ‖1
2
(Gm(v)−Gm(w)− 〈G′

m(w), v − w〉)‖
+ ‖Gm(1

2
(v + w))−Gm(w)− 〈G′

m(w), 1
2
(v − w)〉‖

≤ 2−m‖v − w‖.

Lemma 9. For every z ∈ `p

(i) limm→∞ sup
{
‖G(z+u)−G(z)−〈G′

m(z),u〉‖
‖u‖ ; ‖u‖ = sm+1

}
= 0,

(ii) limm→∞

∣∣∣G(z+sm+1u)−G(z)
sm+1

− 〈G′
m(z), u〉

∣∣∣ = 0 if u ∈ `p with ‖u‖ = 1,

(iii) limm→∞
∑n

j=1

〈
G(z+smej)−G(z)

sm
, e?

j

〉
= limm→∞ Tr G′

m(z),

(iv) ‖G′(z)‖ ≤ lim infm→∞ ‖G′
m(z)‖ if G is Gâteaux differentiable at z, and

(v) limm→∞ ‖G′(z)−G′
m(z)‖ = 0 if G is Fréchet differentiable at z.
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Proof. We use Lemma 8(ii) and (i) to estimate

‖G(z + u)−G(z)− 〈G′
m(z), u〉‖ ≤ ‖Gm(z + u)−Gm(z)− 〈G′

m(z), u〉‖
+ ‖(G−Gm)(z + u)‖
+ ‖(G−Gm)(z)‖

≤ 2−m‖u‖+ 8rm+1.

The first statement now follows by dividing by ‖u‖ = sm+1 and observing
that (R2) implies that limm→∞ rm+1/sm+1 = 0.

The statement (ii) is just a special case of (i). To prove (iii), we use (ii)
to infer that

lim
m→∞

∣∣∣∣ n∑
j=1

〈
G(z + smej)−G(z)

sm

, e?
j

〉
− Tr G′

m(z)

∣∣∣∣ = 0,

and note that Lemma 7 implies that the limit limm→∞ Tr G′
m(z) exists.

To prove (iv), if suffices to note that if G is Gâteaux differentiable at z
then (ii) implies that 〈G′(z), u〉 = limm→∞〈G′

m(z), u〉 for every u ∈ `p.
Finally, we observe that

‖G′(z)−G′
m(z)‖ ≤ sup

‖u‖=sm+1

{
‖G(z + u)−G(z)− 〈G′

m(z), u〉‖
‖u‖

}
+ sup

‖u‖=sm+1

{
‖G(z + u)−G(z)− 〈G′(z), u〉‖

‖u‖

}
.

Since we proved that the first supremum on the right hand side tends to zero
as m tends to infinity, and since the second supremum tends to zero if G is
Fréchet differentiable at z, this proves (v).

Lemma 10. There is a constant 0 < c < 1
2n

such that, whenever z ∈ `p and
T is a continuous linear mapping of `p to X0, then

lim sup
y→z

‖G(y)−G(z)− 〈T, y − z〉‖
‖y − z‖

≥ 2c(1− lim
m→∞

Tr G′
m(z)).

Consequently,

lim sup
y→z

‖G(y)−G(z)− 〈T, y − z〉‖
‖y − z‖

≥ c

∣∣∣∣1− ∞∑
j=1

〈Tej, e
?
j〉
∣∣∣∣.
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Proof. We prove that the statement holds with c = 1
592n

. To this end, let
us assume first that for some z and T

lim sup
u→z

‖G(u)−G(z)− 〈T, u− z〉‖
‖u− z‖

< cθ,

where θ = 1− limm→∞ Tr G′
m(z).

Noting that clearly θ > 0, we find m so large that θ > 2−m+7(n + 1), and

‖G(u)−G(z)− 〈T, u− z〉‖ ≤ cθ‖u− z‖

whenever ‖u− z‖ ≤ 37rm.
We choose x ∈ Em and i ≥ 1 having the properties that ‖πmz−x‖ < 24rm

and ‖(π0 + σm)z − d
(m)
i ‖ < rm. We intend to estimate the contribution of

the summand
c(m)(x, i)ϕm(z − y(m)(x, i)− d

(m)
i )

to the value of the function G. Since the sequence Tr G′
m(z) is non-decreasing,

we have Tr G′
m−1(z) ≤ 1− θ. Since

‖(π0 + σm)(z − d
(m)
i )‖ = ‖(π0 + σm)z − d

(m)
i ‖ < rm ≤ 6sm

(where the last inequality comes from (R2)), we infer from Lemma 6(ii) that

|Tr G′
m−1(z)− Tr G′

m−1(d
(m)
i )| ≤ 2−(m+1).

Hence the coefficient c(m)(x, i) can be estimated from below

c(m)(x, i) = 1− 2−m − Tr G′
m−1(d

(m)
i ) ≥ 1− 2−m − Tr G′

m−1(z)− 2−(m+1)

≥ 1− 2−m − 2−(m+1) − 1 + θ = θ − 2−m − 2−(m+1) ≥ θ/2.

Let y1, y2 ∈ Xm be such that

1
2
(y1 + y2) = y(m)(x, i) and ‖y1 − y2‖ = 6rm,

and let d ∈ X0 be any vector with ‖d‖ = rm. Then we put, for j = 1, 2,

uj = d + d
(m)
i + yj + σ(m)z,
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and estimate

‖uj − z‖ = ‖d + d
(m)
i + yj − (π0 + σm + πm)z‖

≤ ‖d‖+ ‖d(m)
i − (π0 + σm)z‖+ ‖yj − y(m)(x, i)‖

+ ‖y(m)(x, i)− x‖+ ‖x− πmz‖
≤ 37rm.

Since ‖πmuj − y(m)(x, i)‖ = ‖yj − y(m)(x, i)‖ = 3rm, we have

ϕm(uj − y(m)(x, i)− d
(m)
i ) = 0.

Using 5(iv), we infer that

bm(uj) = c(m)(x, i)ϕm(uj − y(m)(x, i)− d
(m)
i ) = 0.

Using 5(iv) once more, we get

‖bm(1
2
(u1 + u2))‖ = ‖c(m)(x, i)ϕm(1

2
(um + vm)− y(m)(x, i)− d

(m)
i )‖

= c(m)(x, i)‖ϕm(d)‖ = c(m)(x, i) 1
n
‖π0(d)‖

≥ θ
2n

rm.

Noting that Lemma 8(iii) gives

‖1
2
(Gm−1(u1) + Gm−1(u2))−Gm−1(

1
2
(u1 + u2))‖

≤ 2−m+1‖u1 − u2‖ ≤ 2−m+4rm < θ
8n

rm,

and that Lemma 8(i) and (R2) imply

‖(G−Gm)(w)‖ ≤ 4rm+1 ≤ 2−mrm < θ
16n

rm,

we conclude that

‖1
2
(G(u1) + G(u2))−G(1

2
(u1 + u2))‖

≥ ‖1
2
(bm(u1) + bm(u2))− bm(1

2
(u1 + u2))‖

− ‖1
2
(Gm−1(u1) + Gm−1(u2))−Gm−1(

1
2
(u1 + u2))‖

− 1
2
‖(G−Gm)(u1)‖ − 1

2
‖(G−Gm)(u2)‖ − ‖(G−Gm)(1

2
(u1 + u2))‖

> θ
2n

rm − θ
8n

rm − 2 θ
16n

rm = θ
4n

rm.
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On the other hand, we also have

‖1
2
(G(u1) + G(u2))−G(1

2
(u1 + u2))‖

≤ 1
2
‖G(u1)−G(z)− 〈T, u1 − z〉‖+ 1

2
‖G(u2)−G(z)− 〈T, u2 − z〉‖

+ ‖G(1
2
(u1 + u2))−G(z)− 〈T, 1

2
(u1 + u2)− z〉‖

< 1
2
cθ‖u1 − z‖+ 1

2
cθ‖u2 − z‖+ cθ‖1

2
(u1 + u2)− z‖ ≤ 74cθrm

= θ
4n

rm,

which is a contradiction proving the first statement of the Lemma.
To prove the second statement, we observe that the inequality

lim sup
y→z

‖G(y)−G(z)− 〈T, y − z〉‖
‖y − z‖

< c

∣∣∣∣1− ∞∑
j=1

〈Tej, e
?
j〉
∣∣∣∣

and Lemma 9(iii) together with nc < 1
2

would imply that∣∣∣∣ ∞∑
j=1

〈Tej, e
?
j〉 − lim

m→∞
Tr G′

m(z)

∣∣∣∣ ≤ 1
2

∣∣∣∣1− ∞∑
j=1

〈Tej, e
?
j〉
∣∣∣∣.

But then∣∣∣∣1− ∞∑
j=1

〈Tej, e
?
j〉
∣∣∣∣ ≤

∣∣∣∣1− lim
m→∞

Tr G′
m(z)

∣∣∣∣+ ∣∣∣∣ ∞∑
j=1

〈Tej, e
?
j〉 − lim

m→∞
Tr G′

m(z)

∣∣∣∣
≤

∣∣∣∣1− lim
m→∞

Tr G′
m(z)

∣∣∣∣+ 1
2

∣∣∣∣1− ∞∑
j=1

〈Tej, e
?
j〉
∣∣∣∣,

which would give

lim sup
y→z

‖G(y)−G(z)− 〈T, y − z〉‖
‖y − z‖

< 2c(1− lim
m→∞

Tr G′
m(z)),

contradicting thus the already established first part of the Lemma.

Lemma 11. There is a constant 0 < C < ∞ such that for all z, v ∈ `p

‖G′
m(z; v)‖ ≤ C (Tr G′

m(z))
1
q ‖v‖.

In particular, the function G is Lipschitz.
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Proof. From Lemma 7 we see that 0 ≤ Tr G′
m(z) ≤ 1 and that the assump-

tions of Lemma 5(viii) are satisfied with the constants c(k)(x, i). Hence

‖b′k(z; v)‖ ≤ n + 1

n− p
Tr b′k(z)‖v‖ for v ∈ X0,

‖b′k(z; v)‖ ≤ p(p + 1)

n

rm

sm

(
n

n− p
Tr b′k(z)

) 1
q

‖v‖ for v ∈ ⊕k−1
i=1 Xi, and

‖b′k(z; v)‖ ≤ p(p + 1)

n

(
n

n− p
Tr b′k(z)

) 1
q

‖v‖ for v ∈ Xk.

Using also that b′k(z; σ(k)v) = 0 (see Lemma 5(v)) and the inequalities
Tr b′k(z) ≤ Tr G′

m(z) if k ≤ m and Tr G′
m(z) ≤ (Tr G′

m(z)1/q, we estimate

‖G′
m(z; v)‖ ≤

m∑
k=1

‖b′k(z; v)‖ =
m∑

k=1

‖b′k(z; π0v + σkv + πkv)‖

≤
m∑

k=1

‖b′k(z; π0v)‖+
m∑

k=1

‖b′k(z; σkv)‖+
m∑

k=1

‖b′k(z; πkv)‖

≤
m∑

k=1

n + 1

n− p
Tr b′k(z)‖π0v‖

+
m∑

k=1

p(p + 1)

n

rm

sm

(
n

n− p
Tr b′k(z)

) 1
q

‖σkv‖

+
m∑

k=1

p(p + 1)

n

(
n

n− p
Tr b′k(z)

) 1
q

‖πkv‖

≤ n + 1

n− p
Tr G′

m(z)‖v‖

+
p(p + 1)

n

(
n

n− p
Tr G′

m(z)

) 1
q

‖v‖
m∑

k=1

rm

sm

+
p(p + 1)

n

(
m∑

k=1

n

n− p
Tr b′k(z)

) 1
q
(

m∑
k=1

‖πkv‖p

) 1
p

≤ C(Tr G′
m(z))

1
q ‖v‖,
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where

C =
n + 1

n− p
+

p(p + 1)

n

(
n

n− p

) 1
q

(
1 +

m∑
k=1

rm

sm

)
,

which is finite because of (R2).
Finally, to prove that G is Lipschitz, we note that our estimate of the

derivative implies that ‖Gm(u) − Gm(v)‖ ≤ C‖u − v‖ (u, v ∈ `p), and take
the limit as m tends to infinity .

Lemma 12. G′(0) = 0.

Proof. Recalling that, for each k ≥ 1, the origin belongs to Ek, and that
y(k)(0, 0) = 0 and ck(0, 0) = 0, we infer from 5(iv) that bk(z) = 0 whenever
‖πkz‖ < 4rk. In particular, Gm(z) =

∑m
k=1 bk(z) = 0 if ‖z‖ < 4rm and

bk(z) = 0 if z ∈ ⊕k−1
i=0 Xi.

Let v ∈ ⊕m
i=0Xi. Then the above discussion shows that

G(tv)−G(0)

t
=

Gm(tv)−Gm(0)

t
+

∞∑
k=m+1

bk(tv)− bk(0)

t
= 0

if |t| is so small that ‖tv‖ < 4rm. So, taking the limit t → 0, we get that
G′(0; v) = 0 for every v ∈ ⊕m

i=1Xi and every m ≥ 0. Since the vectors v of
this type are dense in `p and since the function G is Lipschitz we conclude
that G′(0) = 0.

2.4. Proof of Theorem 2

We prove that the statement of the Theorem holds with

f = 1
n
π0 −G.

Because of Lemma 11, the mapping f is Lipschitz. Obviously, the points of
(any kind of) differentiability of f and G coincide. In particular, because
G′(0) = 0 according to Lemma 12, f is Gâteaux differentiable at the origin
and Tr f ′(0) = 1. However, if z is a point of Fréchet differentiability of the
function f , we deduce from Lemma 10 that limm→∞ Tr G′

m(z) = 1 and from
Lemma 9(iii) that Tr G′(z) = 1; this shows that Tr f ′(z) = 0.

The stronger statements of the Theorem follow similarly easily: (i) from
the second statement of Lemma 10, (ii) from Lemma 7 and Lemma 9(iii),
and (iii) from Lemma 11 and Lemma 9(iii) and (iv).
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