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How small are σ porous sets
and why are we interested in it

Abstract

We describe some of the results of our ongoing investigation of differ-

entiability of Lipschitz functions on infinite dimensional Banach spaces

with particular emphasis on the role of porous sets played both in pos-

itive results and in key open problems.

Introduction

These notes are an expanded version of the talk given by the second named
author at the Real Analysis Symposium. Their main purpose is briefly to
inform about some of the results of our study of differentiability problems for
Lipschitz functions and to sketch some of the key arguments without going into
difficult technical details. The key notions needed to understand the material
are explained as well, although the definitions may be somewhat simplified
(and sometimes not equivalent to original ones) and appear only after the
results have been stated and/or discussed. Background notions and much
other relevant material may be found in [2].

The questions we are interested in have, a priory, nothing in common with
σ porous sets. We intend to convince the reader that there is a deep connection
which can be used to obtain at least some partial answers. However, many
basic questions about differentiability of Lipschitz functions in Banach spaces
remain unanswered, for example
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Problem 1. Is is true that any three real-valued Lipschitz functions on an
(infinite dimensional separable) Hilbert space have a common point of Fréchet
differentiability?

This is a special case of a number of more general problems, one of which,
in spite of weakness of the evidence, we state as

Conjecture 2. Any finite (or even countable) collection of real-valued Lips-
chitz functions on a Banach space with separable dual has a common point of
Fréchet differentiability.

Our goal here is mainly to comment on some of the connections between
these problems and the questions about size of σ porous sets. Details of
the arguments and more detailed results will be contained in a text that is
currently being written.

Basic notions

Throughout this talk, functions will be real-valued, otherwise they will be
called maps. X will be a separable Banach space. A function f : X → R is
Lipschitz if there is C <∞ so that

|f(x) − f(y)| ≤ C‖x− y‖ all x, y ∈ X

Definition. A function f : X → R is said to be Fréchet differentiable at a
point x0 if there is x∗ ∈ X∗ so that

f(x0 + u) = f(x0) + x∗(u) + o(‖u‖), u→ 0.

Definition. The directional derivative of f at x0 in direction u ∈ X is

f ′(x0;u) := lim
t→0

f(x0 + tu) − f(x0)

t
(⋆)

provided that the limit exists.

Observation. The function f is Fréchet differentiable at x0 if and only if

(1) its directional derivative f ′(x0;u) exists for every u and

(2) forms a bounded linear operator as a function of u and

(3) the limit in (⋆) is uniform for ‖u‖ ≤ 1.

Definition. If (1) holds, we say that f is directionally differentiable at x0, if
(1) and (2) hold, we say that f is Gâteaux differentiable at x0.
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Two remarks are in order: first, and rather easy to see, that if f is Lipschitz
and dim(X) < ∞, then (1) ⇐⇒ (3); and second, that we will not explain
here, that in the problems we are interested in, condition (2) is rather easy to
achieve.

Existence of Gâteaux derivative

Lebesgue’s result (usually quoted as) that monotone functions R → R are
differentiable almost everywhere implies that Lipschitz functions f : R → R

are differentiable a.e. as well: just consider the function x→ f(x) +Cx for C
large enough or use the standard extension of Lebesgue’s theorem to functions
of bounded variation.

So for any Lipschitz f : X → R and any u ∈ X , the set of points where f is
non-differentiable in direction u belongs to the family A(u) of Borel sets that
are null on every line parallel to u. It follows that every Lipschitz f : X → R

is directionally (and also Gâteaux) differentiable except points of a set from
the σ-ideal A generated by sets from A(u), u ∈ X .

One can prove that A is non-trivial, ie, X /∈ A. Strengthening (or weak-
ening) of these observations led in the beginning of 70’s a number of authors
to the following result, with various notions of “almost everywhere.” (The
case when X is finite dimensional was proved, with “almost everywhere with
respect to the Lebesgue measure,” by Rademacher in 1919.)

Theorem 1 (Mankiewicz; Christensen; Aronszajn; Phelps). Every real-valued
Lipschitz function on a separable Banach space is Gâteaux differentiable almost
everywhere.

For example, Aronszajn’s notion of null sets is: A set A ⊂ X is Aronszajn
null if for every sequence ui ∈ X whose linear span is dense in X , A =

⋃
i Ai

where Ai ∈ A(ui).

Current strongest results on Gâteaux differentiability

Following Aronszajn’s idea, we observe that in his definition we do not quite
need the full strength of the requirement Ai ∈ A(ui).

Definition. For u ∈ X and η > 0 let Ã(u, η) be the class of Borel sets
E ⊂ X having the property that |γ−1(E)| = 0 for every Lipschitz curve γ
with ‖γ′(t) − u‖ ≤ η.

A set A ⊂ X is Ã-null if for every sequence ui ∈ X whose linear span is
dense in X there are ηi > 0 such that A =

⋃
iAi where Ai ∈ Ã(ui, ηi).
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Theorem 2 (Zaj́ıček, Preiss 2001). Every real-valued Lipschitz function on a

separable Banach space is Gâteaux differentiable Ã-almost everywhere.

Based on the same idea, a number of formally weaker or formally stronger
results may be (rather easily) generated. The use of the word “formally” indi-
cates that it is open whether or not the corresponding variants of Theorem 2
are equivalent.

An interesting formally stronger result is obtained by replacing Ã(u, η) by

the class Ãr(u, η) of Borel sets E ⊂ X having the property that for every
ε > 0 there is an open set G ⊃ E such that |γ−1(G)| < ε for every Lipschitz
curve γ with ‖γ′(t) − u‖ ≤ η.

Another interesting, this time formally weaker, version of this result re-
places Ã-sets by the σ-ideal generated by the sets Ã(u, η).

We also may notice that, if X has the Radon-Nikodým property, the defini-
tion of Ã(u, η) may equivalently require that |γ−1(E)| = 0 for every Lipschitz
curve γ such that t → γ(t) − ut has Lipschitz constant ≤ η. Without the
Radon-Nikodým property it is not clear if these two definitions lead to the
same notion of “almost everywhere,” yet Theorem 2 remains valid.

Weaker differentiability, stronger assumptions

Although we are unable to Fréchet differentiate three Lipschitz functions on a
Hilbert spaces at the same point, we can at least show that for any prescribed
ε > 0 there are points at which the increment of all of them is ε close to linear.
More precisely, this property is defined as follows.

Definition. A function f : X → R is called almost Fréchet differentiable if
for every ε > 0 there is x ∈ X at which it is ε-Fréchet differentiable, i.e., there
are x∗ ∈ X∗ and δ > 0 so that

‖f(x+ u) − f(x) − x∗(u)‖ ≤ ε‖u‖

if ‖u‖ ≤ δ.

Since Fréchet differentiability of f at x implies (and is in fact equivalent to)
its ε-Fréchet differentiability at x for every ε > 0, the validity of Conjecture 2
for countable collections is equivalent to showing that in every Banach space
with separable dual and for any ε > 0, any countable collection of Lipschitz
functions has a common point of ε-Fréchet differentiability. This is unknown
even for finite collections, but for such collections it was proved under the
assumption that the norm is smooth in a suitable uniform sense. The notion
used to define this is given in
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Definition. The modulus of asymptotic uniform smoothness of a space X is
defined by

ρ̄X(t) := sup
‖x‖=1

inf
dim X/Y <∞

sup
y∈Y
‖y‖≤t

(
‖x+ y‖ − 1

)
.

Example 3. X = ℓp, ρ̄X(t) ≍ tp as tց 0.

Current status of the conjecture

Theorem 4 (Preiss 1990; a simpler proof is in Lindenstrauss, Preiss (2000)).
Every Lipschitz function on a Banach space with separable dual is Fréchet
differentiable at least at one point.

Theorem 5 (Lindenstrauss, Preiss (1996) with smoothness; Johnson, Linden-
strauss, Schechtman, Preiss (2002) with asymptotic smoothness). Every finite
collection of Lipschitz functions on a separable Banach space that admits a
norm with modulus of (asymptotic) smoothness o(t) has, for each ε > 0, a
common point of ε-Fréchet differentiability.

Theorem 6 (Lindenstrauss, Preiss 2003). On some separable Banach spaces
(such as c0) every Lipschitz function is differentiable Γ-almost everywhere.

Theorem 7 (Lindenstrauss, Tǐser, Preiss 2008). Every pair of Lipschitz func-
tions on a separable Banach space that admits a norm with modulus of asymp-
totic smoothness o

(
t2 log(1/t)

)
has a common point of Fréchet differentiability.

Definition of Γ
n
- and Γ-null sets

Denote by Γn(X) the space of continuously differentiable mappings from [0, 1]n

to X .

Definition. A Borel set E ⊂ X is Γn-null if

{
γ ∈ Γn(X) : |γ−1(E)| > 0

}

is a first category subset of Γn(X).

Notice that the Baire category theorem shows that Γn-null sets form a
nontrivial σ-ideal of Borel subsets of X .

The definition makes sense also for n = ∞, in which case we leave out
the index ∞. So Γ(X) is the space of continuous mappings from [0, 1]N to X
having continuous partial derivatives. Then Γ(X) is not a Banach space but a
Fréchet space. So the Baire category theorem is still applicable and the Γ-null
sets also form a nontrivial σ-ideal of Borel subsets of X .
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Non-differentiability in R

The situation on the real line is well known, in fact, so well known that we
couldn’t find out who was the first to observe it. A more precise result is due
to Zahorski [19]: A subset of R is the set of points of non-differentiability of a
Lipschitz function f : R → R if and only if it is a Gδσ-set of measure zero.

Observation. For every Lebesgue null set E ⊂ R there is a Lipschitz f : R →
R which is non-differentiable at any point of E.

Proof. Recursively find open R = G0 ⊃ G1 ⊃ G2 ⊃ · · · ⊃ E so small that
Gk+1 is small in every component of Gk. For example, require that |Gk+1 ∩
C| < 2−k−1|C| for any component C of Gk.

Let ψ(x) = (−1)k where k is the least index such that x ∈ Gk, observe that
ψ is well defined almost everywhere and define f(x) =

∫
ψ(x) dx. If x ∈ E

and (a, b) is a component of Gk containing x, then
∣∣∣∣
f(b) − f(a)

b− a
− (−1)k

∣∣∣∣ ≤ 2−k,

so f is not differentiable at x.

Porosity, directional porosity and σ-(directional) porosity

Definition. A set E in X is said to be c-porous at x ∈ E, 0 < c < 1, if for
every ε > 0 there is a z ∈ X\E such that ‖x−z‖ < ε andB(z, c‖x−z‖)∩E = ∅.

Definition. A set E in X is said to be directionally c-porous at x ∈ E,
0 < c < 1, if there is a line L passing through x such that for every ε > 0
there is a z ∈ (X \ E) ∩ L such that ‖x− z‖ < ε and B(z, c‖x− z‖) ∩ E = ∅.

Notice that porosity notions that play an important role in differentiability
questions are “upper porosities;” the holes do not occur in all radii, but only
in arbitrarily small radii.

Definition. A set which is (directionally) c-porous at x for some 0 < c < 1
is called (directionally) porous at x. A set is (directionally) porous if it is
(directionally) porous at each of its points. A countable union of (directionally)
porous sets is called σ-(directionally) porous.

Observation. E is (directionally) porous iff the function x → dist(x,E) is
not Fréchet (directionally, Gâteaux) differentiable at any point of E.

While in finite dimensional spaces every σ-porous set is σ-directionally
porous, this is false in all infinite dimensional spaces:
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Example 8 (Tǐser, Preiss 1995). Every infinite dimensional separable Banach
space is the union of a σ-porous set and of a set that is null on every line.

The σ-porous set from this example cannot be σ-directionally porous: If it
were, it would belong to A, since a directionally porous set is null on all lines
in the porosity direction. Hence X would belong to A, and we know that it
doesn’t.

To construct the example, recursively find points x1, x2, . . . ∈ X that are
500-dense in X and xk+1 has distance 100 from the linear span of x1, . . . , xk.
The key point is that the set

⋃∞
k=1 B(xk, 1) is small on sufficiently long seg-

ments. Hence it suffices to define the required σ-porous set as the complement
of ⋃∞

j=1

⋃∞
k=1 B(rjxk, rj),

where rj ց 0 sufficiently fast.

In uniformly smooth spaces, a considerable strengthening of this example
is due to E. Matoušková [13].

Non-differentiability in infinite dimensions

At the present time, we know three differently behaved classes of sets in infinite
dimensional spaces for which we can construct non-differentiable functions.

(a) Preimages of Lebesgue null sets from R under linear projections (or under
non-linear projections satisfying rather obvious requirements).

(b) σ-directionally porous sets.

(c) σ-porous, but not σ-directionally porous sets.

Notice that (a), (b) lead to Gâteaux non-differentiability while (c) leads to
Fréchet non-differentiability.

By recent results of Alberti, Csörnyei and Preiss, we may replace R by
R

2 in (a). Or we may use any R
n and replace Lebesgue null sets by their

description of sets of non-differentiability of Lipschitz function on R
n.

The mysterious role of porous sets

Theorem 9 (Lindenstrauss, Preiss 2003). Every real-valued Lipschitz function
on a Banach space X with separable dual is Fréchet differentiable Γ-almost
everywhere provided that every porous set in X is Γ-null.
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Notice that already when X = R there are many more non-differentiability
sets than σ-porous sets: any null set can be the former, but the latter are
necessarily of the first category.

Notice also that there are infinite dimensional spaces satisfying the condi-
tions of this Theorem. (For example c0.) But in the most interesting spaces,
the infinite dimensional Hilbert spaces, there are σ-porous sets that are not
Γ-null; one may even find σ-porous subsets whose complement is Γ-null.

Remark. The previous theorem becomes perhaps less mysterious if we observe
that for every Lipschitz f : X → R, where X has separable dual, there is a
σ-porous set of “irregular” points and, if this set is Γ-null then f is Fréchet
differentiable Γ-almost everywhere.

The “mean value” estimates

When a Fréchet differentiability result holds for a real-valued Lipschitz func-
tion on X , we may expect that the corresponding monotonicity (or mean
value) estimate holds:

(♣) If u ∈ X is such that f ′(x;u) ≤ 0 for every x at which f is Fréchet
differentiable, then f decreases in direction u.

For functions on spaces with separable dual this is actually true; both
proofs of Theorem 4 give this additional information.

Similarly, assuming that the Conjecture is true, we may expect that the
mean value estimate (which is now a corollary of the divergence theorem) holds
also for several functions. This mean value estimate is somewhat technical to
state, but we may simplify our life by observing that (♣) holds for Gâteaux
differentiability and so may be equivalently stated as:

(♠) For every y ∈ X at which f is Gâteaux differentiable, u ∈ X and ε >
0 there is x ∈ X at which f is Fréchet differentiable and f ′(x;u) >
f ′(y;u) − ε.

A similar simplification for several functions leads to the following “mean
value” variant of our Conjecture.

Question 3. Given a Banach space with separable dual and an integer n, is
it true that for any f1, . . . , fn : X → R, u1, . . . , un ∈ X and ε > 0 and for
every y ∈ X at which all fi are Gâteaux differentiable there is x ∈ X at which
all fi are Fréchet differentiable and

∑n
i=1 f

′
i(x;ui) >

∑n
i=1 f

′
i(y;ui) − ε?
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There is however a big difference between Problem 1 and Conjecture 2
on one side and Question 3 on the other side: Question 3 has been already
answered. In fact, it was answered before it was stated.

Answer (Tǐser, Preiss 1995). If X = ℓp and n > p, the above fails even
with almost Fréchet derivative. In particular, it fails when X is an infinitely
dimensional Hilbert space and n ≥ 3.

This answer suggests that the correct “mean value problem” for Fréchet
derivatives is for what X and n is the statement from Question 3 true. Our
recent work gives a reasonably satisfactory answer to this problem for almost
Fréchet derivatives and even for full Fréchet derivatives if n = 2. One direction
is a considerably refined version of the above example. The key to the other
direction is

Theorem 10. Suppose that the Banach space X with separable dual has
the property that every c-porous set in X can be covered by a union of a
σ-directionally porous set and a Γn-null Gδ set.

Then for any Lipschitz f1, . . . , fn : X → R, u1, . . . , un ∈ X and ε > 0 and
for any y ∈ X at which all fi are Gâteaux differentiable there is x ∈ X at
which all fi are Gâteaux differentiable, ε-Fréchet differentiable and

∑n
i=1 f

′
i(x;ui) >

∑n
i=1 f

′
i(y;ui) − ε

So we are again left with the question of smallness of porous sets, this time
not in the sense of Γ-nullness but in the sense of Γn-nullness.

Before coming to the description of the use of this result, we should com-
ment on its strange assumption. Since every c-porous set is contained in a
c-porous Gδ set, it looks to be almost the same as requiring that every c-
porous set in X is Γn-null. Indeed, this would be the case if all directionally
porous sets were Γn-null. Funnily enough, we do not know whether this is the
case, except when n ≤ 2.

Theorem 11. Every σ-directionally porous subset of any Banach space is
Γ1-null as well as Γ2-null.

Porous sets and Γ
n
-null sets

Theorem 12. Let X be a separable Banach space with

ρ̄X(t) = o(tn logn−1(1/t)) as t→ 0.

Then every porous set in X is contained in a union of a σ-directionally porous
set and a Γn-null Gδ set.
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Combined with the previous theorem, we get an answer to the “mean
value” version of our problems for almost Fréchet derivatives.

Corollary 13. Let X be a separable Banach space with

ρ̄X(t) = o(tn logn−1(1/t)) as t→ 0.

Then for any Lipschitz f1, . . . , fn : X → R, u1, . . . , un ∈ X and ε > 0 and for
any y ∈ X at which all fi are Gâteaux differentiable there is x ∈ X at which
all fi are Gâteaux differentiable, ε-Fréchet differentiable and

∑n
i=1 f

′
i(x;ui) >

∑n
i=1 f

′
i(y;ui) − ε

The main argument

Starting with a given curve (surface) we want to modify it so that it passes
through a hole in the porous set E. Choose a density point t of γ−1(E) and
close to x = γ(t) find a hole.

Modify γ so that it runs through the hole and notice that, at least in the
Hilbert space case, the preimage of the hole has much bigger measure than
the prolongation of the curve.

Repeating this process should lead to a curve with length almost equal
to the length of the original curve (so close to it) but almost never passing
through the porous set.

In the Hilbert space, and for curves, this sketch can be completed to a
precise argument. However, for more general spaces and higher dimensional
surfaces the argument would get rather involved. We therefore observe that
another way of stating the above is that we are trying to find curves minimizing
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a suitable perturbation of the function γ → |γ−1(E)|; the perturbation being
related to length. To show existence of such minima, we follow the route
taken in [3] to obtain a smooth variant of Ekeland’s variational principle [6].
(See also [5].) These principles, however, work only in complete spaces and
for lower semi-continuous functions. These assumptions do not hold in our
situation and so we push the principles further to allow for “conditionally”
complete spaces and “conditionally” lower semi-continuous function. It turns
out that these notions match the properties that the function f(γ) := |γ−1(E)|
defined on an appropriate domain satisfies.

Conditional completeness and lower semi-continuity

We consider Γn(X) with two metrics: d induced by the C1-norm and d0

induced by the maximum norm.
The first observation is that, arguing by contradiction, we manage to find

a somewhere d-dense, d0-Gδ subset M of Γn(X) on which |γ−1(E)| > c > 0.
We wish to find a minimum of perturbed f on M , where the perturbation

should be such that the “running around construction” leads to a contradic-
tion. It is easy to see that such a contradiction may be found for any d0

continuous perturbation. So everything would be trivial were M complete
when equipped with the metric d0. It is not, but the following weaker prop-
erty, which can be deduced from it being d0-Gδ, suffices.

Definition. A space (M,d, d0), where d0 is a pseudometric continuous with
respect to the metric d, is (d, d0)-complete if there are functions δj(x0, . . . , xj) :
M j+1 → (0,∞) such that every d-Cauchy sequence (xj)

∞
j=0 converges provided

that
d0(xj , xj+1) ≤ δj(x0, . . . , xj) for each j = 0, 1, . . . .

The second important point is that the function f(γ) := |γ−1(E)| that
we wish to “minimise” is Baire-1 in the metric d0 (in fact it is upper semi-
continuous). We observe that this implies a “conditional lower semi-continuity,”
which is exactly the property we will need in our variational principle.

Definition. Suppose that (M,d) is a metric space and d0 a continuous pseu-
dometric on M . We say that a function f : M → R is (d, d0)-lower semi-
continuous if there are functions δj(x0, . . . , xj) : M j+1 → (0,∞) such that

f(x) ≤ lim inf
j→∞

f(xj)

whenever xj ∈M d-converge to x and

d0(xj , xj+1) ≤ δj(x0, . . . , xj) for each j = 0, 1, . . . .
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We use the smoothness assumption on X to define suitable perturbation
functions (similar to length) and are ready to deduce the statement of Theo-
rem 12 from a variational principle.

A variational principle

Let (M,d) be a metric space and Fj : M × M → [0,∞] be d-lower semi-
continuous in the second variable and such that Fj(x, x) = 0 for all x ∈ M
and, for some rj ց 0,

inf
d(x,y)>rj

Fj(x, y) > 0

Suppose further that d0 is a continuous pseudometric on M , M is (d, d0)-
complete and f : M → R is (d, d0)-lower semi-continuous function and bounded
from below.

Then, given any x0 ∈ M and any sequence of positive numbers (εj)
∞
j=0

such that f(x0) ≤ ε0 + infx∈M f(x), one may find a sequence (xj)
∞
j=1 in M

converging in the metric d to some x∞ ∈ M and a d0 continuous function
φ : M → R such that the function

h(x) := f(x) + φ(x) +
∑∞

j=0 Fj(xj , x)

attains its minimum on M at x = x∞.

What about full Fréchet differentiability?

It seems reasonable to conjecture that the statement of Corollary 13 holds with
full Fréchet differentiability instead of ε-Fréchet differentiability. We can how-
ever prove it only when n ≤ 2. For n = 1 it is the mean value inequality which
we have already mentioned and for n = 2 it is the following stronger version
of Theorem 7. This Theorem together with Example 8 explain the enormous
difference between the size of sets of common points of differentiability of two
and three Lipschitz functions.

Theorem 14. Let X be a separable Banach space with

ρ̄X(t) = o(t2 log(1/t)) as t→ 0.

Then for any Lipschitz f, g : X → R, u, v ∈ X and ε > 0 and for any y ∈ X
at which both f, g are Gâteaux differentiable there is x ∈ X at which both f, g
are Fréchet differentiable and

f ′(x;u) + g′(x; v) > f ′(y;u) + g′(y; v) − ε
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The proof of this result is rather involved and we will not try to explain
it here. To a certain extent it follows the almost Fréchet differentiability
arguments without the simplifications achieved by the use of the σ-porous
sets and the variational principle.

Nevertheless, a (non-trivial) special case of this theorem when the functions
f , g are everywhere Gâteaux differentiable, follows naturally from the varia-
tional principle. We explain it in the case of one function on a Hilbert space.
Observe that, if f is (continuous and) everywhere Gâteaux differentiable then
the function (x, u) → f ′(x, u) is (d, d0)-continuous on X×X , where d is given,
say, by the maximum norm in X×X and d0 measures just the distance of the
first projections. Hence our variational principle provides us with a suitable
perturbation of f that attains its maximum and a variant of the “running
around construction” shows that f is Fréchet differentiable at any point at
which this maximum is attained.

Further open problems

Problem 4. Is there a real-valued Lipschitz function on a separable Hilbert
space (or at least on some Banach space with separable dual) whose set of
points of Gâteaux differentiability is σ-porous?

Problem 5. Can an infinite dimensional separable Hilbert space (or just some
Banach space with separable dual) be decomposed as a union of a σ-porous set

and an Ã or Ãr null set?

Problem 6. Are porous subsets of R
n+1 Γn-null (n ≥ 3)?

Problem 7. Is every set belonging to some Ã(u, ε) necessarily Ã-null?

Problem 8. In R
n, n ≥ 3, do Ã null sets coincide with Lebesgue null sets?

Problems 7 and 8 are open also for Ãr null sets. This is hardly surprising,
since we do not know whether these classes are different or not.

Problem 9. Do Ã and Ãr null sets coincide?

There is, however, one difference between what we know about Ã and Ãr

null sets. To explain it, recall that already the very first Gâteaux differentia-
bility results were proved for more general target spaces, namely those Banach
spaces that have the Radon-Nikodým Property. (See [2].) Similarly Theorem 2

holds, with Ã-null sets, also for maps into such Banach spaces. However, the
argument replacing Ã with Ãr uses that the functions in question are real
valued, thus leaving the following problem open.
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Problem 10. Is every Lipschitz map of a separable Banach space to a Ba-
nach space with the Radon-Nikodým property Gâteaux differentiable Ãr almost
everywhere?
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[17] D. Preiss, J. Tǐser, Two unexpected examples concerning differen-
tiability of Lipschitz functions on Banach spaces, GAFA Israel Seminar
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