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Abstract

The inequality µ ≥ ν between two finite measures µ and ν on a
metric space X is deduced from the inequality µB ≥ νB for balls B
with radius less than a given constant and from some restrictions on
the support of ν.

1. Introduction.

For the purpose of this paper, the Positivity Principle will mean the following
statement:

If µ is a bounded signed measure on a metric space X for which there
is r > 0 such that µB ≥ 0 for every ball B with the radius less than r,
then µ is a non-negative measure.

This may be equivalently stated using instead of one signed measure a pair
of finite measures (by measure we always mean a non-negative measure, if
we want to allow also negative values, we use the term signed measure): For
such a pair µ and ν the inequality νB ≤ µB for all “small” balls should imply
that ν ≤ µ. In [6] it was proved that the validity of the Positivity Principle
for all finite Borel measures in a separable Hilbert space H is equivalent to
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dim H < +∞. It follows that, in order for statements like the Positivity
Principle to hold in infinitely dimensional spaces, additional assumptions
either on the space or on the measures involved are needed.

The main result of this note (Theorem 7) gives a new simple criterion
for the validity of such restricted Positivity Principle based on the notion of
“essential support” which may well turn out to be of independent interest,
in particular because for Gaussian measures it consists precisely from the
points belonging to the reproducing kernel Hilbert space (as may be easily
seen from the deduction of the third application of our theorem).

Several seemingly quite different results concerning Positivity Principles
which appeared during the last two decades are now covered by our main
theorem. The first such results were discovered by J.P.R. Christensen and
extended by M. Studený. To describe them, we need the notion of (almost)
uniformly distributed measures.

A locally finite Borel measure µ on a metric space X is called uniformly
distributed if µB(x, r) = µB(y, r) > 0 for all x, y ∈ X and r > 0, where
B(x, r) denotes an open ball with the center x and radius r. If there is a
function h : (0, +∞) −→ (0, +∞) and a constant c ∈ (0, 1) such that

ch(r) ≤ µB(x, r) ≤ h(r)

for all x ∈ X and r > 0 we say that µ is almost uniformly distributed.

Theorem 1. (Christensen, [3]) Let X be a metric space on which there exists
a finite uniformly distributed measure. Then the Positivity Principle holds
true in X.

A generalization for almost uniformly distributed measures is due to Studený.

Theorem 2. (Studený, [8]) Let X be a metric space with a finite almost
uniformly distributed measure. Then the Positivity Principle holds true in X.

The next result for Hilbert spaces seems to be of a completely different nature.
It imposes a very special approximation condition upon one of the measures.

Theorem 3. (Preiss, Tǐser, [7]) Let H be a separable Hilbert space and let
(Hk) be a sequence of its finite dimensional subspaces. Assume that ν is a
finite Borel measure such that

dist(x, Hk) = o

(
1√

dim Hk

)
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for ν-a.e. x ∈ H. If µ is a finite Borel measure and r0 > 0 such that
µB(x, r) ≥ νB(x, r) for all x ∈ H and r0 ≥ r > 0, then µ ≥ ν.

The last result we want to mention is due to U. Dinger. It restricts
the support of one of the measures in, it appears, a completely different way.
(Less importantly, our result also improves its statement to the full Positivity
Principle. As it stands, it gives what could be called a “Zero Principle”, which
is implied by, but does not imply, the Positivity Principle.)

Theorem 4. (Dinger, [5]) Let X be a separable Banach space and let the
finite measure ν have the support in a reproducing kernel Hγ for some Gaus-
sian measure γ. If r0 > 0 and µ is a finite measure with µB(x, r) = νB(x, r)
for all x ∈ X and 0 < r < r0, then µ = ν.

2. Main Theorem.

We start with the general form of our result.

Theorem 5. Let ν be a finite Borel measure on a metric space X and let γn

be a sequence of σ-finite Borel measures on X and rn a sequence of positive
numbers tending to zero such that the numbers

hn = sup{γnB(x, rn); x ∈ X}

are positive and finite and

lim inf
n→∞

γnB(x, rn)

hn

> 0

for ν almost all x ∈ X. If µ is a finite measure with µB(x, rn) ≥ νB(x, rn)
for all x ∈ X and all n, then µ ≥ ν.

Proof. Consider the Jordan decomposition of the bounded signed measure
µ− ν into positive and negative parts,

µ− ν = u+ − u−.

Then u+ and u− are finite non-negative mutually singular measures. Also,
since (µ− ν)B(x, rn) ≥ 0, then

u+B(x, rn) ≥ u−B(x, rn) (1)
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for all x ∈ X and r0 ≥ r > 0. The proof will be completed if we show that
u− is identically zero. For that, it is sufficient to prove that u− is absolutely
continuous with respect to u+.

Let

Θ(x) = lim inf
n→∞

γnB(x, rn)

hn

.

Obviously, 0 ≤ Θ ≤ 1 and, by the assumption, Θ(x) > 0 for ν-a.e. x ∈ X.
Since u− ≤ ν, we infer that Θ(x) > 0 for u−-a.e. x ∈ X as well.

We denote by χn the characteristic function of the set

Kn = {x ∈ X ; 0 < Θ(x)hn < 2γnB(x, rn)},

and infer from the definition of Θ that the sequence χn converges to the
characteristic function of the set {x; Θ(x) > 0}. Thus

lim
n→∞

χnΘ = Θ. (2)

Let ϕ : X −→ [0, +∞) be a fixed bounded continuous function and let

ϕn(x) =


1

γnB(x, rn)

∫
B(x,rn)

ϕ(y) dγn(y) if γnB(x, rn) > 0

ϕ(x) otherwise.

The continuity of ϕ implies that

lim
n→∞

ϕn = ϕ. (3)

We note that the Borel measurability of Θ, Kn, χn and ϕn follows im-
mediately from the lower semi-continuity of the functions x 7→ γnB(x, rn).
Using Fubini’s Theorem, the inequality

Θ(x)

γnB(x, rn)
≤ 2

hn

for x ∈ Kn,

which follows from the definition of the set Kn, and the inequalities (1) and
hn ≥ γnB(x, rn) for x ∈ X, we estimate that
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∫
ϕnχnΘ du− =

∫
ϕ(y)

∫
B(y,rn)∩Kn

Θ(x)

γnB(x, rn)
du−(x) dγn(y)

≤
∫

ϕ(y)

∫
B(y,rn)∩Kn

2

hn

du−(x) dγn(y)

≤ 2

hn

∫
ϕ(y) u−B(y, rn) dγn(y)

≤ 2

hn

∫
ϕ(y) u+B(y, rn) dγn(y)

= 2

∫
γnB(x, rn)

hn

ϕn(x) du+(x)

≤ 2

∫
ϕn(x) du+(x).

Since limn→∞ ϕn = ϕ according to (3) and limn→∞ ϕnχnΘ = ϕΘ by
combining (3) and (2), and since all the functions involved are uniformly
bounded, we conclude from Lebesgue Theorem that∫

ϕΘ du− ≤ 2

∫
ϕ du+.

This holds true for any bounded non-negative continuous function ϕ, so

Θu− ≤ 2u+.

Since Θ is a u− almost everywhere positive function, we see that u− is abso-
lutely continuous with respect to u+, which finishes the proof.

An easy trick provides us with the following generalization. Its main
corollary is the relaxation of the requirement that the measures in Theorem 5
be finite.

Theorem 6. Let ν be a locally finite σ-finite Borel measure on a metric
space X and let γn,i be a family of σ-finite Borel measures on X and rn,i

(n, i = 1, 2, . . . ) a family of positive numbers such that limn→∞ rn,i = 0 for
each i, the numbers

hn,i = sup{γn,iB(x, rn,i); x ∈ X}
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are positive and finite, and the sets

Ei = {x ∈ X; lim inf
n→∞

γn,iB(x, rn,i)

hn,i

> 0}

cover ν almost all of X. If µ is a locally finite σ-finite Borel measure with
µB(x, rn,i) ≥ νB(x, rn,i) for all x ∈ Ei, then µ ≥ ν.

Proof. If µ and ν are finite, we use, for each i = 1, 2, . . . , Theorem 5 with ν
replaced by the restriction νi of ν to Ei to infer that µ ≥ νi. Hence for every
Borel measurable set E,

µ(E) =
∑

i

µ(E ∩ (Ei \
⋃
j<i

Ej)) ≥
∑

i

νi(E ∩ (Ei \
⋃
j<i

Ej)) = ν(E).

If µ and ν are locally finite and σ-finite, there is a non-decreasing sequence
of open sets Gk of µ + ν finite measure covering µ + ν almost all of X. For
every k and every m we observe that the restrictions

νk,m = ν {x ∈ Gk; dist(x, X \Gk) > 1/m} and µk = µ Gk

verify the assumptions of the already proved finite case of the theorem. Hence
µk ≥ νk,m, and the limit as m → ∞ gives that µ Gk ≥ ν Gk for each k.
Taking the limit as k →∞ finishes the proof.

It is useful to formulate these results as saying that the Positivity Principle
is verified once the measure ν is supported by a certain set. To this end we
introduce the following definition.

Definition 1. Let Γ = (γn) be a sequence of σ-finite Borel measures on a
metric space X. We put

hn(r) = sup{γnB(x, r); x ∈ X}.

The set

Ess (Γ) = {x ∈ X; lim inf
r→0

lim inf
n→∞

γnB(x, r)

hn(r)
> 0}

is called the essential support of Γ.
If γn = γ for each n, we speak about the essential support of γ and write

Ess (γ) instead of Ess (Γ).
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In this definition we may encounter expressions 0
0

and ∞
∞ which are both let

to be zero. This means that in order for x to belong to Ess (Γ) it is necessary
that for sufficiently small r > 0 one has 0 < γnB(x, r) ≤ hn(r) < ∞ if
n > nr.

We are now ready for the main result.

Theorem 7. Let ν be a finite Borel measure on a metric space X and let
Γ = (γn) be a sequence of σ-finite Borel measures such that Ess (Γ) covers ν
almost all of X. If r0 > 0 and µ is a finite measure with µB(x, r) ≥ νB(x, r)
for all x ∈ X and r0 ≥ r > 0, then µ ≥ ν.

Proof. We fix a sequence (rk)
∞
k=1 such that r0 ≥ r1 > r2 > . . . and lim rk =

0, and we put

Θk(x) = lim inf
n→∞

γnB(x, rk)

hn(rk)
and Θ(x) = lim inf

k→∞
Θk(x)

for x ∈ X; our conventions imply that Θ(x) > 0 for x ∈ Ess (Γ). Since the
functions x 7→ γnB(x, r) are lower semi-continuous, Θ is Borel measurable.
Obviously, 0 ≤ Θ ≤ 1, and, by the assumption, Θ(x) > 0 for ν-a.e. x ∈ X.

Since
1 ≥ (Θ(x)−Θk(x))+ → 0 as k →∞

(where c+ = max{c, 0}), the Lebesgue Theorem provides us with a sequence
kj such that ∫

(Θ(x)−Θkj
(x))+dν(x) < 2−j−1.

Similarly, since

1 ≥
(

Θkj
(x)−

γnB(x, rkj
)

hn(rkj
)

)
+

→ 0 as n →∞,

there are nj such that∫ (
Θkj

(x)−
γnj

B(x, rkj
)

hnj
(rkj

)

)
+

dν(x) < 2−j−1.

Thus ∫ (
Θ(x)−

γnj
B(x, rkj

)

hnj
(rkj

)

)
+

dν(x) < 2−j,
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and Borel-Cantelli Lemma implies that

lim inf
j→∞

γnj
B(x, rkj

)

hnj
(rkj

)
≥ Θ(x) > 0

for ν a.e. x. So the assumptions of Theorem 5 are verified, and the statement
follows by its application.

Using Theorem 6 instead of Theorem 5, or repeating the same trick as in
the proof of Theorem 6, we immediately get

Theorem 8. Let ν be a locally finite σ-finite measure on a metric space X
and let (Γi) be a countable family of the sequences Γi = (γ

(i)
n ) of σ-finite

measures such that the union
⋃

i Ess (Γi) covers ν almost all of X. If r0 > 0
and µ is a locally finite σ-finite measure on X such that µB(x, r) ≥ νB(x, r)
for all x ∈ X and r0 ≥ r > 0, then µ ≥ ν.

Remark. Essential support may be defined, instead for sequences, for more
general nets of measures. The proofs of Theorems 7 and 8 remain valid as
long as the nets are of countable type.

3. Special cases.

1. Let X be a metric space with a σ-finite uniformly distributed mea-
sure γ. Since clearly Ess (γ) = X, Theorem 7 gives the result of Christensen
(Theorem 1 above). The same choice works also in case of almost uniformly
distributed measures and Theorem 2 follows as well.

2. Let H be a separable Hilbert space and let (Hk) be an increasing
sequence of finite dimensional subspaces, nk = dim Hk. We put γk = Lnk

Hk

and Γ = (γk). Let x ∈ H and r > 0. An easy calculation reveals that

γkB(x, r) = Lnk
B(0, 1)

(
r2 − dist2(x, Hk)

)nk/2

+
.

So hk(r) = Lnk
B(0, 1)rnk and the assumption in Theorem 3 implies that

lim inf
r→0

lim inf
k→∞

γkB(x, r)

hk(r)
= 1

for ν-a.e. x ∈ H. Hence Theorem 7 applies.
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3. Let X be a separable Banach space and let a measure ν have the
support in the reproducing kernel Hγ of some (centered) Gaussian measure γ.
The results of C. Borell [1] say that

h(r) = sup{γB(x, r); x ∈ X} = γB(0, r)

and [2] that

lim
r→0

γB(x, r)

γB(0, r)
= e−‖x‖γ ,

where the norm ‖.‖γ arises from the covariance operator of γ. For us, it is
only important to know that

Hγ = {x ∈ X ; ‖x‖γ < +∞}.

Hence, if the support of ν is contained in Hγ = Ess (γ), then Theorem 7
implies that µ ≥ ν provided µB ≥ νB for all balls B of small radius. If we
moreover assume the equality µB = νB for all small balls, then spt µ = spt ν
and the requirement for spt ν is verified also for spt µ. It follows that we can
obtain µ ≤ ν as well, and consequently µ = ν. This is exactly the content of
Theorem 4.

4. Theorems 1 and 2 were particular cases of the situation when the
Positivity Principle holds because there is a measure whose essential support
is the whole space. The existence of such a measure imposes strong conditions
upon the space. Indeed, we have

Observation 1. If γ measures a complete space X and Ess (γ) = X, then
X contains a compact set with non-empty interior.

Proof. The sets

Ek = {x ∈ X;
γB(x, r)

h(r)
≥ 1

k
for 0 < r <

1

k
}

are closed and cover X. Hence by Baire Category Theorem one of them, say
Em, has an interior point, say z. Let 0 < s < 1

2m
be such that B(z, 2s) ⊂ Em.

If the closed ball B of centre z and radius s were not compact, we would be
able to find 0 < δ < s and an infinite set S ⊂ B such that dist(x, y) > 2δ for
any pair x, y of different points of S. But then

γB(z, 2s) ≥
∑
x∈S

γB(z, δ) ≥
∑
x∈S

h(δ)

m
= ∞,

which contradicts the definition of Em.
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In particular, no infinitely dimensional Banach space can be the essential
support of a single measure. However, our next result shows that it can be
the essential support of a sequence of measures. (Of course, because of the
result of [6] mentioned in the introduction, we know that this is not true
for all Banach spaces. Indeed, the Positivity Principle does not hold in an
infinite dimensional separable Hilbert space H, so Theorem 7 implies that H
cannot be the essential support of any sequence of measures.)

Theorem 9. The space c1 of all convergent sequences is the essential support
of a sequence of measures. In particular, the Positivity Principle holds true
in c1.

Proof. We put

Mn = {(xk) : xk = xk+1 for all k ≥ n}.

Since dim Mn = n we may define γn = Ln Mn, and finally, Γ = (γn).
Let x ∈ c1 and r > 0. Let ε > 0 and let n0 be such that

|xn − x∞| ≤ ε for all n ≥ n0,

where x∞ = lim xn. If n ≥ n0, then

B(x, r)∩Mn ⊃ {y ∈ Mn ; |yk−xk| ≤ r, 1 ≤ k ≤ n−1, and |yn−x∞| ≤ r−ε}.

Hence
γnB(x, r) = Ln(B(x, r) ∩Mn) ≥ 2n rn−1(r − ε).

It follows that

lim inf
n→∞

γnB(x, r)

hn(r)
= lim inf

n→∞

γnB(x, r)

γnB(0, r)

≥ lim inf
n→∞

2n rn−1(r − ε)

2n rn
= 1− ε

r
.

This is true for all ε > 0, so we obtain

lim inf
n→∞

γnB(x, r)

γnB(0, r)
= 1

for all x ∈ c1. Consequently, Ess (Γ) = c1.
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Another example of a Banach space which is the essential support of a
sequence of measures is given by the space c0 of sequences converging to zero.
The proof may be obtained by replacing in the above argument the sets Mn

by
Mn = {(xk) : xk = 0 for all k > n}

and observing that for any x ∈ c0 and r > 0 one has γnB(x, r) = 2nrn if n
is large enough. (However, not every subset of c1 is the essential support of
a sequence of measures, indeed, not every subset of c1 verifies the Positivity
Principle. See [8] for a modification of Davies’s [4] construction of a compact
metric space admitting different Borel probability measures agreeing on all
balls which can be embedded into c0.)

5. Finally, we show how our result gives a natural generalization of Theo-
rem 3 to all Banach spaces. Of course, we pay for the generality by stronger
assumptions on the support of the measure.

Corollary 1. Let X be a separable Banach space and (Xk) a sequence of its
finite dimensional subspaces. Let ν be a finite measure such that

dist(x, Xk) = o

(
1

dim Xk

)
for ν-a.e. x ∈ X. If r0 > 0 and µ is a finite measure with µB ≥ νB for all
x ∈ X and r0 ≥ r > 0, then µ ≥ ν.

Proof. We define
γk = Lnk

Xk,

where nk = dim Xk. Let x ∈ X and r > 0. We denote by xk the closest point
from Xk to the point x, dist(x, Xk) = ‖x − xk‖. Then a simple geometrical
observation reveals that

γkB(x, r) = Lnk
(B(x, r) ∩Xk) ≥ Lnk

B (xk, r − dist(x, Xk)))

= Lnk
B(0, 1) (r − dist(x, Xk))

dim Xk .

Hence

lim inf
k→∞

γkB(x, r)

hk(r)
= lim inf

k→∞

γkB(x, r)

γkB(0, r)
≥ lim

k→∞

(
1− dist(x, Xk)

r

)dim Xk

= 1

for ν-a.e. x ∈ X and Theorem 7 applies.

11



References

[1] C. Borell, Convex measures on locally convex space, Arkiv Mat.
12 (1974), 239–252.

[2] C. Borell, A note on Gauss measures which agree on small balls, Ann.
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