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Abstract

It is shown that the statement of Vitali Covering theorem does
not hold for a certain class of measures in a Hilbert space. This class
contains all infinite dimensional Gaussian measures.

1. Introduction

We start with recalling the statement of the classical covering theorem due
to G. Vitali, [9].

Theorem. Let A ⊂ Rn be a set. Assume that for every x ∈ A there is a
sequence (B[x, rk(x)])k of closed balls centred at x and radii rk(x) such that
limk→∞ rk(x) = 0. Then there is an at most countable family of disjoint balls,
{B[xi, rki

(xi)] | i ∈ N}, such that

Ln

(
A \

⋃
i∈N

B[xi, rki
(xi)]

)
= 0.

The balls in the original paper were considered with respect to the norm ‖.‖∞.
In fact, the statement of the Theorem above holds true for balls in any
equivalent norm in Rn.

Since the time of Vitali there appeared many generalizations of the state-
ment in various directions. To mention at least one of them, now already
classical, we have to point out the version based on the Besicovitch Covering
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theorem. It extends the statement from Lebesgue measure to any σ-finite
measure on Rn, see e.g. de Guzmán [1].

Our aim is to study what happens if we replace the n-dimensional Eu-
clidean space Rn by an infinite dimensional Hilbert space. The first result of
this type is due to D. Preiss, [4]. He gave an example of a Gaussian measure
on a separable Hilbert space for which the covering theorem fails to hold.

One of the most important consequences of Vitali Covering theorem is
the so-called Differentiation theorem. The original version goes back to H.
Lebesgue. Employing the above mentioned generalization of the covering
theorem one has the following form of the Differentiation theorem. Here,
and also in the sequel, B[x, r] denotes the closed ball with the center x and
radius r > 0.

Differentiation Theorem. 1 Let µ be a locally finite measure on Rn and
let f ∈ L1

loc(µ). Then

(1) lim
r→0

1

µB[x, r]

∫
B[x,r]

f dµ = f(x) µ− a.e.

The negative result of D. Preiss [4] was later strengthen in [5] by con-
structing a bounded function and a Gaussian measure on a Hilbert space
such that (1) does not hold. Moreover, in [6] the same author obtained a
Gaussian measure γ together with the integrable function f ∈ L1(γ) such
that the means of f over the balls in (1) tend to infinity uniformly with
respect to x.

On the other hand, J. Tǐser [8] has shown the validity of (1) for some class
of Gaussian measures on a Hilbert space and for all Lp functions, 1 < p < ∞.
This result could indicate that there is a chance for having the Vitali Covering
theorem at least for some infinite dimensional Gaussian measures. However,
Theorem 1 below makes clear that it is not the case, and that the Preiss’
example [4] was not accidental from this point of view.

Before stating Theorem 1 we recall the concept of Vitali system.

Definition. Let A ⊂ X be a subset of a metric space X. A family

V ⊂ {B[x, r] | x ∈ A, r > 0}

is called the Vitali system on A if for every x ∈ A and for every ε > 0 the
system V contains a ball B[x, r] with r ≤ ε.
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Theorem 1. Let H be a separable Hilbert space and let γ be a Gaussian
measure with dim sptγ = ∞. Then for every ε > 0 there exists a Vitali
system V on sptγ such that any disjoint subfamily S ⊂ V satisfies

γ
(⋃

S
)
≤ ε, i.e. γ

(
sptγ \

⋃
S

)
≥ 1− ε.

The Theorem 1 is an easy consequence of the following Proposition 1,
which is formulated for more general measures than the Gaussian ones. We
make some comments on the other consequences of the Proposition 1 at the
end of this section. First, however, we shall introduce some notions and
notations.

Symbol sptµ will denote the support of a measure µ. The projection µU

of the measure µ onto a closed subspace U of the Hilbert space H is defined
by the formula

µUA = µ π−1
U (A),

where πU : H → U denotes the projection and A ⊂ U is any Borel set in U .
If U ⊂ H is a finite dimensional subspace, then we shall denote by LU the
corresponding dim U - dimensional Lebesgue measure.

We shall also mention some basic facts concerning Gaussian measures.

Definition. A probability measure ν on the real line R is called a Gaussian
measure, if either ν is the Dirac measure supported at 0, or it has the Radon-
Nikodým derivative with respect to the Lebesgue measure of the form

dν

dL1

=
1√
2πσ

exp
(
− x2

2σ2

)
for some σ > 0. A Borel probability γ on a separable Hilbert space H is called
a Gaussian measure, if every projection of γ onto one-dimensional subspace
is a Gaussian measure.

We consider the Dirac measure to be a Gaussian measure only for conve-
nience. It enables to include among the Gaussian measures also the measures
which are supported by a proper subspace of the Hilbert space H.

Let γ be a Gaussian measure on H. The covariance operator Sγ : H → H
is defined by

〈Sγx, y〉 =

∫
H

〈x, h〉 〈y, h〉 dγ(h), x, y ∈ H.
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The operator Sγ is always non-negative (〈Sγx, x〉 ≥ 0), self-adjoint and nu-
clear, see e.g. [3]. If sptγ = H, the covariance operator is even positive
definite. In that case the eigenvectors of Sγ form an orthonormal basis (en)
of H with the following nice property: If γn is the projection of γ onto the
line spanned by en, then

(2) γ =
∏
n

γn.

Such representation of γ as a countable product will be useful.

Definition. Let r > 0. The symbol B(r) denotes the set of all disjoint
families of closed balls in H of radius r > 0,

B(r) = {B | B is a disjoint family of balls of radius r}.

Proposition 1. Let H be a separable Hilbert space and let µ be a finite
Borel measure on H with the following property: For every n ∈ N there is a
finite dimensional subspace U ⊂ H such that

(i) dim U ≥ n,

(ii) µU is absolutely continuous with respect to the Lebesgue measure LU

on U ,

(iii) µ ≤ µU × µU⊥.

Then
lim
r→0

sup
{

µ
⋃

B
∣∣∣ B ∈ B(r)

}
= 0.

Proof of Theorem 1. Without loss of generality we may obviously as-
sume that sptγ = H. If we recall the representation (2) of a Gaussian
measure as a countable product of one-dimensional Gaussian measures, then
we see that the conditions (i) – (iii) of Proposition are satisfied. Indeed,
let (en) be the orthonormal basis of H consisting of the eigenvectors of the
covariance operator Sγ. Then for any n ∈ N we put U = span{e1, . . . , en}.
The conditions (i) and (ii) are obviously true and in the condition (iii) we
even obtain equality.

Let ε > 0 be given. By Proposition 1, there is a decreasing sequence of
numbers rk ↘ 0 such that

(3) sup
{

γ
⋃

B | B ∈ B(rk)
}
≤ ε

2k
.
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We define the following Vitali system

V = {B[x, rk] | x ∈ H, k ∈ N}.

Let S ⊂ V be any disjoint subfamily. Then

S =
⋃
k∈N

Sk, Sk = {B ∈ S | radius (B) = rk}.

Now, by using (3),

γ
⋃
S =

∞∑
k=1

γ
⋃
Sk ≤

∞∑
k=1

ε

2k
= ε.

�

Remark. Note that the finite dimensional subspaces U ⊂ H from the
Proposition 1 need not be nested. Also, if we choose for any n ∈ N the
corresponding subspace Un with the properties (i)–(iii), then the linear span
of {Un | n ∈ N} need not be dense in H. Hence the conclusion of Propo-
sition 1, and consequently non-validity of Vitali Covering theorem can be
obtained e.g. for the following type of measures: Let

H = H0 ⊕H⊥
0

be an orthogonal decomposition of H such that dim H0 = ∞. Let (µn) be any
sequence of absolutely continuous probability measures on R. We consider
the measure

µ =
∏
n

µn

on the space RN. Since H0 ≈ `2 ⊂ RN, by the 0 − 1 law there are only two
possibilities: either µH0 = 0 or µH0 = 1. Assume the latter. In that case for
arbitrary finite measure ν on H⊥

0 the product µ × ν on H is an example of
a measure satisfying the assumptions of Proposition 1.

2. Lemmata

Let U ⊂ H be a closed subspace of the Hilbert space H and let B be a family
of disjoint closed balls in H of radius r, B ∈ B(r). We denote by BU the
family

BU = {U ∩B | B ∈ B}.
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Obviously, BU is a disjoint family of closed balls in U of the radii at most r.
The first Lemma establishes one simple geometrical relationship among

the balls in BU .

Lemma 1. Let U ⊂ H be a subspace of a separable Hilbert space H and let
B ∈ B(1). Let B[u1, r1] and B[u2, r2] be two different balls from BU . If
either 2r1 ≤ r2 or 2r2 ≤ r1 then

‖u1 − u2‖ ≥ r1 + r2 +
1

2
(
√

10− 3) max{r1, r2}.

Proof. Since the balls B[u1, r1] and B[u2, r2] belong to BU , there are two
unit balls B[x1, 1] and B[x2, 1] ∈ B such that

B[u1, r1] = U ∩B[x1, 1] and B[u2, r2] = U ∩B[x2, 1].

Also, since H = U ⊕ U⊥, one has

x1 = u1 + v1 and x2 = u2 + v2,

where u1, u2 ∈ U and v1, v2 ∈ U⊥. By the disjointness of the balls in B it is
readily seen that

(4) ‖u1 − u2‖2 + ‖v1 − v2‖2 = ‖x1 − x2‖2 ≥ 4.

Note that r2
1 = 1− ‖v1‖2 and r2

2 = 1− ‖v2‖2. Using this in the estimate (4)
we obtain

‖u1 − u2‖2 ≥ 2 + r2
1 + r2

2 + ‖v1‖2 + ‖v2‖2 − ‖v1 − v2‖2

= 2 + r2
1 + r2

2 + 2〈v1, v2〉 ≥ 2 + r2
1 + r2

2 − 2‖v1‖ ‖v2‖(5)

= 2 + r2
1 + r2

2 − 2
√

(1− r2
1)(1− r2

2).

Without loss of generality we may assume that r2 ≤ r1. Then the assumption
in Lemma implies that even 2r2 ≤ r1. Let δ = 1

2
(
√

10− 3). In order to prove

‖u1 − u2‖ ≥ r1(1 + δ) + r2

we are going to show that

‖u1 − u2‖2 −
(
r1(1 + δ) + r2

)2 ≥ 0.
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To this end, we use the estimate (5):

‖u1 − u2‖2 −
(
r1(1 + δ) + r2

)2

≥ 2 + r2
1 + r2

2 − 2
√

(1− r2
1)(1− r2

2)−
(
r1(1 + δ) + r2

)2

= 2− 2
√

(1− r2
1)(1− r2

2)− r2
1

(
(1 + δ)2 − 1

)
− 2r1r2(1 + δ)

= g(r1, r2).

We shall have to find the minimal value of the function g(r1, r2) on the set
{(r1, r2) | 0 ≤ 2r2 ≤ r1 ≤ 1}. Some elementary calculation reveals that the
function r2 7→ g(r1, r2) is nonincreasing on [0, 1

2
r1]. One more calculation

gives that the function r1 7→ g(r1,
1
2
r1) is nondecreasing on [0, 1] provided

(1 + δ)2 + (1 + δ)− 1 ≤ 5

4
.

This condition is guaranteed by our choice of δ. Hence the minimal value of
g(r1, r2) is attained at the point (0, 0) and is equal to 0. This completes the
proof. �

The next Lemma estimates the Lebesgue measure of the intersection of
two balls in a special position. The symbol α(n) denotes the volume of the
unit Euclidean ball in Rn,

α(n) = LnB[0, 1] =
πn/2

Γ(1 + n/2)
.

Lemma 2. There is ∆0 > 0 such that for any x ∈ Rn with ‖x‖ = 3 and
0 < δ ≤ ∆0 we have the following estimate

Ln

(
B[0, 1 + δ] ∩B[x, 2(1 + 3δ)]

)
≤ α(n− 1) 10

n+1
2 (1 + δ)n δ

n+1
2 .

Proof. Let x = (3, 0, . . . , 0) ∈ Rn. If we write a point z ∈ Rn in the
form z = (z1, z2) ∈ R × Rn−1, then the following equations determine the
intersection of the spheres {y | ‖y‖ = 1 + δ} ∩ {y | ‖y − x‖ = 2(1 + 3δ)}:

z2
1 + ‖z2‖2 = (1 + δ)2

(z1 − 3)2 + ‖z2‖2 = 4(1 + 3δ)2.
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Eliminating ‖z2‖, we get z1 = 1
6
(9 + (1 + δ)2 − 4(1 + 3δ)2). Then a simple

geometrical observation reveals that

Ln

(
B[0, 1 + δ] ∩B[x, 2(1 + δ)]

)
≤ 2 α(n− 1)

∫ 1+δ

z1

(
(1 + δ)2 − t2

)n−1
2

dt

= 2 α(n− 1) (1 + δ)n

∫ 1

θ

(1− u2)
n−1

2 du,

where θ = z1

(1+δ)
. It is clear that θ > 0 for δ small enough. The explicit

condition for δ is δ ≤
√

330−11
35

. We estimate the function (1− u2)
n−1

2 by its
maximal value on the interval [θ, 1] and we obtain

≤ 2 α(n− 1) (1 + δ)n(1− θ2)
n−1

2 (1− θ)

≤ 2
n+1

2 α(n− 1) (1 + δ)n(1− θ)
n+1

2 .

Since a short calculation gives that 1− θ ≤ 5δ again for small δ (δ ≤ 2/35),
we get the desired estimate. Finally, we finish the proof by putting ∆0 =
min{

√
330−11

35
, 2

35
} = 2

35
. �

We introduce the following notation. Let B = B[x, r] be a ball. The
symbol

(1 + δ)B = B[x, (1 + δ)r]

denotes the enlarged ball with the same center and (1 + δ) times bigger
radius. We shall be using both notations (1 + δ)B and B[x, (1 + δ)r].

The next Lemma contains the key estimate needed in proof of Proposi-
tion 1.

Lemma 3. There is a number δ0 > 0 such that for every r > 0, every family
B ∈ B(r) of disjoint balls of radius r, and every finite dimensional subspace
U ⊂ H the following estimate holds

LU

(
(1 + δ)B0 \

⋃
{(1 + δ)B | B ∈ BU , B 6= B0}

)
≥ 1

2
(1 + δ)dim ULUB0

provided 0 < δ ≤ δ0 and B0 ∈ BU .
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Proof. Let B0 ∈ BU be fixed. Without loss of generality we assume that
B0 has center at the origin, B0 = B[0, r0], say. Let δ > 0 be such that
2δ < 1

2
(
√

10− 3). Then, by Lemma 1, we see that the ball (1 + δ)B0 is
disjoint with⋃

{B[x, (1 + δ)rx] | B[x, rx] ∈ BU , 2rx ≤ r0 or 2r0 ≤ rx}.

Accordingly, the only relevant balls in BU which may interfere with the
(1 + δ)B0 are those of radii comparable to r0. We denote the centres of such
balls by

C =
{

x ∈ U \ {0} | B[x, rx] ∈ BU , (1 + δ)B0 ∩B[x, (1 + δ)rx] 6= ∅
}

.

Note that for the ball B[x, rx] ∈ BU with x ∈ C we have 1
2
r0 ≤ rx ≤ 2r0.

We have to estimate the measure of (1+δ)B0∩
⋃

x∈C B[x, (1+δ)rx]. Since

LU

(
(1 + δ)B0 ∩

⋃
x∈C

B[x, (1 + δ)rx]
)

≤
∑
x∈C

LU

(
(1 + δ)B0 ∩B[x, (1 + δ)rx]

)
,

we shall look closer at each intersection (1 + δ)B0 ∩B[x, (1 + δ)rx].
Let x ∈ C. First note that

r0 + rx ≤ ‖x‖ ≤ (1 + δ)(r0 + rx).

Also, rx ≤ 2r0. We show that

(6) B[x, (1 + δ)rx] ⊂ B
[
3r0

x

‖x‖
, 2(1 + 3δ)r0

]
.

To see this, let y ∈ B[x, (1 + δ)rx], i.e. ‖y − x‖ ≤ (1 + δ)rx. Then∥∥∥y − 3r0
x

‖x‖

∥∥∥ =
∥∥∥y − x + x

(
1− 3r0

‖x‖

)∥∥∥
≤ ‖y − x‖+ ‖x‖

∣∣∣1− 3r0

‖x‖

∣∣∣
≤ (1 + δ)rx +

∣∣‖x‖ − 3r0

∣∣.
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If 3r0 ≥ ‖x‖, then the calculation finishes in

≤ (1 + δ)rx + 3r0 − (r0 + rx) = 2r0 + δrx

≤ 2(1 + δ)r0 < 2(1 + 3δ)r0.

If, on the other hand, 3r0 ≤ ‖x‖, then we proceed as

≤ (1 + δ)rx + (1 + δ)(r0 + rx)− 3r0

≤ 5(1 + δ)r0 − 3r0 < 2(1 + 3δ)r0.

It follows immediately from (6)

(7) (1 + δ)B0 ∩B[x, (1 + δ)rx] ⊂ (1 + δ)B0 ∩B
[
3r0

x

‖x‖
, 2(1 + 3δ)r0

]
.

Now let n = dim U for short. If, moreover, δ ≤ ∆0 from Lemma 2 we
obtain the estimate of the intersection on the right hand side of (7):

Ln

(
(1 + δ)B0 ∩B[x, (1 + δ)rx]

)
≤ Ln

(
B[0, (1 + δ)r0] ∩B

[
3r0

x

‖x‖
, 2(1 + 3δ)r0

])
= rn

0 Ln

(
B[0, (1 + δ)] ∩B

[
3

x

‖x‖
, 2(1 + 3δ)

])
≤ rn

0 α(n− 1) 10
n+1

2 (1 + δ)nδ
n+1

2

=
α(n− 1)

α(n)
10

n+1
2 (1 + δ)n δ

n+1
2 LnB[0, r0].

Hence

(8) Ln

(
(1 + δ)B0 ∩

⋃
x∈C

B[x, (1 + δ)rx]
)

≤ α(n− 1)

α(n)
10

n+1
2 (1 + δ)n δ

n+1
2 LnB[0, r0] · card C.

What is missing now is some control over the cardinality of the set C. For-
tunately, for our purpose we shall not need any hard estimate. The sufficient
upper bound for cardC follows from the comparison of certain volumes. To
this end, recall that for all x ∈ C

‖x‖ ≤ (1 + δ)(rx + r0) and
1

2
r0 ≤ rx ≤ 2r0.
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Hence

(9)
⋃
x∈C

B[x, rx] ⊂ B[0, (5 + 3δ)r0].

Also, B[x, rx] ⊃ B
[
x, 1

2
r0

]
for x ∈ C. Combining it with (9) we get

LnB
[
x,

1

2
r0

]
card C ≤ LnB[0, (5 + 3δ)r0].

Thus

card C ≤ 10n
(
1 +

3

5
δ
)n

≤ 10n(1 + δ)n.

Using this estimate in (8) we have

Ln

(
(1 + δ)B0 ∩

⋃
x∈C

B[x, (1 + δ)rx]
)

≤ α(n− 1)

α(n)
10

n+1
2 (1 + δ)n δ

n+1
2 LnB[0, r0] 10n(1 + δ)n

=
α(n− 1)

α(n)
10

3n+1
2 (1 + δ)2n δ

n+1
2 LnB[0, r0].

Since α(n−1)
α(n)

≈
√

n for n →∞, there is δ1 > 0 such that

α(n− 1)

α(n)
10

3n+1
2 (1 + δ)n δ

n+1
2 ≤ 1

2

for all n ∈ N and 0 < δ ≤ δ1. With this choice of δ one has

(10) Ln

(
(1 + δ)B0 ∩

⋃
x∈C

B[x, (1 + δ)rx]
)
≤ 1

2
(1 + δ)nLnB0.

To complete the proof, we put δ0 = min{∆0, δ1,
1
4
(
√

10 − 3)}. If now 0 <
δ ≤ δ0, then by (10)

Ln

(
(1 + δ)B0 \

⋃
{(1 + δ)B | B ∈ BU , B 6= B0}

)
= Ln(1 + δ)B0 −Ln

(
(1 + δ)B0 ∩

⋃
x∈C

B[x, (1 + δ)rx]
)

≥ (1 + δ)nLnB0 −
1

2
(1 + δ)nLnB0 =

1

2
(1 + δ)nLnB0

and the proof is finished. �
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We associate with every B0 ∈ BU the set

DB0 = (1 + δ)B0 \
(
B0 ∪

⋃
{(1 + δ)B | B ∈ BU , B 6= B0}

)
.

Then, obviously, {DB | B ∈ BU} is the disjoint system of subsets in U . One
consequence of Lemma 3 is the following estimate of the measure of DB.

Corollary 1. Let δ0 > 0 be as in Lemma 3 and U ⊂ H a finite dimensional
subspace. Then

LUDB0 ≥
(1

2
(1 + δ)dim U − 1

)
LUB0

for every 0 < δ ≤ δ0 and every B0 ∈ BU .

Proof. Since

DB0 ∪B0 = (1 + δ)B0 \
⋃
{(1 + δ)B | B ∈ B, B 6= B0},

we obtain by using Lemma 3,

LU(DB0 ∪B0) ≥
1

2
(1 + δ)dim U LUB0.

The sets DB0 and B0 are disjoint, so LU(DB0 ∪B0) = LUDB0 + LUB0, and
the statement follows by rearrangement. �

Now we shall estimate the so-called packing density of the family BU

in U . Since U is a finite dimensional subspace of H, we identify it with Rn,
n = dim U . We put

Qk = [−k, k]n,

the n-dimensional cube in U of the side 2k. With this notation we can state
the following

Lemma 4. There is δ0 > 0 such that for every finite dimensional sub-
space U ∼= Rn and every r > 0

lim sup
k→∞

sup
{Ln(Qk ∩

⋃
BU)

LnQk

∣∣∣ B ∈ B(r)
}
≤ 1

1
2
(1 + δ)n − 1

for any 0 < δ ≤ δ0 and n ∈ N with 1
2
(1 + δ)n − 1 > 0.
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Proof. Let B ∈ B(r) be arbitrary and let δ0 > 0 be as in the Lemma 3.
We denote by R the family of all balls in BU such that (1 + δ) enlargement
of B is still contained in the cube Qk,

R = {B ∈ BU | (1 + δ)B ⊂ Qk}.

Then

Ln(Qk ∩
⋃

BU) =
∑

B∈BU

Ln(Qk ∩B)

≤
∑
B∈R

LnB + Ln

(
Qk \Qk−2r(1+δ)

)
(11)

=
∑
B∈R

LnB + LnQk

[
1−

(
1− 2r(1 + δ)

k

)n]
provided k > 2r(1 + δ). By Corollary 1,

(12) LnB ≤ 1
1
2
(1 + δ)n − 1

LnDB

for n with 1
2
(1 + δ)n − 1 > 0. Also, DB ⊂ Qk for any B ∈ R. Since the sets

DB are disjoint for different B’s we may sum up the estimates in (12) to get

(13)
∑
B∈R

LnB ≤ 1
1
2
(1 + δ)n − 1

∑
B∈R

LnDB ≤
1

1
2
(1 + δ)n − 1

LnQk.

Looking back to (11) one has

Ln(Qk ∩
⋃

BU) ≤ 1
1
2
(1 + δ)n − 1

LnQk + LnQk

[
1−

(
1− 2r(1 + δ)

k

)n]
.

Since the expression on the right hand side does not depend on B the same
estimate holds true also for the supremum over all B ∈ B(r). Hence

lim sup
k→∞

sup
{Ln(Qk ∩

⋃
BU)

LnQk

∣∣∣ B ∈ B(r)
}

≤ 1
1
2
(1 + δ)n − 1

+ lim sup
k→∞

[
1−

(
1− 2r(1 + δ)

k

)n]
=

1
1
2
(1 + δ)n − 1

and the lemma is proved. �
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The straightforward reformulation of the statement of Lemma 4 is the
following:

For any cube Q ⊂ U ∼= Rn

(14) lim sup
r→0

sup
{Ln(Q ∩

⋃
BU)

LnQ

∣∣∣ B ∈ B(r)
}
≤ 1

1
2
(1 + δ)n − 1

for any 0 < δ ≤ δ0 and all n ∈ N sufficiently big.

Till now we have used only Lebesgue measure. The next (easy) lemma
allows to get the estimates for any other measure absolutely continuous with
respect to the Lebesgue measure.

Lemma 5. Let f ∈ L1(Rn) and let (Kr), r > 0 be a system of measurable
sets Kr ⊂ Rn satisfying the following condition:

There is σ > 0 such that for every cube Q ⊂ Rn

lim sup
r→0

Ln(Q ∩Kr)

LnQ
≤ σ.

Then

lim sup
r→0

∫
Kr

f dLn ≤ σ ‖f‖L1 .

Proof. Let ε > 0. There is a continuous function g : Rn −→ R with the
compact support such that ‖f−g‖L1 ≤ ε. Further, by the uniform continuity
of g there is δ > 0 such that

|g(x)− g(y)| ≤ ε

for any x, y ∈ Rn satisfying ‖x− y‖ ≤ δ.
Let Q ⊂ Rn be a cube containing the support of g. We partition the cube

Q into finite family P of subcubes of diameter at most δ and then we choose
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in each P ∈ P a point xP ∈ P , for example the centre. Now∫
Kr

f dLn ≤ ‖f − g‖L1 +

∫
Kr

g dLn ≤ ε +
∑
P∈P

∫
P∩Kr

g dLn

≤ ε +
∑
P∈P

∫
P∩Kr

(g − g(xP )) dLn +
∑
P∈P

g(xP ) Ln(P ∩Kr)

≤ ε + ε
∑
P∈P

Ln(P ∩Kr) +
∑
P∈P

g(xP ) Ln(P ∩Kr)

≤ ε + εLnQ +
∑
P∈P

g(xP ) Ln(P ∩Kr).(15)

By the assumption we can choose r > 0 small enough to guarantee that

Ln(P ∩Kr) ≤ (σ + ε) LnP

for all P ∈ P . Then the last sum in (15) can be estimated by∑
P∈P

g(xP ) Ln(P ∩Kr) ≤ (σ + ε)
∑
P∈P

g(xP ) LnP

≤ (σ + ε)
(∫

Q

g dLn +
∑
P∈P

∫
P

(g(xP )− g) dLn

)
≤ (σ + ε)

(∫
Q

g dLn + εLnQ
)

≤ (σ + ε)
(
‖f − g‖L1 + ‖f‖L1 + εLnQ

)
≤ (σ + ε)

(
ε + ‖f‖L1 + εLnQ

)
Combining this estimate with the (15) we obtain that

lim sup
r→0

∫
Kr

f dLn ≤ ε + εLnQ + (σ + ε)
(
ε + ‖f‖L1 + εLnQ

)
.

Since ε > 0 is arbitrarily small we conclude that

lim sup
r→0

∫
Kr

f dLn ≤ σ‖f‖L1 ,

which completes the proof. �
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Proof of Proposition 1. Let ε > 0 be given. We choose δ ∈ (0, δ0] such
that the conclusion of Lemma 4 holds true. Also, let n ∈ N be large enough
to satisfy

(16)
1

1
2
(1 + δ)n − 1

≤ ε

3
.

By assumption, there is an finite dimensional space U , dim U ≥ n such that
µU is absolutely continuous with respect to the Lebesgue measure LU . We
denote

f =
dµU

dLU

.

For every r > 0 there is a B(r) ∈ B(r) such that

(17) µU

⋃
B

(r)
U ≥ 1

2
sup

{
µU

⋃
BU | B ∈ B(r)

}
.

We put Kr =
⋃

B
(r)
U , r > 0. For this choice of Kr the assumption of Lemma 5

is satisfied: Let Q ⊂ U be a cube. Then by Lemma 4 in the form (14) and
by (16) we have

lim sup
r→0

LU(Q ∩
⋃

B
(r)
U )

LUQ
≤ lim sup

r→0
sup

B∈B(r)

LU(Q ∩
⋃

BU)

LUQ
≤ ε

3
.

So Lemma 5 implies

lim sup
r→0

µU

⋃
B

(r)
U = lim sup

r→0

∫
S

B
(r)
U

f dLU ≤
ε

3
.

In combination with (17) we get

lim sup
r→0

sup
{

µU

⋃
BU | B ∈ B(r)

}
≤ 2ε

3
.

It follows that there is r0 > 0 such that for all 0 < r ≤ r0 we have

(18) sup
{

µU

⋃
BU | B ∈ B(r)

}
≤ ε.

Now we are ready to estimate the measure µ
⋃

B for any B ∈ B(r), and
0 < r ≤ r0. By the condition (iii) in Proposition 1 and (18)

µ
⋃

B ≤ (µU × µU⊥)
⋃

B =

∫
U⊥

µU

(
U ∩

(
x +

⋃
B

))
dµU⊥(x)

≤
∫

U⊥
sup

{
µU

⋃
BU | B ∈ B(r)

}
dµU⊥ ≤

∫
U⊥

ε dµU⊥ = ε.
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Since this is true for all B ∈ B(r) we may conclude

sup
{

µ
⋃

B | B ∈ B(r)
}
≤ ε,

provided 0 < r ≤ r0 and the Proposition 1 is proved. �

It may be of some interest to make the following final remark. Although
the classical version of Vitali Covering theorem fails for e.g. all infinite di-
mensional Gaussian measures there is still a weaker statement of the covering
type which holds true. The validity of Differentiation theorem is in fact equiv-
alent to such weak covering theorem. For details see e.g. Hayes and Pauc [2],
or the deep paper of M. Talagrand [7], where this connection is treated in
considerable generality.

Based on the already mentioned positive differentiation result [8] for some
class G of Gaussian measures we have the following:

Given γ ∈ G, 1 < p < ∞, ε > 0, and Vitali system V on a set A
in a separable Hilbert space, there is a countable subsystem S ⊂ V
such that

(i) γ(A \
⋃
S) = 0,

(ii)
∥∥∥∑

B∈S χB − χS
S

∥∥∥
Lp(γ)

< ε.

The condition (ii) means that instead of disjointness we are only able to make
the overlap of sets in S arbitrarily small in the given Lp norm.
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