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Compression base effect algebras were recently introduced by Gudder [6]. They gen-
eralize sequential effect algebras [7] and compressible effect algebras [5]. The present
paper focuses on atomic compression base effect algebras and the consequences of
atoms being foci (so-called projections) of the compressions in the compression base.
Part of our work generalizes results obtained in atomic sequential effect algebras by
Tkadlec [11]. The notion of projection-atomicity is introduced and studied and several
conditions that force a compression base effect algebra or the set of its projections to
be Boolean are found. Finally, we apply some of these results to sequential effect alge-
bras and strengthen a previously established result concerning a sufficient condition
for them to be Boolean.

I. Introduction

The current framework for discussing the logical foundations of quantum mechanics is the
algebraic structure of an effect algebra, which allows the study of measurements or observ-
ables that may be unsharp (see, e.g., [2]). Gudder and Greechie [7] discussed the notion of a
sequential effect algebra (SEA)—an effect algebra on which a “sequential product” is defined.
This sequential product satisfies a set of physically motivated axioms as it formalizes the case
of sequentially performed measurements. The authors prove that the existence of a sequential
product in an effect algebra is a restrictive condition, far from being met by all effect algebras.

Gudder [5] introduced the notion of a compression on an effect algebra and also of a
compressible effect algebra. Although the important examples of effect algebras proves to be
compressible, examples are also provided of noncompressible effect algebras.

As it turns out, the two notions (sequential effect algebra and compressible effect algebra)
are somehow related, since the sequential product with a sharp element (of a SEA) defines a
compression. Although the restrictions imposed by the existence of a sequential product seem
stronger than those determined by compressibility, neither of the two notions is a generalization
of the other, as an example of a noncompressible SEA shows [5]. However, in a later paper
Gudder [6] introduced a common generalization of both SEA and compressible effect algebras,
namely effect algebras having a compression base.

Tkadlec [11] proved various conditions for an atomic SEA or its set of sharp elements
to be a Boolean algebra. In this paper we generalize some of these conditions to the case of
effect algebras having a compression base, and also present some new ones for this more general
framework. The role of the set of sharp elements of the SEA will be played by the orthomodular
poset of foci (or projections) of the effect algebra’s compression base.

In Sec. II, we recall some of the basic facts about effect algebras and their atoms. Section III
is devoted to an introduction to compressions and their basic properties, as well as compression
bases. As a particular case of compression base effect algebras, we briefly present sequential
effect algebras. Sections IV and V contain results concerning mainly atomic compression base
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effect algebras. Sec. IV we establish some properties of atoms in effect algebras endowed with
a compression base, mainly regarding coexistence and centrality. Then, in Sec. V, we introduce
the notion of projection-atomicity which aims to be an analogue, in the framework of effect
algebras with a compression base, for the property of an effect algebra of having sharp atoms—
used in sequential effect algebras. Consequences of projection-atomicity are studied, some of
which generalize results obtained in [11]. A few conditions for an atomic compression base effect
algebra to be a Boolean algebra are established. Finally, we apply these results to the particular
case of sequential effect algebras and find a sufficient condition for them to be Boolean algebras
that strengthens previous results by Gudder and Greechie [7] and Tkadlec [11].

II. Basics about effect algebras

Definition 2.1 An effect algebra is an algebraic structure (E,⊕,0,1) such that E is a set,
0,1 ∈ E, ⊕ is a partial binary operation on E such that for a, b, c elements of E the following
conditions hold:

(EA1) a⊕ b = b⊕ a if b⊕ a is defined;
(EA2) (a⊕ b)⊕ c = a⊕ (b⊕ c) if a⊕ (b⊕ c) is defined;
(EA3) for every a ∈ E, there is a unique a′ ∈ E such that a⊕ a′ = 1 (orthosupplement);
(EA4) a = 0 whenever a⊕ 1 is defined (zero-unit law).

We usually write E rather than (E,⊕,0,1), for simplicity. A partial ordering is defined
on an effect algebra E by a ≤ b if there is an element c ∈ E such that a⊕ c = b. If the element
c exists, it is uniquely determined by c = (a⊕ b′)′ and it is denoted by b	 a. For a, b ∈ E with
a ≤ b we denote [a, b] = {c ∈ E : a ≤ c ≤ b}. An orthogonality relation is defined by a ⊥ b if
a⊕b exists (i.e., a ≤ b′). It is easy to check that 0 and 1 are the least and the greatest elements
of E, respectively, that a′′ = a, and that a ≤ b implies b′ ≤ a′. Also, a⊕ 0 = a for every a ∈ E
and a cancellation law holds: a⊕ b ≤ a⊕ c implies b ≤ c for every a, b, c ∈ E. (See, e.g., Foulis
and Bennett [2], Dvurečenskij and Pulmannová [1]).

Let us consider the effect algebras E and E′ and the mapping J : E → E′. We denote
Ker(J) = {a ∈ E : J(a) = 0}. We call J additive if a ⊥ b implies J(a) ⊥ J(b) and J(a⊕ b) =
J(a)⊕ J(b). A subset F of the effect algebra E is a sub-effect algebra (denoted sub-EA in the
following) if 0,1 ∈ F and F is closed under operations ⊕ and ′.

Definition 2.2 An element a of an effect algebra (E,⊕,0,1) is called:

• sharp (a ∈ Es) if a ∧ a′ = 0;
• principal if b⊕ c ≤ a whenever b, c ≤ a and b ⊥ c;
• central if a and a′ are principal and for every b ∈ E there are b1, b2 ∈ E such that

b = b1 ⊕ b2 with b1 ≤ a and b2 ≤ a′.

It is well known that central elements are principal and principal elements are sharp. The
reverse implications need not hold.

Definition 2.3 An orthoalgebra is an effect algebra in which every element is sharp. An
orthomodular poset (OMP) is an effect algebra in which every element is principal.

Definition 2.4 Let E be an effect algebra and let us denote by na the sum of n copies of
an element a ∈ E, if it exists. We call E Archimedean if sup{n ∈ N : na is defined} < ∞ for
every nonzero element a ∈ E.

Let us remark that every orthoalgebra is Archimedean since no nonzero element is orthog-
onal to itself.
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Definition 2.5 Let E be an effect algebra. A system (ai)i∈I of elements of E is orthogonal
if

⊕
i∈F ai is defined for every finite set F ⊂ I. A majorant of an orthogonal system (ai)i∈I is

an upper bound of {
⊕

i∈F ai : F ⊂ I is finite}. The sum of an orthogonal system is its least
majorant (if it exists).

An effect algebra E is orthocomplete if every orthogonal system in E has a sum. An effect
algebra E is weakly orthocomplete if every orthogonal system in E has a sum or no minimal
majorant.

Definition 2.6 Let E be an effect algebra. Elements a, b ∈ E coexist (denoted by a ↔ b)
if there are a1, b1, c ∈ E such that a1 ⊕ b1 ⊕ c exists and a = a1 ⊕ c, b = b1 ⊕ c.

Definition 2.7 Let E be an effect algebra. A minimal non-zero element of E is called an
atom. E is atomic if every non-zero element dominates an atom. E is atomistic if every non-zero
element is the supremum of the atoms it dominates. E is determined by atoms if, for different
a, b ∈ E, the sets of atoms dominated by a and b are different.

The relations between these notions are outlined in the following result.

Lemma 2.8 [11, Lemma 2.2] Every atomistic effect algebra is determined by atoms. Every
effect algebra determined by atoms is atomic.

The converse implications do not hold [4, 11].

Proposition 2.9 [11, Corollary 2.6] Every atomic effect algebra in which each atom is
sharp is an orthoalgebra.

III. Compression bases in effect algebras

In this section we will present a few basic facts about compression bases in effect algebras.
For a detailed discussion, examples and more on their properties, the reader is refered to [6, 9].

Definition 3.1 Let E be an effect algebra. An additive map J : E → E is a retraction if
a ≤ J(1) implies J(a) = a, J(1) is then called the focus of J . A retraction is a compression
if J(a) = 0 implies a ≤ J(1)′. Retractions J, I on E are supplementary if Ker(J) = I(E) and
Ker(I) = J(E), I is then called a supplement of J . An element p of E is called a projection if
it is the focus of some retraction on E.

Let us remark that a retraction J is additive, hence it is order preserving. Therefore
J(a) = a implies a ≤ J(1). It is also easy to see that retractions are idempotent, which suggests
they are generalizations of projection mappings (except that the latter are not additive).

Definition 3.2 Let E be an effect algebra. A sub-EA F of E is normal if, for every
a, b, c ∈ E such that a⊕ b⊕ c exists in E and a⊕ b, b⊕ c ∈ F , it follows that b ∈ F .

Definition 3.3 Let E be an effect algebra. A system (Jp)p∈P of compressions on E indexed
by a normal sub-EA P of E is called a compression base for E if the following conditions hold:

(1) Each compression Jp has the focus p.
(2) If p, q, r ∈ P and p⊕ q ⊕ r is defined in E, then Jp⊕r ◦ Jr⊕q = Jr.

Let us remark here the obvious fact that every effect algebra has a trivial compression
base {J0, J1} where J0(a) = 0, J1(a) = a for every a ∈ E.
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If J1 and J2 are compression bases for E, then J1 ∩ J2 is also a compression base for E.
If {Jα} is a chain of compression bases for E then

⋃
α Jα is also a compression base for E.

As a consequence, according to Zorn’s lemma, every effect algebra has a maximal compression
base. If Jp and Jp′ are compressions, they are contained in a maximal compression base.

Let us present a prototypical example of an effect algebra with a compression base. Con-
sider H a Hilbert space and let E(H) be the set of all operators on H that are self-adjoint,
positive and smaller than identity. It is well known (see, e.g., [2]) that E(H) can be organised
as an effect algebra with the partial operation defined by A⊕B = A + B if A + B ∈ E(H), for
all A,B ∈ E(H). The set of sharp elements of this effect algebra is P(H), the set of projection
operators on H. For every P ∈ P(H), let us define JP : E(H) → E(H) by JP (A) = PAP for
every A ∈ E(H). Then (JP )P∈P(H) is a compression base for E(H). Clearly, the focus of each
compression JP is P , therefore the set of projections (in the sense of foci of compressions) of
E(H) is just P(H).

Let us now summarize the properties of compressions that we intend to use in the sequel.
They are direct consequences of the definition and of [5, Lemmas 3.1–3.3].

Lemma 3.4 Let E be an effect algebra, J a compression on E with the focus p and let us
denote p ◦ a = J(a) for every a ∈ E. Then, for every a, b ∈ E: (1) p, p′ are principal and hence
sharp; (2) p ◦ (a⊕ b) = (p ◦a)⊕ (p ◦ b); (3) p ◦a ≤ p ◦ b whenever a ≤ b; (4) p ◦0 = 0, p ◦1 = p;
(5) p ◦ a = a if a ≤ p; (6) p ◦ a ≤ p; p ◦ a = p if and only if p ≤ a; (7) p ◦ a = 0 if and only if
p ⊥ a (a ≤ p′).

For an effect algebra E with a compression base (Jp)p∈P we denote:

• p ◦ a = Jp(a) for every p ∈ P and a ∈ E;
• p | q if p, q ∈ P and p ◦ q = q ◦ p (i.e., Jp(q) = Jq(p));
• C(p) = {a ∈ E : a = Jp(a)⊕ Jp′(a)} for every p ∈ P .

Lemma 3.5 [6, Lemma 3.5] Let (Jp)p∈P be a compression base for the effect algebra E.
Then P is an orthomodular poset and Jp′ is a supplement of Jp for every p ∈ P .

Theorem 3.6 [6, Theorem 3.6] Let E be an effect algebra with a compression base (Jp)p∈P .
For every p, q ∈ P , the following statements are equivalent: (1) p ≤ q; (2) Jq ◦ Jp = Jp;
(3) q ◦ p = p; (4) Jp ◦ Jq = Jp; (5) p ◦ q = p.

Theorem 3.7 [6, see Theorem 4.2] Let E be an effect algebra with a compression base
(Jp)p∈P . For every p, q ∈ P , the following statements are equivalent: (1) p ◦ q = q ◦ p; (2) p
and q coexist; (3) p ∈ C(q).

Let us now briefly present sequential effect algebras which will be regarded here as a par-
ticular case of effect algebras with a compression base. A detailed account regarding sequential
effect algebras can be found in [7].

Definition 3.8 A sequential product on an effect algebra (E,⊕,0,1) is a binary operation
◦ on E such that for every a, b, c ∈ E, the following conditions hold:

(S1) a ◦ (b⊕ c) = (a ◦ b)⊕ (a ◦ c) if b⊕ c exists;
(S2) 1 ◦ a = a;
(S3) if a ◦ b = 0 then a | b (where a | b denotes a ◦ b = b ◦ a);
(S4) if a | b then a | b′ and a ◦ (b ◦ c) = (a ◦ b) ◦ c;
(S5) if c | a, b then c | a ◦ b and c | (a⊕ b) (if a⊕ b exists).

An effect algebra endowed with a sequential product is called a sequential effect algebra.
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The definition of sequential effect algebras was inspired by the so-called standard Hilbert
space effect algebra which is exactly E(H), previously described. More precisely, on E(H) a
sequential product is defined by A ◦B = A1/2BA1/2 for A,B ∈ E(H).

Theorem 3.9 [6, Theorem 3.4] Let E be a sequential effect algebra. For every p ∈ Es, the
mapping Jp : E → E defined by Jp(a) = p ◦ a is a compression with the focus p. The system
(Jp)p∈Es is a maximal compression base for E.

In view of the above theorem, it should be clear that the notation p ◦a = Jp(a) (as well as
p | q for p ◦ q = q ◦ p) introduced for general effect algebras with a compression base is inspired
by the particular case of sequential effect algebras. However, in the general case of an effect
algebra E with a compression base (Jp)p∈P , the (partial) operation ◦ : P ×E → E defined by
p ◦ a = Jp(a) need not be the restriction of a sequential product on E (see [5]).

IV. Atoms and centrality

Proposition 4.1 Let E be an effect algebra. If p is an atom in E that is the focus of a
compression and a ∈ E then p ≤ a or p ≤ a′.

Proof: Since p ◦ a ≤ p and p is an atom, either p ◦ a = 0 or p ◦ a = p. If p ◦ a = 0 then,
according to Lemma 3.4, p ⊥ a, hence p ≤ a′. If p◦a = p, then p◦a = p = p◦1 = p◦ (a⊕a′) =
(p ◦ a) ⊕ (p ◦ a′). Applying the cancellation law, p ◦ a′ = 0, hence, according to Lemma 3.4,
p ⊥ a′ and therefore p ≤ a.

Corollary 4.2 Distinct atoms that are foci of compressions in an effect algebra are orthog-
onal.

Corollary 4.3 Let E be an effect algebra with a compression base (Jp)p∈P . If p, q ∈ P and
p is an atom in E then p | q.

Proof: According to Proposition 4.1, p ≤ q or p ≤ q′. In the first case, according to
Theorem 3.6, p ◦ q = p = q ◦ p, hence p | q. If p ≤ q′, then p ⊥ q and, according to Lemma 3.4,
p ◦ q = 0 = q ◦ p, hence p | q.

Proposition 4.4 Let E be an effect algebra with a compression base (Jp)p∈P and p, q, r ∈ P
such that p ≤ q ◦ r and p | r. Then p ≤ r ◦ q.

Proof: According to Lemma 3.4, p ≤ q. According to Lemma 3.4, Theorem 3.6, the as-
sumption and Lemma 3.4 again, p = p ◦ (q ◦ r) = Jp

(
Jq(r)

)
= Jp(r) = p ◦ r = r ◦ p ≤ r ◦ q.

Proposition 4.5 Let E be an effect algebra with a compression base (Jp)p∈P and p ∈ P be
an atom in E. For every q, r ∈ P , p ≤ q ◦ r if and only if p ≤ r ◦ q.

Proof: This is a straightforward consequence of Corollary 4.3 and Proposition 4.4.

Theorem 4.6 Let E be an effect algebra with a compression base (Jp)p∈P . If E is deter-
mined by atoms and every atom is in P then P is a Boolean algebra.

Proof: Let q, r ∈ P . According to Proposition 4.5, q ◦ r and r ◦ q dominate the same set of
atoms (since all atoms are in P ). Since E is determined by atoms, this means q ◦ r = r ◦ q and
hence, according to Theorem 3.7, q, r coexist. According to Lemma 3.5, P is an OMP. Hence,
P is an OMP with every pair of its elements coexistent and therefore a Boolean algebra (see,
e.g., [8, Theorem 1.3.13]).
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Let us remark that the conclusion of the above theorem cannot be improved to the state-
ment that E is a Boolean algebra. The effect algebra in Example 5.12 satisfies the hypotheses
(it is even atomistic), however it is not a Boolean algebra.

Lemma 4.7 Let E be an effect algebra with a compression base (Jp)p∈P . If p ∈ P is an
atom in E then C(p) = E.

Proof: Let a ∈ E. According to Proposition 4.1, p ≤ a or p ≤ a′.
If p ≤ a (and therefore a′ ≤ p′), then Jp(a) = p and Jp′(a′) = a′ and therefore Jp(a) ⊕

Jp′(a) = p⊕ Jp′(1	 a′) = p⊕ (p′ 	 a′) = p⊕ (a	 p) = a.
If p ≤ a′ (and thus a ≤ p′), then Jp′(a) = a, Jp(a) = 0 and thus Jp(a)⊕ Jp′(a) = a.

Remark 4.8 Let E be an effect algebra with a compression base (Jp)p∈P . The previous
result implies that every atom p ∈ P in E coexists with every element of E . Indeed, for every
a ∈ E = C(p), a = Jp(a)⊕ Jp′(a). Since Jp(a) ≤ p, there is a p1 ∈ E such that p = Jp(a)⊕ p1.
Taking into account that Jp′(a) ≤ p′, it follows that the sum Jp′(a) ⊕ p = Jp′(a) ⊕ Jp(a) ⊕ p1

exists and therefore a and p coexist.

The following result that will be useful in the sequel can be deduced from [6, Lemma 4.1].
However, we will present a different proof for it.

Lemma 4.9 Let E be an effect algebra with a compression base (Jp)p∈P . An element p ∈ P
is a central element of E if and only if C(p) = E.

Proof: If C(p) = E, then a = Jp(a) ⊕ Jp′(a), for every a ∈ E. According to Lemma 3.4,
p, p′ are principal, Jp(a) ≤ p and Jp′(a) ≤ p′, hence p is a central element of E.

Conversely, let us suppose that p is a central element of E. For every a ∈ E there are a1 ≤ p,
a2 ≤ p′ such that a = a1 ⊕ a2. Hence Jp(a) = Jp(a1 ⊕ a2) = Jp(a1)⊕ Jp(a2) = a1 ⊕ 0 = a1 and
similarly Jp′(a) = a2. Thus a = a1 ⊕ a2 = Jp(a)⊕ Jp′(a) and it follows that a ∈ C(p).

Remark 4.10 In particular, the above lemma holds if E is a sequential effect algebra
endowed with the compression base (Jp)p∈Es , Jp(a) = p ◦ a.

Theorem 4.11 Let E be an effect algebra with a compression base (Jp)p∈P . Every p ∈ P
that is an atom in E is central in E.

Proof: Let p ∈ P be an atom in E. According to Lemma 4.7, C(p) = E and, according to
Lemma 4.9, p is central in E.

V. Projection-atomic effect algebras

The following property is intended as a substitute, in the framework of atomic effect
algebras having a compression base, for the property, in an effect algebra, of having all the
atoms sharp.

Definition 5.1 An effect algebra E is projection-atomic if it is atomic and there is a
compression base (Jp)p∈P of E such that P contains all atoms in E.

In view of the above definition, the result of Theorem 4.11 implies that atoms of a
projection-atomic effect algebra are central. The converse also holds, as will be shown in the
next remark.
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Remark 5.2 Pulmannová [9, Example 3.4] proved that for every effect algebra E the
center C̃(E) is a normal sub-EA and (Jp)p∈ eC(E)

with Jp(a) = p ∧ a is a compression base.
Hence, every atomic effect algebra with all atoms central is projection-atomic.

Proposition 5.3 Every projection-atomic effect algebra is an orthoalgebra.

Proof: Let E be a projection-atomic effect algebra. Then E is atomic and, according to
Theorem 4.11, all its atoms are central, hence sharp. According to Proposition 2.9, E is an
orthoalgebra.

The following properties of an effect algebra E will be useful in the sequel:

Definition 5.4 A subset M of an effect algebra E is downward directed if for every a, b ∈ M
there is an element c ∈ M such that c ≤ a, b.

An effect algebra E has the maximality property if [0, a]∩ [0, b] has a maximal element for
every a, b ∈ E.

An effect algebra E is weakly distributive if a ∧ b = a ∧ b′ = 0 implies a = 0 for every
a, b ∈ E.

Remark 5.5 The maximality property generalizes several important properties of effect
algebras, e.g., every chain-finite, orthocomplete or lattice effect algebra has the maximality
property. For details and more properties generalized by the maximality property see [12,
Theorem 4.1] and [13, Theorem 3.1].

Theorem 5.6 [10, Theorem 4.2] Every weakly distributive orthomodular poset with the
maximality property is a Boolean algebra.

Lemma 5.7 Every projection-atomic effect algebra is weakly distributive.

Proof: Let E be a projection-atomic effect algebra and (Jp)p∈P a compression base of E
such that P contains all atoms in E. Suppose that E is not weakly distributive. Then there are
a, b ∈ E such that a 6= 0, a ∧ b = 0 and a ∧ b′ = 0. Since E is projection-atomic, there is an
atom p ∈ P in E such that p ≤ a. Then p � b and p � b′, which contradicts to Proposition 4.1.

Lemma 5.8 The set of upper bounds of a set of atoms in a projection-atomic effect algebra
with the maximality property is downward directed.

Proof: Let E be a projection-atomic effect algebra with a compression base (Jp)p∈P such
that P contains the set of atoms of E, A ⊂ P be a set of atoms, a, b be upper bounds of A.
According to the maximality property, there is a maximal c ≤ a, b. Let us suppose that c is
not an upper bound of A and seek a contradiction. Then there is an atom d ∈ A such that
d � c, hence, according to Proposition 4.1, d ≤ c′ and therefore d′ ≥ c. Since d ≤ a, b and
therefore d′ ≥ a′, b′, c ⊥ a′, b′ and d′ is central (Theorem 4.11) and therefore principal, we
obtain d′ ≥ c ⊕ a′ and d′ ≥ c ⊕ b′. Hence d ≤ (c ⊕ a′)′ = a 	 c and d ≤ (c ⊕ b′)′ = b 	 c and
therefore c⊕ d ≤ a, b—which contradicts the maximality of c.

Lemma 5.9 Every element in a projection-atomic effect algebra is a minimal upper bound
of the set of atoms it dominates. Every projection-atomic effect algebra with the maximality
property is atomistic.

Proof: Let E be a projection-atomic effect algebra, a ∈ E and Aa be the set of atoms
dominated by a. First, let us show that a is a minimal upper bound of Aa. Let us suppose that
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there is an upper bound b < a of Aa and seek a contradiction. Then a	 b 6= 0 and since E is
atomic, there is an atom p ∈ Aa such that p ≤ a	 b and therefore p ≤ b′. Since p ≤ b and E is
an orthoalgebra (Proposition 5.3), we obtain p ≤ b ∧ b′ = 0—a contradiction.

If E has the maximality property then, according to Lemma 5.8, the set of upper bounds
of Aa is downward directed, hence a =

∨
Aa.

Lemma 5.10 Every projection-atomic effect algebra with the maximality property is an
orthomodular poset.

Proof: Let E be a projection-atomic effect algebra with the maximality property, a, b ∈ E
with a ⊥ b and Aa, Ab be the sets of atoms dominated by a and b respectively. According to
Lemma 5.9, E is atomistic and therefore the set of upper bounds of {a, b} is the set of upper
bounds of Aa ∪ Ab. According to Proposition 5.3, E is an orthoalgebra and therefore a ⊕ b
is a minimal upper bound of {a, b} ([2, Theorem 5.1]). According to Lemma 5.8, the set of
upper bounds of Aa ∪Ab is downward directed, hence a⊕ b is the least upper bound of {a, b}.
Hence a⊕ b = a ∨ b for orthogonal a, b ∈ E and therefore E is an orthomodular poset (see [3,
Theorem 2.12]).

Theorem 5.11 Every projection-atomic effect algebra with the maximality property is a
Boolean algebra.

Proof: It follows from Lemma 5.7, Lemma 5.10 and Theorem 5.6.

We can replace the maximality property in Theorem 5.11 by various stronger properties
(see Remark 5.5), e.g., by the orthocompleteness. It cannot be replaced by the weak orthocom-
pleteness, as the following example based on Tkadlec [11, 13] shows.

Example 5.12 Let X1, X2, X3, X4 be infinite and mutually disjoint sets, X =
⋃4

i=1 Xi,

E′ = {∅, X1 ∪X2, X2 ∪X3, X3 ∪X4, X4 ∪X1, X},
E = {(A \ F ) ∪ (F \A) : A ∈ E′ and F ⊂ X is finite}.

For disjoint A,B ∈ E we define A⊕B = A∪B. Then (E,⊕, ∅, X) is an orthomodular poset, the
orthosupplement is the set theoretic complement in X and the partial ordering is the inclusion.
E is atomic and the set of its atoms is

{
{x} : x ∈ X

}
. Let us put

P = {F ⊆ X : F is finite or X \ F is finite}

and for every F ∈ P let us define JF : E → E by JF (A) = F ∩A for every A ∈ E.
It is a straightforward verification that

(
JF

)
F∈P

is a compression base for E and that
P contains all atoms, hence E is projection-atomic. E is weakly orthocomplete, because if
an orthogonal system (Ai)i∈I has a minimal majorant B ∈ E then B =

⋃
i∈I Ai is the sum

of (Ai)i∈I . Since all elements of [∅, X2] are finite, (X1 ∪ X2) ∧ (X2 ∪ X3) does not exist and
therefore E is not a lattice (and hence not a Boolean algebra).

Let us remark that P 6= E—e.g., X1 ∪X2 ∈ E \ P .

Definition 5.13 A compression base (Jp)p∈P on an effect algebra E has the projection
cover property [6] if for every element a ∈ E there exists the least element b ∈ P (the projection
cover of a) with b ≥ a.

Theorem 5.14 Let E be a projection-atomic effect algebra. If a compression base on E for
which all atoms are projections has the projection cover property, then E is a Boolean algebra.
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Proof: Let (Jp)p∈P be a compression base on E that has the projection cover property
and such that all atoms are in P . According to [9, Theorem 5.1], P is an orthomodular lattice.
Since P is atomic, it is atomistic (see, e.g., [8]). Since all atoms are mutually orthogonal (see
Corollary 4.2), every two elements of P are compatible, and hence P is a Boolean algebra.

It remains to prove that E = P . Let a ∈ E and let us denote Aa the set of atoms in
E dominated by a and Pa = {p ∈ P : p ≤ a}. The set of projection upper bounds of a′ is
P ′

a = {p′ ∈ P : p ∈ Pa} and, due to the projection cover property, there is a projection cover∧
P ′

a ∈ P of a′, hence a ≥
∨

Pa ∈ P . Since a is a minimal upper bound of Aa (Lemma 5.9)
and

∨
Pa is also an upper bound of Aa, it follows that a =

∨
Pa ∈ P .

Corollary 5.15 Every atomic sequential orthoalgebra is a Boolean algebra.

Proof: According to Theorem 3.9, every sequential effect algebra E has a maximal com-
pression base (Jp)p∈Es . If E is an orthoalgebra then E = Es and therefore every element of E
is its own projection cover, hence, according to Theorem 5.14, E is a Boolean algebra.

Let us remark that the above corollary generalizes similar results obtained by Gudder and
Greechie [7, Theorem 5.3] and Tkadlec [11, Theorems 5.4 and 5.6]. The first mentioned result
assumes that the effect algebra is atomistic, the second assumes it has the maximality property
and the third assumes it is determined by atoms.
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