Josef Tkadlec

A NOTE ON DISTRIBUTIVITY IN ORTHOPOSETS

It is well-known that distributive ortholattices are Boolean (i.e., they fulfil the condition $a \wedge b=0 \Rightarrow b \leq a^{\prime}$). In this note we formulate some distributivity-like condition valid in Boolean orthoposets and prove that Boolean ω-orthocomplete poset has to be orthomodular. Our results generalize results of Klukowski [2, 3] and, also, might find application in the axiomatics of quantum theories (see $[1,5]$).

Notions and results

Let us first review basic notions as we shall use them throughout the paper.

1. Definition. An orthoposet is a triple $\left(P, \leq,{ }^{\prime}\right)$ such that
(1) (P, \leq) is a partially ordered set with a least element, 0 , and a greatest element, 1 ,
(2) ' : $P \rightarrow P$ is an orthocomplementation, i.e., (i) $a^{\prime \prime}=a$, (ii) $a \leq b \Rightarrow$ $b^{\prime} \leq a^{\prime}$, (iii) $a \wedge a^{\prime}=0$ for every $a, b \in P$.

An orthoposet $\left(P, \leq,,^{\prime}\right)$ is called an ω-orthocomplete poset if $a \vee b$ exists in P for every $a, b \in P$ such that $a \leq b^{\prime}$, and it is called an orthocomplete poset if $\bigvee S$ exists in P for every $S \subset P$ such that $s_{1} \leq s_{2}^{\prime}$ for any pair $s_{1}, s_{2} \in S$.

Further, an ω-orthocomplete poset is called orthomodular if $b=a \vee\left(b \wedge a^{\prime}\right)$ for every $a, b \in P$ such that $a \leq b$.

An orthoposet $\left(P, \leq,,^{\prime}\right)$ is called Boolean ([2]) if the condition $a \wedge b=0$ implies $b \leq a^{\prime}$.

For any orthoposet $\left(P, \leq,{ }^{\prime}\right)$, let us write $[a, b]=\{c \in P ; a \leq c \leq b\}$ for every $a, b \in P, S_{1} \leq S_{2}\left(S_{1}, S_{2} \subset P\right)$ if $s_{1} \leq s_{2}$ for every $s_{1} \in S_{1}$ and for every $s_{2} \in S_{2}, s \leq S(s \in P, S \subset P)$ if $\{s\} \leq S, S_{1} \wedge \ldots \wedge S_{n}=\left\{s_{1} \wedge \ldots \wedge s_{n} ; s_{1} \in\right.$ $\left.S_{1}, \ldots, s_{n} \in S_{n}\right\}\left(S_{1}, \ldots, S_{n} \subset P\right)$.
2. Lemma. Suppose that $\left(P, \leq,{ }^{\prime}\right)$ is a Boolean orthoposet and that $S_{1} \cup$ $\ldots \cup S_{n} \subset P$. Let us write

$$
\begin{gathered}
L=\bigcup\left\{\left[0, s_{1}\right] \cap \ldots \cap\left[0, s_{n}\right] ;\left(s_{1}, \ldots, s_{n}\right) \in S_{1} \times \ldots \times S_{n}\right\}, \\
U=\bigcup_{k=1}^{n} \bigcap_{s_{k} \in S_{k}}\left[s_{k}, 1\right] .
\end{gathered}
$$

Then $L \leq U$ and $l \leq u$ for every $l \leq U$ and for every $u \geq L$.

Proof. The inequality $L \leq U$ is evident. Suppose that $l \not \leq u$. Then there is an $a \in P \backslash\{0\}$ such that $a \leq l, u^{\prime}$. Since $l \leq \bigcap_{s_{1} \in S_{1}}\left[s_{1}, 1\right]$, we obtain $a^{\prime} \notin \bigcap_{s_{1} \in S_{1}}\left[s_{1}, 1\right]$. It means that $s_{1} \not \leq a^{\prime}$ for some $s_{1} \in S_{1}$. Hence, there is an $a_{1} \in P \backslash\{0\}$ such that $a_{1} \leq s_{1}, a, u^{\prime}$. Proceeding by induction, we obtain an $a_{n} \in P \backslash\{0\}$ such that $a_{n} \leq s_{1}, \ldots, s_{n}, u^{\prime}$ for some $s_{1} \in S_{1}, \ldots, s_{n} \in S_{n}$. Therefore we have $a_{n} \in L \leq u$ and $a_{n} \leq u \wedge u^{\prime}=0$, which is a contradiction.
3. Theorem. Suppose that $\left(P, \leq,^{\prime}\right)$ is a Boolean orthoposet and that $S_{1} \cup \ldots \cup S_{n} \subset P$ such that $S_{1} \wedge \ldots \wedge S_{n}, \bigvee S_{1}, \ldots, \bigvee S_{n}$ exist in $\left(P, \leq,^{\prime}\right)$. Then

$$
\bigvee\left(S_{1} \wedge \ldots \wedge S_{n}\right)=\left(\bigvee S_{1}\right) \wedge \ldots \wedge\left(\bigvee S_{n}\right)
$$

if at least one side of this equality exists.
Proof. The left side of this equality exists if and only if $\bigvee L$ exists (L taken from Lemma 2) and both expressions are equal. The right side of this equality exists if and only if $\bigwedge U$ exists (U taken from Lemma 2) and both expressions are equal. According to Lemma $2, \bigvee L$ exists if and only if $\bigwedge U$ exists and then $\bigvee L=\bigwedge U$.
4. Corollary. Every Boolean ω-orthocomplete poset is orthomodular.
5. Corollary. Every Boolean ortholattice is a Boolean algebra.

Let us recall that an orthoposet $\left(P, \leq,^{\prime}\right)$ is called atomic if for any $b \in$ $P \backslash\{0\}$ there is an $a \in P \backslash\{0\}$ such that $[0, a]=\{0, a\}$ (i.e., a is an atom) and $a \leq b$.
6. Theorem. Every atomic Boolean orthocomplete poset is a Boolean algebra.

Proof. It follows from Corollary 4 and from [2], Theorem 2.
Let us note that Boolean orthoposets are concrete (i.e., they are setrepresentable in such a manner that the supremum of a finite number of mutually disjoint sets (if it exists) is the set-theoretic union, see [4] for Boolean orthomodular posets - the orthomodularity was not used in the proof). As the following simple example shows, not every Boolean orthoposet is orthomodular.
7. Example. Let X be a four-element set and let $\left(P, \leq,{ }^{\prime}\right)$ be a triple such that P consists of \emptyset, one-element subsets of X and set-complements of these sets, \leq means the inclusion in X and ' the set-theoretic complementation. Then $\left(P, \leq,^{\prime}\right)$ is a Boolean orthoposet which is not orthomodular.

Finally, let us state for comparison results analogous to Theorem 3. We shall need the following definition.
8. Definition. Let $\left(P, \leq,^{\prime}\right)$ be an orthoposet. Then elements $a, b \in P$ are called compatible (denoted by $a \leftrightarrow b$) if there are $a_{1}, b_{1}, c \in P$ such that $a=a_{1} \vee c, b=b_{1} \vee c$ and $a_{1} \leq b_{1}^{\prime}, a_{1} \leq c^{\prime}, b_{1} \leq c^{\prime}$.
9. Proposition. Suppose that $\left(P, \leq,{ }^{\prime}\right)$ is an orthomodular lattice and that $S_{1} \cup \ldots \cup S_{n} \subset P$ such that $S_{1} \wedge \ldots \wedge S_{n}, \bigvee S_{1}, \ldots, \vee S_{n}$ exists in $\left(P, \leq,{ }^{\prime}\right)$ and such that $s_{i} \leftrightarrow s_{j}$ for every pair $s_{i} \in S_{i}, s_{j} \in S_{j}, i, j \in\{1, \ldots, n\}$ with $i \neq j$. Then

$$
\bigvee\left(S_{1} \wedge \ldots \wedge S_{n}\right)=\left(\bigvee S_{1}\right) \wedge \ldots \wedge\left(\bigvee S_{n}\right)
$$

if the right side of this equality exists.
Proof. It follows from [5], Proposition 1.3.10, if we proceed by the induction.
10. Proposition. Suppose that ($P, \leq,,^{\prime}$) is an orthomodular poset and that $\left\{s_{1}\right\} \cup S_{2} \subset P$ such that $\left\{s_{1}\right\} \wedge S_{2}, \bigvee\left\{s_{1}\right\}, \bigvee S_{2}$ exist in $\left(P, \leq,{ }^{\prime}\right)$ and such that $s_{1} \leftrightarrow s_{2}$ for every $s_{2} \in S_{2}$. Then

$$
\bigvee\left(\left\{s_{1}\right\} \wedge S_{2}\right)=\left(\bigvee\left\{s_{1}\right\}\right) \wedge\left(\bigvee S_{2}\right)
$$

if the left side of this equality exists.
Proof. See [1], Lemma 3.7.

REFERENCES

[1] Gudder, S.P.: Stochastic Methods in Quantum Mechanics. Elsevier North Holland, New York, 1979.
[2] Klukowski, J.: On Boolean orthomodular posets. Demonstratio Math. 8 (1975), 5-14.
[3] Klukowski, J.: On the representation of Boolean orthomodular partially ordered sets, Demonstratio Math. 8 (1975), 405-423.
[4] Navara, M., Pták, P.: Almost Boolean orthomodular posets, J. Pure Appl. Algebra 60 (1989), 105-111.
[5] Pták, P., Pulmannová, S.: Orthomodular Structures as Quantum Logics. Kluwer, Dordrecht, 1991.

Department of Mathematics, Technical University of Prague, 16627 Praha, Czechoslovakia
Received May 10, 1990

