Časopis pro pěstování matematiky, 113 (1988), No. 4, 435-436

A NOTE ON DETERMINACY OF MEASURES

Pavel Pták, Josef Tkadlec, Praha

(Received October 23, 1986)

Summary. In the article it is shown that the Cramér-Wold theorem implies a stronger form of the Christensen theorem.

Keywords: determining set, probability measure.
AMS Classification: 28A05.

Let $\mathscr{B}\left(R^{n}\right)$ denote the collection of all Borel subsets of R^{n} and let \mathscr{C} be a subset of $\mathscr{B}\left(R^{n}\right)$. Let \mathscr{C} be called determining when the following statement holds: If μ_{1}, μ_{2} are two probability measures on $\mathscr{B}\left(R^{n}\right)$ which agree on \mathscr{C} then they are necessarily identical. The theorem of Christensen ([3]) says that the collection of all open balls is determining and the theorem of Cramér and Wold ([2]) says that the collection of all open half-spaces is determining. In this note we observe that the Cramér-Wold theorem implies a stronger form of the Christensen theorem. (As a by-product we obtain another proof of the Christensen theorem. For further discussion on the determinacy of measures, the reader is referred to [1], [4], [5], [6] and [7].)

Theorem. Let p be a point in $R^{n}(n \in N)$ and let \mathscr{C} denote the collection of all open balls having p on the boundary. Then \mathscr{C} is determining.

Proof. Let μ_{1}, μ_{2} agree on \mathscr{C}. Applying a suitable transformation and multiple if necessary, we may assume that $p=0 \in R^{n}$ and $\mu_{1}\{0\}=\mu_{2}\{0\}=$ 0 . Let \mathscr{C}_{1} denote the collection of all open half-spaces which have 0 on the boundary. Put $\mathscr{D}=\mathscr{C} \cup \mathscr{C}$. Then μ_{1}, μ_{2} agree on \mathscr{D}. Indeed, each open halfspace in \mathscr{C}_{1} can be obtained as a union of an increasing sequence of balls in \mathscr{C}. Hence μ_{1}, μ_{2} have to agree on \mathscr{C}_{1} in view of their monotone continuity.

Let now $\varphi: R^{n} \rightarrow R^{n}$ be a mapping such that $\varphi(0)=0$ and $\varphi(x)=$ $x /\|x\|^{2}$ otherwise. Then φ is obviously a Borel isomorphism. One can easily show that $\varphi(\mathscr{D})$ is exactly the collection of all open half-subspaces in R^{n}. By our assumption, the measures $\mu_{1} \varphi^{-1}, \mu_{2} \varphi^{-1}$ agree on $\varphi(\mathscr{D})$ and therefore $\mu_{1} \varphi^{-1}=\mu_{2} \varphi^{-1}$ (the Cramér-Wold theorem). This means that $\mu_{1}=\mu_{2}$ and the proof is complete.

References

[1] P. Billingsley: Convergence of Probability Measures. Willey, New York 1968.
[2] H. Cramér, H. Wold: Some theorems on distribution functions. J. London Math. Soc. 11 (1936), 290-295.
[3] J. P. R. Christensen: On some measures analogous to Haar measure. Math. Scand. 26 (1970), 103-106.
[4] R. O. Davies: Can two different measures agree on balls? (Good news and bad news). Mimeographed notes, 1972.
[5] R. O. Davies: Measures not approximable or not specifiable by means of balls. Mathematika 18 (1971), 157-160.
[6] T. Neubrunn: A note on quantum probability spaces. Proc. Amer. Math. Soc. 25 (1970), 672-675.
[7] F. H. Ruymgaart: A note on the concept of joint distributions of pairs of observables. The Indian Journal of Statistics, Ser. A, Vol 45 (1983), 38-43.

Souhrn

POZNMKA O URENOSTI MR

Pavel Pták, Josef Tkadlec

V článku je ukázáno, že Cramérova-Woldova vta implikuje silnější verzi Christensenovy věty.

Резюме

ЗАМЕЧАНИЕ ОБ ОПРЕДЕЛЕННОСТИ МЕР

Pavel Pták, Josef Tkadlec

В работе показано, что теорема Крамэра-Волда влечет за собой более сильный вариант теоремы Христенсена.

Authors' address: Katedra matematiky FEL CVUT, Suchbátarova 2, 16627 Praha 6.

