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A NOTE ON DETERMINACY OF MEASURES
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Summary. In the article it is shown that the Cramér—Wold theorem implies a
stronger form of the Christensen theorem.
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Let Z(R"™) denote the collection of all Borel subsets of R and let € be a
subset of Z(R"). Let € be called determining when the following statement
holds: If p1, p2 are two probability measures on B(R™) which agree on ¢
then they are necessarily identical. The theorem of Christensen ([3]) says
that the collection of all open balls is determining and the theorem of Cramér
and Wold ([2]) says that the collection of all open half-spaces is determining.
In this note we observe that the Cramér—Wold theorem implies a stronger
form of the Christensen theorem. (As a by-product we obtain another proof
of the Christensen theorem. For further discussion on the determinacy of
measures, the reader is referred to [1], [4], [5], [6] and [7].)

Theorem. Let p be a point in R™ (n € N) and let € denote the collec-
tion of all open balls having p on the boundary. Then & is determining.

Proof. Let uj, uo agree on 4. Applying a suitable transformation and
multiple if necessary, we may assume that p = 0 € R™ and p; {0} = pu2{0} =
0. Let % denote the collection of all open half-spaces which have 0 on the
boundary. Put 2 = ¥ U%1. Then pu1, us agree on &. Indeed, each open half-
space in 4] can be obtained as a union of an increasing sequence of balls
in ¥. Hence p1, uo have to agree on % in view of their monotone continuity.

Let now ¢: R" — R™ be a mapping such that ¢(0) = 0 and p(z) =
z/||z||* otherwise. Then ¢ is obviously a Borel isomorphism. One can easily
show that ¢(2) is exactly the collection of all open half-subspaces in R™.
By our assumption, the measures 11, 2! agree on ¢(2) and therefore
p1o ! = 2™t (the Cramér-Wold theorem). This means that p; = ue and
the proof is complete.
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V éldnku je ukazano, ze Cramérova—Woldova vta implikuje silngjsi verzi Chris-
tensenovy vety.
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B pabore nmokazano, uro reopema Kpamspa—Boana Biaeuer 3a coboit 6oee
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