A NOTE ON DETERMINACY OF MEASURES

PAVEL PTÁK, JOSEF TKADLEC, Praha

(Received October 23, 1986)

Summary. In the article it is shown that the Cramér–Wold theorem implies a stronger form of the Christensen theorem.

Keywords: determining set, probability measure.

AMS Classification: 28A05.

Let $\mathscr{B}(\mathbb{R}^n)$ denote the collection of all Borel subsets of \mathbb{R}^n and let \mathscr{C} be a subset of $\mathscr{B}(\mathbb{R}^n)$. Let \mathscr{C} be called *determining* when the following statement holds: If μ_1, μ_2 are two probability measures on $\mathscr{B}(\mathbb{R}^n)$ which agree on \mathscr{C} then they are necessarily identical. The theorem of Christensen ([3]) says that the collection of all open balls is determining and the theorem of Cramér and Wold ([2]) says that the collection of all open half-spaces is determining. In this note we observe that the Cramér–Wold theorem implies a stronger form of the Christensen theorem. (As a by-product we obtain another proof of the Christensen theorem. For further discussion on the determinacy of measures, the reader is referred to [1], [4], [5], [6] and [7].)

Theorem. Let p be a point in \mathbb{R}^n $(n \in N)$ and let \mathscr{C} denote the collection of all open balls having p on the boundary. Then \mathscr{C} is determining.

Proof. Let μ_1, μ_2 agree on \mathscr{C} . Applying a suitable transformation and multiple if necessary, we may assume that $p = 0 \in \mathbb{R}^n$ and $\mu_1\{0\} = \mu_2\{0\} =$ 0. Let \mathscr{C}_1 denote the collection of all open half-spaces which have 0 on the boundary. Put $\mathscr{D} = \mathscr{C} \cup \mathscr{C}_1$. Then μ_1, μ_2 agree on \mathscr{D} . Indeed, each open halfspace in \mathscr{C}_1 can be obtained as a union of an increasing sequence of balls in \mathscr{C} . Hence μ_1, μ_2 have to agree on \mathscr{C}_1 in view of their monotone continuity.

Let now $\varphi \colon \mathbb{R}^n \to \mathbb{R}^n$ be a mapping such that $\varphi(0) = 0$ and $\varphi(x) = x/||x||^2$ otherwise. Then φ is obviously a Borel isomorphism. One can easily show that $\varphi(\mathscr{D})$ is exactly the collection of all open half-subspaces in \mathbb{R}^n . By our assumption, the measures $\mu_1 \varphi^{-1}, \mu_2 \varphi^{-1}$ agree on $\varphi(\mathscr{D})$ and therefore $\mu_1 \varphi^{-1} = \mu_2 \varphi^{-1}$ (the Cramér–Wold theorem). This means that $\mu_1 = \mu_2$ and the proof is complete.

References

- [1] P. Billingsley: Convergence of Probability Measures. Willey, New York 1968.
- [2] H. Cramér, H. Wold: Some theorems on distribution functions. J. London Math. Soc. 11 (1936), 290–295.
- [3] J. P. R. Christensen: On some measures analogous to Haar measure. Math. Scand. 26 (1970), 103–106.
- [4] R. O. Davies: Can two different measures agree on balls? (Good news and bad news). Mimeographed notes, 1972.
- [5] R. O. Davies: Measures not approximable or not specifiable by means of balls. Mathematika 18 (1971), 157–160.
- [6] T. Neubrunn: A note on quantum probability spaces. Proc. Amer. Math. Soc. 25 (1970), 672–675.
- [7] F. H. Ruymgaart: A note on the concept of joint distributions of pairs of observables. The Indian Journal of Statistics, Ser. A, Vol 45 (1983), 38–43.

Souhrn

POZNMKA O URENOSTI MR

PAVEL PTÁK, JOSEF TKADLEC

V článku je ukázáno, že Cramérova–Woldova vta implikuje silnější verzi Christensenovy věty.

Резюме

ЗАМЕЧАНИЕ ОБ ОПРЕДЕЛЕННОСТИ МЕР

PAVEL PTÁK, JOSEF TKADLEC

В работе показано, что теорема Крамэра–Волда влечет за собой более сильный вариант теоремы Христенсена.

Authors' address: Katedra matematiky FEL ČVUT, Suchbátarova 2, 166 27 Praha 6.