BOOLEAN ORTHOPOSETS AND TWO-VALUED STATES ON THEM

Josef Tkadlec
Department of Mathematics, Faculty of Electrical Engineering, Czech Technical University, 16627 Praha, Czechoslovakia

(Received February 26, 1992)
A Boolean orthoposet (see e.g. [2]) is the orthoposet P fulfilling the following condition: If $a, b \in P$ and $a \wedge b=0$ then $a \perp b$. This condition seems to be a sound generalization of distributivity in orthoposets (see e.g. [8]). Also, the class of (orthomodular) Boolean orthoposets may play an interesting role in quantum logic theory. This class is wide enough (see $[4,3])$ and, on the other hand, enjoys some properties of Boolean algebras $[4,8,5]$. In quantum logic theory an important role is played by so-called Jauch-Piron states [1, 6, 7]. In this paper we clarify the connection between Boolean orthoposets and orthoposets with "enough" two-valued Jauch-Piron states. Further, we obtain a characterization of Boolean orthoposets in terms of two-valued states.

1. Preliminaries and basic notions

1.1. Definition. An orthoposet is a triple $\left(P, \leq,{ }^{\prime}\right)$ such that
(1) (P, \leq) is a partially ordered set with a least and a greatest elements 0,1 ,
(2) ' $: P \rightarrow P$ is an orthocomplementation, i.e., (i) $a^{\prime \prime}=a$, (ii) $a \leq b \Rightarrow b^{\prime} \leq a^{\prime}$, (iii) $a \vee a^{\prime}=1$ for every $a, b \in P$.

In the sequel we will shortly write P instead of $\left(P, \leq,{ }^{\prime}\right)$ and reserve the letter P for orthoposets.
1.2. Definition. Elements a, b of P are called orthogonal (denoted by $a \perp b$) if $a \leq b^{\prime}$.

An orthoposet P is called Boolean if $a \perp b$ whenever $a \wedge b=0$, and it is called orthomodular if $a \vee b$ exists whenever $a \perp b$ and $b=a \vee\left(b \wedge a^{\prime}\right)$ whenever $a \leq b$.

For the further use, let us note that in Boolean orthoposets the condition $a \not \leq b$ (i.e., $a \not \perp b^{\prime}$) implies that there is a $c \neq 0$ such that $c \leq a, b^{\prime}$.
1.3. Definition. A concrete orthoposet is a triple ($\mathcal{P}, \subset,{ }^{c}$) where $\mathcal{P} \subset \exp X$ for some $X \neq \emptyset$ such that
(1) $\emptyset \in \mathcal{P}$,
(2) $A^{c}=X \backslash A \in \mathcal{P}$ whenever $A \in \mathcal{P}$,
(3) $\cup \mathcal{F} \in \mathcal{P}$ for every finite family $\mathcal{F} \subset \mathcal{P}$ of mutually disjoint elements such that $\bigvee \mathcal{F}$ exists in (\mathcal{P}, \subset).

Let us observe that a concrete orthoposet is indeed an orthoposet and that a concrete orthoposet is orthomodular if and only if $A \cup B \in \mathcal{P}$ for every $A, B \in \mathcal{P}$ with $A \cap B=\emptyset$. For every set $X \neq \emptyset$ and for every family \mathcal{F} of subsets of X there is the least orthomodular poset $\mathcal{P} \supset \mathcal{F}$. We say that \mathcal{P} is the orthomodular poset generated by \mathcal{F}. Every element of \mathcal{P} can be obtained from elements of \mathcal{F} using finitely many operations of set-theoretic complement in X and of union of two disjoint elements.

A central role in this paper will be played by states (measures) on orthoposets.
1.4. Definition. A state on P is a mapping $s: P \rightarrow[0,1]$ such that
(1) $s(1)=1$,
(2) $s(a) \leq s(b)$ whenever $a \leq b$,
(3) $s(\bigvee F)=\sum_{a \in F} s(a)$ for every finite set $F \in P$ of mutually orthogonal elements such that $\bigvee F$ exists in (P, \leq).

Let us note that $1=s(1)=s\left(a \vee a^{\prime}\right)=s(a)+s\left(a^{\prime}\right)$ for every $a \in P$. In particular, $s(0)=0$. Hence, a two-valued state is a state with values in the set $\{0,1\}$.
1.5. Definition. A state s on P is called Jauch-Piron if for every pair $a, b \in P$ with $s(a)=s(b)=1$ there is a $c \in P$ with $s(c)=1$ such that $c \leq a, b$.
1.6. Definition. A set S of (not necessarilly all) states on an orthoposet P is called: unital if for every $a \in P \backslash\{0\}$ there is a state $s \in S$ such that $s(a)=1$;
full if for every pair $a, b \in P$ with $a \not \leq b$ there is a state $s \in S$ such that $s(a) \not \leq s(b)$.
Let us note that every full set of two-valued states is unital and that an orthoposet has a full set of two-valued states if and only if it has a concrete representation (Stone-like representation) - see [9].

2. Characterization of Boolean orthoposets

In this section we will characterize Boolean orthoposets by means of two-valued states.

2.1. Theorem. The set of two-valued states on a Boolean orthoposet is full.

Proof: See [4], inclusion $\mathcal{C}_{3} \subset \mathcal{C}$ in Theorem 3.1. (It is proved for orthomodular Boolean orthoposets there but the orthomodularity was not used in the proof.)
2.2. Theorem. Let P be an orthoposet. The following two properties are equivalent:
(1) P is a Boolean orthoposet.
(2) The orthoposet P has a unital set of two-valued states and every unital set of two-valued states on P is full.

Proof: $(1) \Rightarrow(2)$. According to Theorem 2.1, the set of two-valued states on P is full, hence it is unital. Let us suppose that S is a unital set of two-valued states on P and that $a \not \leq b$. There is a $c \in P \backslash\{0\}$ such that $c \leq a, b^{\prime}$ and a two-valued state $s \in S$ such that $s(c)=1$. Thus, $s(a)=s\left(b^{\prime}\right)=1$ and $s(a)=1 \not 又 0=1-s\left(b^{\prime}\right)=s(b)$.
(2) $\Rightarrow(1)$. Let $a, b \in P$ be such that $a \wedge b=0$, i.e., for every $c \in P \backslash\{0\}$ we have either $c \not \leq a$ or $c \not \leq b$. According to our assumptions, the set of two-valued states on P is full. Hence for every $c \in P \backslash\{0\}$ there is a two-valued state s on P such that either $s(c) \not \leq s(a)$ or $s(c) \not \leq s(b)$. Thus, the set S of two-valued states s on P such that either $s(a)=0$ or $s(b)=0$ is unital and, according to our assumptions, full. Since $s(a) \leq s\left(b^{\prime}\right)=1-s(b)$ for every $s \in S$, we obtain $a \leq b^{\prime}$, hence $a \perp b$. The proof is complete.

3. Boolean orthoposets and Jauch-Piron states

In this section we will show the connection between the class of Boolean orthoposets and the class of orthoposets with a full (unital, resp.) set of two-valued Jauch-Piron states.
3.1. Theorem. Every orthoposet with a full set of two-valued Jauch-Piron states is Boolean.

Proof: Let P be an orthoposet with a full set of two-valued Jauch-Piron states and let $a, b \in P$ with $a \wedge b=0$. Then there is no Jauch-Piron state s on P such that $s(a)=s(b)=1$. Thus, $a \leq b^{\prime}$ and $a \perp b$. The proof is complete.

There is also a partial converse to the previous theorem.
3.2. Definition. A non-zero element a of P is called atom if there is no $b \in P \backslash\{0, a\}$ with $b \leq a$.
3.3. Lemma. Let P be a Boolean orthoposet and let $a \in P$ be an atom. Then the mapping $s: P \rightarrow\{0,1\}$ defined by

$$
s(b)= \begin{cases}0 & \text { if } a \not \leq b \\ 1 & \text { if } a \leq b\end{cases}
$$

is a two-valued Jauch-Piron state on P.
Proof: It suffices to prove that for every $b \in P$ either $a \leq b$ or $a \perp b$. Let us suppose that $a \not \perp b$. Then there is a $c \in P \backslash\{0\}$ such that $c \leq a, b$. Since a is an atom, $c=a$ and $a \leq b$. The proof is complete.
3.4. Proposition. Every atomic Boolean orthoposet has a full set of two-valued Jauch-Piron states.

Proof: Let P be an atomic Boolean orthoposet and let $a, b \in P$ with $a \not \leq b$. Then there is a $c \in P \backslash\{0\}$ such that $c \leq a, b^{\prime}$ and an atom $d \in P$ such that $d \leq c$. According to Lemma 3.3 there is a two-valued Jauch-Piron state s on P such that $s(a)=1 \not 又 0=$ $1-s\left(b^{\prime}\right)=s(b)$. The proof is complete.

According to Proposition 3.4, a Boolean orthoposet without a full set of two-valued Jauch-Piron states cannot be atomic. According to Theorem 2.2, it cannot have a unital set of two-valued Jauch-Piron states. We now give an example of a Boolean orthomodular poset without any two-valued Jauch-Piron state at all (Theorem 3.9). This answers a question posed in [3].
3.5. Example. Let S_{0} be the square (in the plane \mathbf{R}^{2}) on Fig. 1. Let $\mathcal{P}_{0} \subset \exp S_{0}$ be the concrete orthomodular poset generated by the family of polygons $G \subset S_{0}$ fulfilling the following conditions:
(1) Every interior angle of G is a multiple of $2 \pi / 8$.
(2) Let us denote by $A(x, \alpha)$ the open angle with the vertex in x such that the initial boundary halfline has zero angular coefficient and such that the terminal boundary halfline has the angular coefficient equal to α (anticlockwise) - see Fig. 2. A point x of the boundary of G belongs to G if and only if there is a disc D with the center in x and a number $\alpha>0$ such that $D \cap A(x, \alpha) \subset P$.

Fig. 1

Fig. 2

It is easy to see that S_{0} fulfils conditions (1) and (2). Other examples are given in Fig. 3. Let us observe that a homothetic image of a polygon fulfilling conditions (1) and (2) fulfils these conditions, too.

Fig. 3

Fig. 4
3.6. Lemma. \mathcal{P}_{0} is a Boolean orthomodular poset.

Proof: Let $A, B \in \mathcal{P}_{0}$ with $A \cap B \neq \emptyset$. Then there are an $x \in S_{0}$, open discs D_{1}, D_{2} with centers in x and numbers $\alpha_{1}, \alpha_{2}>0$ such that $D_{1} \cap A\left(x, \alpha_{1}\right) \subset A, D_{2} \cap A\left(x, \alpha_{2}\right) \subset B$. Hence, $A \cap B$ contains a nonempty open subset $\left(D_{1} \cap D_{2}\right) \cap A\left(x, \min \left(\alpha_{1}, \alpha_{2}\right)\right)$. Thus, there is a $C \in \mathcal{P}_{0}$ with $C \subset A \cap B$ (e.g. homothetic to S_{0}).
3.7. Lemma. Every element $A \in \mathcal{P}_{0}$ satisfies the following condition: For every $x \in$ \mathbf{R}^{2} either $\operatorname{dist}(x, A)>0$ or there is a positive integer k and an $\varepsilon>0$ such that $\lambda(A \cap$ $D) / \lambda(D)=k / 8$ for every disc D with the center in x and the radius less than $\varepsilon(\lambda$ denotes the two-dimensional Lebesgue measure).

Proof: According to the definition of \mathcal{P}_{0}, the above condition is fulfilled for all generators of \mathcal{P}_{0}. It is easy to see that it is fulfilled for S_{0}, too. Since this condition is fulfilled for $A \cup B$ and for $S_{0} \backslash A$ whenever $A, B \in \mathcal{P}_{0}$ are disjoint elements fulfilling it, it is fulfilled for every $A \in \mathcal{P}_{0}$.
3.8. Lemma. There is no two-valued Jauch-Piron state on \mathcal{P}_{0}.

Proof: Let s be a two-valued state on \mathcal{P}_{0}. Let $\mathcal{S}_{n}(n \geq 1)$ be the covering of S_{0} by means of $2^{n^{2}}$ squares from \mathcal{P}_{0} with the area $\lambda\left(S_{0}\right) / 2^{n^{2}}$. Then there is an $S_{n} \in \mathcal{S}_{n}$ such that $s\left(S_{n}\right)=1$. Since $S_{n+1} \subset S_{n}$ for every natural number n, there is an $x \in \mathbf{R}^{2}$ such that x belongs to the closure of all S_{n}. Thus, $s(A)=0$ for every $A \in \mathcal{P}_{0}$ with $\operatorname{dist}(x, A)>0$.

Now, let us take two finite systems $\mathcal{F}, \mathcal{F}^{\prime} \subset \mathcal{P}_{0}$ of mutually disjoint elements such that the following conditions hold:
(1) $\operatorname{dist}\left(x, S_{0} \backslash \bigcup \mathcal{F}\right)>0, \operatorname{dist}\left(x, S_{0} \backslash \bigcup \mathcal{F}^{\prime}\right)>0$.
(2) There is an $\varepsilon>0$ such that $\lambda\left(B \cap B^{\prime} \cap D\right) / \lambda(D)=1 / 16$ for every $B \in \mathcal{F}, B^{\prime} \in \mathcal{F}^{\prime}$ and for every disc D with the center in x and the radius less than ε.

Indeed, we can cover the neighbourhood of x (in S_{0}) by 8 (4 or 2 if x is on the boundary of S_{0}) triangles from \mathcal{P}_{0} (see Fig. 4) and obtain thus \mathcal{F}. \mathcal{F}^{\prime} we can obtain by rotating the whole situation around x by $-2 \pi / 16$. (If x is on the boundary of S_{0}, one triangle will not be a subset of S_{0} — instead of it we take the orthocomplement of the union of remaining ones.)

According to the condition (1), there are $B \in \mathcal{F}, B^{\prime} \in \mathcal{F}^{\prime}$ such that $s(B)=s\left(B^{\prime}\right)=1$. According to the Lemma 3.7 and the condition (2), $s(A)=0$ for every $A \in \mathcal{P}_{0}$ with $A \subset B \cap B^{\prime}$. Thus, s is not Jauch-Piron. The proof is complete.
3.9. Theorem. There is a Boolean orthomodular poset that has no two-valued JauchPiron state.

Proof: It follows from Lemma 3.6 and Lemma 3.8.
3.10. Remark. (1) We can take another quotient than $1 / 8$ in the definition of \mathcal{P}_{0} and start with other suitable element than S_{0}.
(2) We can fix some directions of boundaries of elements of \mathcal{P}_{0} and obtain thus different examples. For instance, we can allow only lines with the angular coefficient equal to a multiple of $2 \pi / 16$.
(3) It can be shown that the orthomodular poset generated by open balls in the space $\mathbf{R}^{n}(n \geq 3)$ is a Boolean orthoposet with only one two-valued Jauch-Piron state that takes the value 0 exactly on bounded sets. (The author conjectures that this statement is valid also for $n=2$, but this case brings about rather high combinatorial problems.)

Let \mathcal{B} be the class of Boolean orthoposets, $\mathcal{F}(\mathcal{U}$, resp. $)$ be the class of orthoposets with a full (unital, resp.) set of two-valued Jauch-Piron states. We have shown (Theorems 3.1, 2.2 and 3.9) that $\mathcal{B} \cap \mathcal{U}=\mathcal{F}$ and that $\mathcal{B} \backslash \mathcal{U} \neq \emptyset$. A natural question arises whether $\mathcal{U} \backslash \mathcal{B} \neq \emptyset$. As the following example (it is a modification of an example from [4]) shows, the answer to that question is positive.
3.11. Example. Let $\{a\},\{b\}, X, Y$ be mutually disjoint sets such that X and Y are infinite. Let

$$
\begin{aligned}
\mathcal{P}^{\prime} & =\{\emptyset,\{a\} \cup X,\{a\} \cup Y,\{b\} \cup X,\{b\} \cup Y,\{a, b\} \cup X \cup Y\} \\
\mathcal{P} & =\left\{B ;(B \backslash A) \cup(A \backslash B) \text { is a finite subset of } X \cup Y \text { for some } A \in \mathcal{P}^{\prime}\right\} .
\end{aligned}
$$

Then \mathcal{P} is a concrete orthomodular poset with a unital set of two-valued Jauch-Piron states that is not Boolean.

Proof: It is easy to see that \mathcal{P} is a concrete orthomodular poset. Since $(\{a\} \cup X) \not 又$ $(\{a\} \cup Y)$ and $(\{a\} \cup X) \wedge(\{a\} \cup Y)=\emptyset, \mathcal{P}$ is not Boolean. Let us now for every $x \in X \cup Y$ define the two-valued state

$$
s_{x}(A)= \begin{cases}0 & \text { if } x \notin A \\ 1 & \text { if } x \in A\end{cases}
$$

for every $A \in \mathcal{P}$. Then the set $\left\{s_{x} ; x \in X \cup Y\right\}$ is a unital set of two-valued Jauch-Piron states on \mathcal{P}.

REFERENCES

[1] Jauch, J.: Foundations of Quantum Mechanics. Addison Wesley, Reading, Mass., 1968.
[2] Klukowski, J.: On Boolean orthomodular posets. Demonstratio Math. 8 (1975), 5-14.
[3] Müller, V., Pták, P., Tkadlec, J.: Concrete quantum logics with covering properties. Int. J. Theor. Phys. 31 (1992), 843-854.
[4] Navara, M., Pták, P.: Almost Boolean orthomodular posets. J. Pure Appl. Algebra 60 (1989), 105-111.
[5] Navara, M., Tkadlec, J.: Automorphisms of concrete logics. Comment. Math. Univ. Carolin. 32 (1991), 15-25.
[6] Piron, C.: Foundation of Quantum Physics. Benjamin, Reading, Mass., 1976.
[7] Pták, P., Pulmannová, S.: Orthomodular Structures as Quantum Logics. Kluwer, Dordrecht, 1991.
[8] Tkadlec, J.: A note on distributivity in orthoposets. Demonstratio Math. 24 (1991), 343-346.
[9] Tkadlec, J.: Boolean orthoposets-concreteness and orthocompleteness.. Math. Bohemica 119 (1994), 123-128.

