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A Boolean orthoposet (see e.g. [2]) is the orthoposet P fulfilling the following condition:
If a, b ∈ P and a ∧ b = 0 then a ⊥ b. This condition seems to be a sound generalization
of distributivity in orthoposets (see e.g. [8]). Also, the class of (orthomodular) Boolean
orthoposets may play an interesting role in quantum logic theory. This class is wide enough
(see [4, 3]) and, on the other hand, enjoys some properties of Boolean algebras [4, 8, 5]. In
quantum logic theory an important role is played by so-called Jauch–Piron states [1, 6, 7].
In this paper we clarify the connection between Boolean orthoposets and orthoposets with
“enough” two-valued Jauch–Piron states. Further, we obtain a characterization of Boolean
orthoposets in terms of two-valued states.

1. Preliminaries and basic notions

1.1.Definition. An orthoposet is a triple (P,≤,′ ) such that
(1) (P,≤) is a partially ordered set with a least and a greatest elements 0, 1,
(2) ′ : P → P is an orthocomplementation, i.e., (i) a′′ = a, (ii) a ≤ b ⇒ b′ ≤ a′,

(iii) a ∨ a′ = 1 for every a, b ∈ P .

In the sequel we will shortly write P instead of (P,≤,′ ) and reserve the letter P for
orthoposets.

1.2.Definition. Elements a, b of P are called orthogonal (denoted by a ⊥ b) if
a ≤ b′.

An orthoposet P is called Boolean if a ⊥ b whenever a ∧ b = 0, and it is called
orthomodular if a ∨ b exists whenever a ⊥ b and b = a ∨ (b ∧ a′) whenever a ≤ b.

For the further use, let us note that in Boolean orthoposets the condition a 6≤ b (i.e.,
a 6⊥ b′) implies that there is a c 6= 0 such that c ≤ a, b′.

1.3.Definition. A concrete orthoposet is a triple (P,⊂,c ) where P ⊂ expX for
some X 6= ∅ such that

(1) ∅ ∈ P,
(2) Ac = X \A ∈ P whenever A ∈ P,
(3)

⋃
F ∈ P for every finite family F ⊂ P of mutually disjoint elements such that∨

F exists in (P,⊂).
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Let us observe that a concrete orthoposet is indeed an orthoposet and that a concrete
orthoposet is orthomodular if and only if A∪B ∈ P for every A,B ∈ P with A∩B = ∅.
For every set X 6= ∅ and for every family F of subsets of X there is the least orthomodular
poset P ⊃ F . We say that P is the orthomodular poset generated by F . Every element
of P can be obtained from elements of F using finitely many operations of set-theoretic
complement in X and of union of two disjoint elements.

A central role in this paper will be played by states (measures) on orthoposets.

1.4.Definition. A state on P is a mapping s : P → [0, 1] such that
(1) s(1) = 1,
(2) s(a) ≤ s(b) whenever a ≤ b,
(3) s(

∨
F ) =

∑
a∈F s(a) for every finite set F ∈ P of mutually orthogonal elements

such that
∨
F exists in (P,≤).

Let us note that 1 = s(1) = s(a ∨ a′) = s(a) + s(a′) for every a ∈ P . In particular,
s(0) = 0. Hence, a two-valued state is a state with values in the set {0, 1}.

1.5.Definition. A state s on P is called Jauch–Piron if for every pair a, b ∈ P with
s(a) = s(b) = 1 there is a c ∈ P with s(c) = 1 such that c ≤ a, b.

1.6.Definition. A set S of (not necessarilly all) states on an orthoposet P is called:
unital if for every a ∈ P \ {0} there is a state s ∈ S such that s(a) = 1;
full if for every pair a, b ∈ P with a 6≤ b there is a state s ∈ S such that s(a) 6≤ s(b).

Let us note that every full set of two-valued states is unital and that an orthoposet
has a full set of two-valued states if and only if it has a concrete representation (Stone-like
representation) — see [9].

2. Characterization of Boolean orthoposets

In this section we will characterize Boolean orthoposets by means of two-valued states.

2.1. Theorem. The set of two-valued states on a Boolean orthoposet is full.

Proof: See [4], inclusion C3 ⊂ C in Theorem 3.1. (It is proved for orthomodular
Boolean orthoposets there but the orthomodularity was not used in the proof.)

2.2. Theorem. Let P be an orthoposet. The following two properties are equivalent:
(1) P is a Boolean orthoposet.
(2) The orthoposet P has a unital set of two-valued states and every unital set of

two-valued states on P is full.

Proof: (1)⇒(2). According to Theorem 2.1, the set of two-valued states on P is full,
hence it is unital. Let us suppose that S is a unital set of two-valued states on P and
that a 6≤ b. There is a c ∈ P \ {0} such that c ≤ a, b′ and a two-valued state s ∈ S such
that s(c) = 1. Thus, s(a) = s(b′) = 1 and s(a) = 1 6≤ 0 = 1− s(b′) = s(b).
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(2)⇒(1). Let a, b ∈ P be such that a∧ b = 0, i.e., for every c ∈ P \{0} we have either
c 6≤ a or c 6≤ b. According to our assumptions, the set of two-valued states on P is full.
Hence for every c ∈ P \{0} there is a two-valued state s on P such that either s(c) 6≤ s(a)
or s(c) 6≤ s(b). Thus, the set S of two-valued states s on P such that either s(a) = 0 or
s(b) = 0 is unital and, according to our assumptions, full. Since s(a) ≤ s(b′) = 1 − s(b)
for every s ∈ S, we obtain a ≤ b′, hence a ⊥ b. The proof is complete.

3. Boolean orthoposets and Jauch–Piron states

In this section we will show the connection between the class of Boolean orthoposets and
the class of orthoposets with a full (unital, resp.) set of two-valued Jauch–Piron states.

3.1. Theorem. Every orthoposet with a full set of two-valued Jauch–Piron states is
Boolean.

Proof: Let P be an orthoposet with a full set of two-valued Jauch–Piron states and
let a, b ∈ P with a ∧ b = 0. Then there is no Jauch–Piron state s on P such that
s(a) = s(b) = 1. Thus, a ≤ b′ and a ⊥ b. The proof is complete.

There is also a partial converse to the previous theorem.

3.2.Definition. A non-zero element a of P is called atom if there is no b ∈ P \{0, a}
with b ≤ a.

3.3. Lemma. Let P be a Boolean orthoposet and let a ∈ P be an atom. Then the
mapping s : P → {0, 1} defined by

s(b) =

{
0 if a 6≤ b
1 if a ≤ b

is a two-valued Jauch–Piron state on P .

Proof: It suffices to prove that for every b ∈ P either a ≤ b or a ⊥ b. Let us suppose
that a 6⊥ b. Then there is a c ∈ P \ {0} such that c ≤ a, b. Since a is an atom, c = a and
a ≤ b. The proof is complete.

3.4. Proposition. Every atomic Boolean orthoposet has a full set of two-valued
Jauch–Piron states.

Proof: Let P be an atomic Boolean orthoposet and let a, b ∈ P with a 6≤ b. Then
there is a c ∈ P \ {0} such that c ≤ a, b′ and an atom d ∈ P such that d ≤ c. According
to Lemma 3.3 there is a two-valued Jauch–Piron state s on P such that s(a) = 1 6≤ 0 =
1− s(b′) = s(b). The proof is complete.

According to Proposition 3.4, a Boolean orthoposet without a full set of two-valued
Jauch–Piron states cannot be atomic. According to Theorem 2.2, it cannot have a unital
set of two-valued Jauch–Piron states. We now give an example of a Boolean orthomodular
poset without any two-valued Jauch–Piron state at all (Theorem 3.9). This answers a
question posed in [3].
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3.5. Example. Let S0 be the square (in the plane R2) on Fig. 1. Let P0 ⊂ expS0 be
the concrete orthomodular poset generated by the family of polygons G ⊂ S0 fulfilling
the following conditions:

(1) Every interior angle of G is a multiple of 2π/8.
(2) Let us denote by A(x, α) the open angle with the vertex in x such that the

initial boundary halfline has zero angular coefficient and such that the terminal boundary
halfline has the angular coefficient equal to α (anticlockwise) — see Fig. 2. A point x of
the boundary of G belongs to G if and only if there is a disc D with the center in x and
a number α > 0 such that D ∩A(x, α) ⊂ P .
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It is easy to see that S0 fulfils conditions (1) and (2). Other examples are given in
Fig. 3. Let us observe that a homothetic image of a polygon fulfilling conditions (1)
and (2) fulfils these conditions, too.
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3.6. Lemma. P0 is a Boolean orthomodular poset.

Proof: Let A,B ∈ P0 with A ∩B 6= ∅. Then there are an x ∈ S0, open discs D1, D2

with centers in x and numbers α1, α2 > 0 such that D1∩A(x, α1) ⊂ A, D2∩A(x, α2) ⊂ B.
Hence, A ∩ B contains a nonempty open subset (D1 ∩ D2) ∩ A(x,min(α1, α2)). Thus,
there is a C ∈ P0 with C ⊂ A ∩B (e.g. homothetic to S0).

3.7. Lemma. Every element A ∈ P0 satisfies the following condition: For every x ∈
R2 either dist(x,A) > 0 or there is a positive integer k and an ε > 0 such that λ(A ∩
D)/λ(D) = k/8 for every disc D with the center in x and the radius less than ε (λ
denotes the two-dimensional Lebesgue measure).

Proof: According to the definition of P0, the above condition is fulfilled for all gener-
ators of P0. It is easy to see that it is fulfilled for S0, too. Since this condition is fulfilled
for A∪B and for S0\A whenever A,B ∈ P0 are disjoint elements fulfilling it, it is fulfilled
for every A ∈ P0.

3.8. Lemma. There is no two-valued Jauch–Piron state on P0.
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Proof: Let s be a two-valued state on P0. Let Sn (n ≥ 1) be the covering of S0
by means of 2n

2
squares from P0 with the area λ(S0)/2

n2
. Then there is an Sn ∈ Sn

such that s(Sn) = 1. Since Sn+1 ⊂ Sn for every natural number n, there is an x ∈ R2

such that x belongs to the closure of all Sn. Thus, s(A) = 0 for every A ∈ P0 with
dist(x,A) > 0.

Now, let us take two finite systems F ,F ′ ⊂ P0 of mutually disjoint elements such
that the following conditions hold:

(1) dist(x, S0 \
⋃
F) > 0, dist(x, S0 \

⋃
F ′) > 0.

(2) There is an ε > 0 such that λ(B ∩B′ ∩D)/λ(D) = 1/16 for every B ∈ F , B′ ∈ F ′

and for every disc D with the center in x and the radius less than ε.

Indeed, we can cover the neighbourhood of x (in S0) by 8 (4 or 2 if x is on the boundary
of S0) triangles from P0 (see Fig. 4) and obtain thus F . F ′ we can obtain by rotating
the whole situation around x by −2π/16. (If x is on the boundary of S0, one triangle
will not be a subset of S0 — instead of it we take the orthocomplement of the union of
remaining ones.)

According to the condition (1), there are B ∈ F , B′ ∈ F ′ such that s(B) = s(B′) = 1.
According to the Lemma 3.7 and the condition (2), s(A) = 0 for every A ∈ P0 with
A ⊂ B ∩B′. Thus, s is not Jauch–Piron. The proof is complete.

3.9. Theorem. There is a Boolean orthomodular poset that has no two-valued Jauch–
Piron state.

Proof: It follows from Lemma 3.6 and Lemma 3.8.

3.10. Remark. (1) We can take another quotient than 1/8 in the definition of P0
and start with other suitable element than S0.

(2) We can fix some directions of boundaries of elements of P0 and obtain thus
different examples. For instance, we can allow only lines with the angular coefficient
equal to a multiple of 2π/16.

(3) It can be shown that the orthomodular poset generated by open balls in the space
Rn (n ≥ 3) is a Boolean orthoposet with only one two-valued Jauch–Piron state that
takes the value 0 exactly on bounded sets. (The author conjectures that this statement
is valid also for n = 2, but this case brings about rather high combinatorial problems.)

Let B be the class of Boolean orthoposets, F (U , resp.) be the class of orthoposets with
a full (unital, resp.) set of two-valued Jauch–Piron states. We have shown (Theorems 3.1,
2.2 and 3.9) that B ∩ U = F and that B \ U 6= ∅. A natural question arises whether
U \ B 6= ∅. As the following example (it is a modification of an example from [4]) shows,
the answer to that question is positive.

3.11. Example. Let {a}, {b}, X, Y be mutually disjoint sets such that X and Y are
infinite. Let

P ′ = {∅, {a} ∪X, {a} ∪ Y, {b} ∪X, {b} ∪ Y, {a, b} ∪X ∪ Y },
P = {B; (B \A) ∪ (A \B) is a finite subset of X ∪ Y for some A ∈ P ′}.

5



Then P is a concrete orthomodular poset with a unital set of two-valued Jauch–Piron
states that is not Boolean.

Proof: It is easy to see that P is a concrete orthomodular poset. Since ({a} ∪X) 6⊥
({a}∪Y ) and ({a}∪X)∧({a}∪Y ) = ∅, P is not Boolean. Let us now for every x ∈ X∪Y
define the two-valued state

sx(A) =

{
0 if x 6∈ A
1 if x ∈ A

for every A ∈ P. Then the set {sx; x ∈ X ∪Y } is a unital set of two-valued Jauch–Piron
states on P.
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