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Abstract The notion of spectral automorphism of an orthomodular lattice was introduced
by Ivanov and Caragheorgheopol [3] to create an analogue of the Hilbert space spectral
theory in the abstract framework of orthomodular lattices. We develop the theory of spec-
tral automorphisms finding previously missing characterizations of spectral automorphisms,
discussing several examples and the possibility to construct such automorphisms in direct
products or horizontal sums of lattices. A factorization of the spectrum of a spectral auto-
morphism is found. The last part of the paper addresses the problem of the unitary time
evolution of a system from the point of view of the spectral automorphisms theory. An ana-
logue of the Stone theorem concerning strongly continuous one-parameter unitary groups is
given.

Keywords Spectral automorphism · spectral theory · orthomodular lattice · horizontal sum
· direct product · Stone theorem

1 Introduction

In the classical Hilbert-space formulation of quantum mechanics, observables are represented
by self-adjoint operators, the spectral values of which are interpreted as possible outcomes
of the measurements of the observable. By spectral resolution, observables may be replaced
by the corresponding projection-valued spectral measures (see, e.g., [7, 2]) with values in
the set P(H) of projection operators on the Hilbert space H associated to the quantum
system under investigation. Since projection operators on H can be interpreted as “yes-no”

1 Department of Mathematics and Informatics, Technical University of Civil Engineering in Bucharest, 124
Lacul Tei blv., RO-020396, Romania; e-mail: dancaraghe@gmail.com
2 “Ilie Murgulescu” Institute of Physical Chemistry, Romanian Academy, 202 Splaiul Independentei, 060021
Bucharest, Romania
3 Department of Mathematics, Faculty of Electrical Engineering, Czech Technical University in Prague, 166 27
Prague, Czech Republic; e-mail: tkadlec@fel.cvut.cz

1



propositions about the quantum system, we consider the orthomodular lattice structure,
which is the most natural abstraction of the important properties of the lattice of projection
operators, as the appropriate “logic” associated to the quantum system (see, e.g., [6, 5, 1]).

Spectral automorphisms of orthomodular lattices were introduced by Ivanov an Caraghe-
orgheopol [3] with the intention to obtain an analogue of the Hilbert space spectral theory
in the more general framework of orthomodular lattices and by this to show to which extent
Hilbert space specific tools are needed. The aforementioned paper’s focus is on introducing
the new notion of spectral automorphism, as well as showing its relevance to the declared
purpose, e.g., by proving an analogue of the finite dimensional spectral theorem in the frame-
work of orthomodular lattices.

In this follow-up paper, we further develop the theory of spectral automorphisms in
orthomodular lattices. The next section is dedicated to basic definitions and some well-
known, but useful facts. In the third section we recall the heuristics behind the spectral
automorphism notion and some of the proven facts about spectral automorphisms. We also
show various examples of spectral automorphisms. The fourth part of the paper is devoted to
the study of spectral automorphisms of a product or horizontal sum of orthomodular lattices.
A factorization of the spectrum of a spectral automorphism is also discussed. In the fifth
section, we present (previously missing) characterizations of spectral automorphisms, along
with a necessary and a sufficient condition for an automorphism to be spectral. In the last
section, properties of spectral families of automorphisms are discussed and an analogue in
the framework of orthomodular lattices of the Stone theorem concerning strongly continuous
uniparametric groups of unitary operators is obtained.

2 Basic notions and properties

Let us recall some basic facts about orthomodular lattices that will be needed in the sequel.
For full details and proofs of the following statements, we refer to [4, 6].

Definition 2.1 An orthomodular lattice is a structure (L,≤,′ ,0,1) with 0 6= 1 such that:

(1) (L,≤) is a bounded lattice, with the least element 0 and the greatest element 1;
(2) the unary operation ′ on L is an orthocomplementation, i.e., (i) (a′)′ = a, (ii) a ≤ b

implies a′ ≥ b′, (iii) a ∨ a′ = 1, for every a, b ∈ L;
(3) a ≤ b implies b = a ∨ (a′ ∧ b) for every a, b ∈ L (orthomodular law).

For simplicity, we shall use the notation L for an orthomodular lattice.
Elements a, b of an orthomodular lattice are orthogonal (denoted by a ⊥ b) if a ≤ b′ (i.e.,

b ≤ a′). An atom of an orthomodular lattice L is a minimal non-zero element of L. A lattice
L is atomic if every element of L dominates an atom of L. Every atomic orthomodular lattice
is atomistic, i.e., every its element is the least upper bound of the set of atoms it dominates.

The trivial orthomodular lattice is the smallest possible orthomodular lattice {0,1}. An
orthomodular lattice L is complete if the supremum (hence also the infimum) of arbitrary
subsets exists in L. A subortholattice of L is a subset of L containing {0,1} and closed under
the operations ∧ and ′ (and therefore ∨, too) with the operations inherited from L.

A one-to-one mapping ϕ : L1 → L2 is an isomorphism of orthomodular lattices L1, L2 if
(i) a ≤ b is equivalent to ϕ(a) ≤ ϕ(b) for every a, b ∈ L1, and (ii) ϕ(a′) = ϕ(a)′ for every
a ∈ L1. An automorphism of an orthomodular lattice L is an isomorphism L→ L.

If L is an orthomodular lattice and a ∈ L \ {0}, then ([0, a],≤|[0,a],
∗,0, a) with [0, a] =

{b ∈ L : b ≤ a} and ∗ : b 7→ b′ ∧ a for every b ∈ [0, a] is an orthomodular lattice.
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Definition 2.2 Elements a, b of an orthomodular lattice L commute (are compatible) if
a = (a ∧ b) ∨ (a ∧ b′). We write a↔ b in such a case.

Commutativity is symmetric in orthomodular lattices. In an orthomodular lattice L, for
a ∈ L and M,N ⊆ L we write a ↔ M if a ↔ b for every b ∈ M and M ↔ N if a ↔ b
for every a ∈ M and b ∈ N . If L1 is a subortholattice of an orthomodular lattice L2 and
a, b ∈ L1 with a↔ b in L1 then a↔ b in L2. An orthomodular lattice in which every pair of
elements commutes is a Boolean algebra. The set of elements of an orthomodular lattice L
that commute with all elements of L is the center of L, denoted by C(L), and it is a Boolean
subalgebra of L. For M ⊂ L, the set of all elements commuting with every element of M
is the commutant of M (in L) and is denoted by K(M). A block of L is a maximal set of
pairwise commuting elements or, equivalently, a maximal Boolean subalgebra of L. Every
orthomodular lattice is the set-theoretical union of its blocks.

The following result gives an equivalent formulation for the commutativity:

Proposition 2.3 Let L be an orthomodular lattice and a, b ∈ L. Then a↔ b if and only if
there are pairwise orthogonal a1, b1, c ∈ L such that a = a1 ∨ c and b = b1 ∨ c.

The following properties shall be used in the sequel.

Proposition 2.4 [4, Theorem 5, Section §3, Ch. 1] Let L be an orthomodular lattice and
a, b, c ∈ L such that a ↔ b and a ↔ c. Then the sublattice of L generated by {a, b, c} is
distributive.

Proposition 2.5 [6, Proposition 1.3.10] If L is an orthomodular lattice, M ⊆ L such that∨
M exists in L and b ∈ L with b↔M then b↔

∨
M and b ∧

∨
M =

∨
a∈M (b ∧ a).

The product
∏
i∈I Li of a nonempty collection (Li)i∈I of orthomodular lattices is obtained

by endowing their Cartesian product with the “component-wise” partial order and ortho-
complementation (i.e., for a, b ∈

∏
i∈I Li, we have a ≤ b if ai ≤ bi for all i ∈ I and a = b′ if

ai = b′i for all i ∈ I). The horizontal sum of a nonempty collection (Li)i∈I of orthomodular
lattices is constructed as the disjoint union of all Li’s with identifying their least (greatest)
elements to obtain the least (greatest) element of the horizontal sum, the order and ortho-
complementation in the horizontal sum are inherited from Li (if ai, aj are not elements of the
same summand then, in the horizontal sum, ai ∧ aj = 0 and ai ∨ aj = 1). A summand that
is not a horizontal sum of at least two nontrivial orthomodular lattices is minimal. (Every
orthomodular lattice is the horizontal sum of itself and of an arbitrary collection of trivial
orthomodular lattices). Every summand is a subortholattice of the horizontal sum. Both the
product and the horizontal sum of a collection of orthomodular lattices are orthomodular
lattices.

Lemma 2.6 Let (Li)i∈I be a collection of orthomodular lattices and let L be their product.
The elements a = (ai)i∈I , b = (bi)i∈I of L commute if and only if ai ↔ bi for all i ∈ I.

Proof The proof is straightforward and therefore we leave it to the reader (see [6]). �

3



s
a

s
b

s
c

sd
se

s
a

s
b

s
c

sd
sesfsg

s
a

s
b

s
c

sd
sesfsgshsi

Figure 1: Greechie diagrams of orthomodular lattices used in Examples 3.3, 3.4 and 6.9.

3 Basics about spectral automorphisms

Let us briefly recall considerations that led to the introduction of spectral automorphisms
as well as their definition and a few important properties proved in [3].

Let H be a Hilbert space and P(H) the orthomodular lattice of projection operators on
H. According to a version of Wigner’s theorem due to Wright [9], automorphisms of P(H) are
of the form ϕU : P(H)→ P(H), ϕU (P ) = UPU−1, with U being a unitary or an antiunitary
operator on H. Let us assume that U is unitary and BU is the Boolean subalgebra of P(H)
that is the range of the spectral measure associated to U . Then P ∈ P(H) is ϕU -invariant
if and only if UP = PU if and only if P commutes with BU (i.e., commutes with every
projection operator in BU ) if and only if P ↔ BU (for the last two equivalences, see [2]).
This inspired naturally the definition of spectral automorphisms in orthomodular lattices.

Definition 3.1 Let L be an orthomodular lattice and ϕ be an automorphism of L. The
automorphism ϕ is spectral if there is a Boolean subalgebra B of L such that

ϕ(a) = a if and only if a↔ B . (P1)

A Boolean subalgebra of L satisfying condition (P1) is a spectral algebra of ϕ. The greatest
such Boolean algebra is the spectrum of ϕ, denoted by σϕ. The set of ϕ-invariant elements
of L (which is a subortholattice of L) is denoted by Lϕ.

Let us remark that the spectrum of a spectral automorphism of an orthomodular lattice
exists [3, Proposition 2.7].

Proposition 3.2 [3, see Proposition 2.9 and Corollary 2.2] An automorphism ϕ of an
orthomodular lattice L is spectral if and only if K

(
C(Lϕ)

)
⊆ Lϕ. In this case, σϕ = C(Lϕ).

Let us remark that obviously K
(
C(Lϕ)

)
⊇ Lϕ, hence the condition K

(
C(Lϕ)

)
= Lϕ

might be used in Proposition 3.2.
Let us discuss some examples of spectral automorphisms. We shall use the technique of

Greechie diagrams—see, e.g., [4]. A Greechie diagram of an orthomodular lattice L consists
of a set of points and a set of lines such that points are in one-to-one correspondence with
atoms of L and lines are in one-to-one correspondence with blocks of L. An automorphism
of a finite orthomodular lattice is completely determined by its values on atoms.

Example 3.3 Let L be the orthomodular lattice described by the first Greechie diagram
in Fig. 1. It is the union of two blocks, one determined by atoms {a, b, c} and the other
determined by atoms {c, d, e}. Let ϕ be an automorphism of L such that a, b, c are ϕ-invariant
and d, e are permuted by ϕ. Then the set Lϕ of ϕ-invariant elements of L is the block of
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L determined by atoms {a, b, c}. Since Lϕ is already Boolean, it coincides with its center
C(Lϕ) and since it’s a block, x ↔ Lϕ if and only if x ∈ Lϕ for every x ∈ L. Therefore ϕ is
spectral and σϕ = Lϕ = C(Lϕ).

Example 3.4 Let L be the orthomodular lattice described by the second Greechie diagram
in Fig. 1. It is the union of three blocks, the first determined by atoms {a, b, c}, the second
determined by atoms {c, d, e} and the last determined by atoms {e, f, g}. Let ϕ be an au-
tomorphism of L such that a, b, c, d, e are ϕ-invariant and f, g are permuted by ϕ. Then the
set Lϕ of ϕ-invariant elements of L is not a block but it is precisely the lattice from Exam-
ple 3.3 which is the union of blocks determined by atoms {a, b, c} and {c, d, e}. Its center is
C(Lϕ) = {0,1, c, c′} and for an element x ∈ L, x ↔ C(Lϕ) if and only if x ↔ c if and only
if x ∈ Lϕ. Therefore ϕ is spectral and σϕ = C(Lϕ) = {0,1, c, c′}.

Example 3.5 Let H be an n-dimensional complex Hilbert space and P(H) be the set of its
projection operators. Let Q be a 1-dimensional projection on H and Q′ be its orthogonal
complement. We define U : H → H as the symmetry of H with respect to the hyperplane
corresponding to Q′. It is easy to see that U is a unitary operator, therefore ϕ : P(H) →
P(H) defined by ϕ(P ) = UPU−1 is an automorphism of P(H). B = {0, Q,Q′,1} is a
Boolean subalgebra of P(H) fulfilling condition (P1) in Definition 3.1. Indeed, the set of
ϕ-invariant elements, as well as the set of elements that commute with B, is P0 ∪ P ′0, where
P0 = {A ∈ P(H) : A ≤ Q′} and P ′0 denotes the set of orthocomplements of the elements of
P0.

4 Spectral automorphisms in products and horizontal sums

We shall discuss the construction of spectral automorphisms in products and horizontal
sums of orthomodular lattices. This will show new ways to obtain spectral automorphisms,
proving the richness of this class of automorphisms. A factorization of the spectra of spectral
automorphisms is also discussed.

Theorem 4.1 Let L be the product of a collection (Li)i∈I of orthomodular lattices and,
for every i ∈ I, ϕi be an automorphism of Li. Let us define the mapping ϕ : L → L by
ϕ
(
(ai)i∈I

)
=
(
ϕi(ai)

)
i∈I . Then:

(1) ϕ is an automorphism of L;
(2) ϕ is spectral if and only if ϕi is spectral for every i ∈ I; in this case, σϕ =

∏
i∈I σϕi.

Proof (1) It is a routine verification.
(2) An element (ai)i∈I ∈ L is ϕ-invariant if and only if ϕi(ai) = ai for every i ∈ I,

i.e., Lϕ =
∏
i∈I Lϕi . According to Lemma 2.6, C(Lϕ) =

∏
i∈I C(Lϕi) and K

(
C(Lϕ)

)
=∏

i∈I K
(
C(Lϕi)

)
. According to Proposition 3.2, ϕ is spectral if and only if K

(
C(Lϕ)

)
= Lϕ,

i.e.,
∏
i∈I K

(
C(Lϕi)

)
=
∏
i∈I Lϕi , i.e., K

(
C(Lϕi)

)
= Lϕi for every i ∈ I, i.e., ϕi is spectral

for every i ∈ I. Moreover, in such a case, σϕ = C(Lϕ) =
∏
i∈I C(Lϕi) =

∏
i∈I σϕi . �

We shall turn now to spectral automorphisms in horizontal sums of orthomodular lattices.
Let us begin with some preparatory remarks.

Remark 4.2 Let L be an orthomodular lattice and ϕ be a spectral automorphism of L. If
Lϕ = {0,1} then L = {0,1}. This follows from the fact that σϕ = C(Lϕ) = {0,1} and
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{0,1} ↔ L, hence L ⊆ Lϕ = {0,1}.

Remark 4.3 Let L be the horizontal sum of a collection (Li)i∈I of orthomodular lattices. If
ai ∈ Li \{0,1} and aj ∈ Lj \{0,1} for some i, j ∈ I, i 6= j, then ai = aj . Indeed, ai∧aj = 0
and ai∧a′j = 0, hence (ai∧aj)∨ (ai∧a′j) = 0 6= ai. Hence, every nontrivial block (i.e., every
block if L is nontrivial) of L is a subset of exactly one summand.

Lemma 4.4 Let L be the horizontal sum of a collection (Li)i∈I of orthomodular lattices such
that every summand is minimal, ϕ be an automorphism of L such that ϕ(Li) ∩ Li 6= {0,1}
for some i ∈ I. Then the restriction ϕi of ϕ to Li is an automorphism of Li.

Proof The horizontal sum L is nontrivial, hence, according to Remark 4.3, every block of L
is a subset of exactly one summand. It is worth noting that for a block B of L, ϕ(B) is also
a block of L. Let us denote Li,j = {0,1} ∪

⋃
{B ⊆ Li : B is a block in L, ϕ(B) ⊆ Lj}. It is

easy to see that Li is the horizontal sum of (Li,j)j∈I . Since Li is a minimal summand and,
due to the condition ϕ(Li)∩Li 6= {0,1}, Li,i is nontrivial, we obtain Li,i = Li and therefore
ϕ(Li) ⊆ Li. By applying the same reasoning to ϕ−1, which also satisfies the condition
ϕ−1(Li)∩Li 6= {0,1}, we find that ϕ−1(Li) ⊆ Li. Hence ϕi is a bijection on Li and, since ϕ
is an automorphism of L, ϕi is an automorphism of Li. �

Theorem 4.5 Let L be the horizontal sum of a collection (Li)i∈I of orthomodular lattices
such that every summand is minimal and ϕ be an automorphism of L.

(1) If ϕ is spectral then there is an i ∈ I such that Lϕ ⊂ Li, σϕ ⊂ Li and the restriction
ϕi of ϕ to Li is a spectral automorphism of Li with Lϕi = Lϕ and σϕi = σϕ.

(2) If Lϕ 6= {0,1} and there is an i ∈ I such that Lϕ ⊂ Li and the restriction ϕi of ϕ to
Li is spectral then ϕ is a spectral automorphism of L and Lϕ = Lϕi, σϕ = σϕi.

Proof (1) It is obvious if L is trivial. Let us suppose that L is nontrivial. The spectrum σϕ
of ϕ is a Boolean subalgebra of L. According to Remark 4.3, there is an i ∈ I such that
σϕ ⊂ Li. For every a ∈ Lϕ, we have a ↔ σϕ and, according to Remark 4.3, a ∈ Li. Hence,
Lϕ ⊂ Li. According to Remark 4.2, there is an a ∈ Lϕ \{0,1} and, obviously, ϕ(a) = a ∈ Li.
Hence, ϕ(Li) ∩ Li 6= {0,1} and, according to Lemma 4.4, the restriction ϕi of ϕ to Li is an
automorphism of Li. Since Lϕ ⊂ Li, Lϕi = Lϕ and C(Lϕi) = C(Lϕ) = σϕ. Therefore, since
ϕ is spectral, ϕi is spectral, too, and σϕi = C(Lϕi) = σϕ.

(2) According to our assumptions, ϕ(Li) ∩ Li 6= {0,1}. According to Lemma 4.4, the
restriction ϕi of ϕ to Li is an automorphism of Li which we assume by hypothesis to be
spectral. Since a ∈ Lϕ = Lϕi if and only if a ↔ σϕi , ϕ is spectral and σϕ = C(Lϕ) =
C(Lϕi) = σϕi . �

Theorem 4.6 Let L be an orthomodular lattice, ϕ be a spectral automorphism of L and
a ∈ L \ {0,1} be ϕ-invariant. Let us denote by ϕa, ϕa′ the restrictions of ϕ to [0, a] and
[0, a′], respectively, and Bx = x ∧ σϕ = {x ∧ b : b ∈ σϕ} for every x ∈ L. Then:

(1) ϕa is a spectral automorphism of [0, a] and Ba is its spectral algebra;
(2) if a ∈ σϕ, then σϕa = Ba;
(3) σϕ is isomorphic to the product Ba ×Ba′.

Proof (1) Let us denote by ∗ : b 7→ b′∧a the orthocomplementation in [0, a] and let us verify
that ϕa is an automorphism of [0, a]. For every b ∈ [0, a], ϕa(b) = ϕ(b) ≤ ϕ(a) = a. Hence,
ϕa is a mapping into [0, a]. Since ϕ is an automorphism of L, for every b ∈ [0, a] there is a

6



c ∈ L such that ϕ(c) = b ≤ a = ϕ(a) and therefore c ≤ a. Hence, ϕa is a mapping onto [0, a].
Since ϕ is an automorphism of L, ϕa, ϕ

−1
a preserve the ordering and, for every b ∈ [0, a],

ϕa(b
∗) = ϕ(b′ ∧ a) = ϕ(b)′ ∧ ϕ(a) = ϕa(b)

∗.
Clearly, Ba ⊇ {0, a} and is closed under the operation ∧. Moreover, for every b ∈ σϕ,

a↔ b and, using Proposition 2.4, (a∧b)∗ = (a∧b)′∧a =
(
(a∧b)∨a′

)′
=
(
(a∨a′)∧(b∨a′)

)′
=

(b ∨ a′)′ = b′ ∧ a ∈ Ba. Hence Ba is closed under the operation ∗ and therefore Ba is a
subortholattice of [0, a]. For every b1, b2 ∈ σϕ, elements a, b1, b2 pairwise commute, hence
a ∧ b1 ↔ a ∧ b2 and therefore Ba is a Boolean subalgebra of [0, a].

Let us prove now that Ba is a spectral algebra of ϕa. Every ϕa-invariant c ∈ [0, a] is
ϕ-invariant, hence c ↔ σϕ. Since c ≤ a, we have c ↔ a and therefore c ↔ a ∧ b for every
b ∈ σϕ, i.e., c↔ Ba. Conversely, let c ∈ [0, a] with c↔ Ba. Hence c↔ a∧ b for every b ∈ σϕ.
Since c ≤ a ≤ a ∨ b′ = (a′ ∧ b)′, c ↔ a′ ∧ b. Using Proposition 2.5 and the fact that a ↔ b,
we find c ↔ (a ∧ b) ∨ (a′ ∧ b) = b for every b ∈ σϕ. Hence c is ϕ-invariant and therefore
ϕa-invariant.

(2) Since Ba is a spectral algebra of ϕa, Ba ⊆ σϕa . Let b ∈ σϕa = C(Lϕa). Since
a ∈ σϕ = C(Lϕ), for every c ∈ Lϕ we have c↔ a, i.e., c = (c∧ a)∨ (c∧ a′). Since c∧ a ∈ Lϕa

and b ≤ a, we obtain b ↔ (c ∧ a), (c ∧ a′) and therefore, according to Proposition 2.5,
b↔ (c∧a)∨ (c∧a′) = c for every c ∈ Lϕ. Hence, b ∈ C(Lϕ) = σϕ and, since b ≤ a, b = a∧ b,
i.e., b ∈ Ba.

(3) We shall prove that f : σϕ → Ba × Ba′ defined by f(b) = (a ∧ b, a′ ∧ b) is an
isomorphism and g : Ba ×Ba′ → σϕ with g(c1, c2) = c1 ∨ c2 is its inverse. Since a↔ σϕ, we
get g

(
f(b)

)
= (a∧ b)∨ (a′ ∧ b) = b for every b ∈ σϕ. For every c1 ∈ Ba and c2 ∈ Ba′ there are

b1, b2 ∈ σϕ such that c1 = b1∧a and c2 = b2∧a′. Then, f
(
g(c1, c2)

)
= f

(
(b1∧a)∨ (b2∧a′)

)
=(

a ∧ ((b1 ∧ a) ∨ (b2 ∧ a′)), a′ ∧ ((b1 ∧ a) ∨ (b2 ∧ a′))
)
. Since clearly {a, a′} ↔ {b1 ∧ a, b2 ∧ a′},

we obtain, according to Proposition 2.4,
(
a∧ ((b1 ∧ a)∨ (b2 ∧ a′)), a′ ∧ ((b1 ∧ a)∨ (b2 ∧ a′))

)
=

(a ∧ b1, a′ ∧ b2) = (c1, c2). Hence, f and g are bijective mappings and g = f−1. Clearly, both
f, g preserve the operation ∧ and therefore the ordering. It remains to prove that f preserves
the orthocomplementation. Let ] denote the orthocomplementation in Ba × Ba′ and ∗ the
orthocomplementations in Ba, Ba′ . For every b ∈ σϕ, we obtain f(b)] = (a ∧ b, a′ ∧ b)] =(
(a ∧ b)∗, (a′ ∧ b)∗

)
= (a ∧ b′, a′ ∧ b′) = f(b′). �

Question 4.7 Is it possible to omit the condition a ∈ σϕ in Theorem 4.6 (2)?

5 Characterizations of spectral automorphisms

Theorem 5.1 Let L be an orthomodular lattice. An automorphism ϕ of L is spectral if and
only if a ∧ b ∈ Lϕ for every a ∈ C(Lϕ) and b ∈ K

(
C(Lϕ)

)
.

Proof ⇒: If ϕ is spectral then, according to Proposition 3.2, K
(
C(Lϕ)

)
⊆ Lϕ. If a ∈ C(Lϕ)

and b ∈ K
(
C(Lϕ)

)
then a, b ∈ Lϕ and, since Lϕ is a subortholattice of L, we obtain a∧b ∈ Lϕ.

⇐: Let b ∈ K
(
C(Lϕ)

)
. For every a ∈ C(Lϕ), a′ ∈ C(Lϕ) and, due to the hypothesis,

a∧ b, a′∧ b ∈ Lϕ and, since b↔ a and Lϕ is a subortholattice of L, b = (a∧ b)∨ (a′∧ b) ∈ Lϕ.
Hence, K

(
C(Lϕ)

)
⊆ Lϕ and, according to Proposition 3.2, ϕ is spectral. �

Definition 5.2 Let L be an orthomodular lattice and ϕ an automorphism of L. An element
a ∈ L is totally ϕ-invariant if ϕ(b) = b for every b ∈ L with b ≤ a.

In the sequel, we shall need the following result:
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Proposition 5.3 [3, Proposition 2.4] If B is an atomic Boolean subalgebra of the ortho-
modular lattice L, a is an atom of B and b ∈ L with b ≤ a, then b↔ B.

Lemma 5.4 Let L be a complete orthomodular lattice and ϕ be an automorphism of L such
that C(Lϕ) is atomic with the set A of atoms. Then

∨
A = 1.

Proof Since L is complete,
∨
A exists in L. Since ϕ is an automorphism of L and A ⊆ Lϕ,

ϕ(
∨
A) =

∨
a∈A ϕ(a) =

∨
a∈A a =

∨
A and therefore

∨
A ∈ Lϕ. Since Lϕ ↔ A, according to

Proposition 2.5, Lϕ ↔
∨
A and therefore

∨
A ∈ C(Lϕ). Since C(Lϕ) is atomic,

∨
A = 1. �

Theorem 5.5 Let L be a complete orthomodular lattice and ϕ be an automorphism of L
such that C(Lϕ) is atomic. Then ϕ is spectral if and only if all atoms of C(Lϕ) are totally
ϕ-invariant.

Proof ⇒: Let a be an atom of C(Lϕ) and b ∈ L with b ≤ a. According to Propositions 5.3
and 3.2, b↔ C(Lϕ) = σϕ and therefore b is ϕ-invariant. Hence, a is totally ϕ-invariant.
⇐: Let b ∈ K

(
C(Lϕ)

)
and A be the set of atoms of C(Lϕ). Then, according to Lemma 5.4,∨

A = 1 and, according to Proposition 2.5, since b↔ A, b = b∧
∨
A =

∨
a∈A(b∧a). Since ϕ is

an automorphism and b∧a is ϕ-invariant for every a ∈ A, we obtain ϕ(b) =
∨
a∈A ϕ(b∧a) =∨

a∈A(b ∧ a) = b and therefore b ∈ Lϕ. Hence, K
(
C(Lϕ)

)
⊆ Lϕ and therefore, according to

Proposition 3.2, ϕ is spectral. �

Corollary 5.6 Let L be a complete orthomodular lattice and ϕ be an automorphism of L
such that C(Lϕ) is atomic. If all atoms of C(Lϕ) are atoms of L then ϕ is spectral.

Proof It follows easily from Theorem 5.5 because atoms of C(Lϕ) are ϕ-invariant and, being
atoms of L, they are totally ϕ-invariant. �

Theorem 5.7 Let L be a complete orthomodular lattice and ϕ be an automorphism of L
such that Lϕ and C(Lϕ) are atomic. If ϕ is spectral then all atoms of Lϕ are atoms of L.

Proof First, let us prove that every atom of Lϕ is dominated by an atom of C(Lϕ). Let us
suppose that b is an atom of Lϕ that is not dominated by any atom of C(Lϕ) and seek a
contradiction. For every atom a of C(Lϕ) we have b↔ a and therefore b = (b∧ a)∨ (b∧ a′).
Since b is an atom in Lϕ, either b ≤ a or b ≤ a′. Since we supposed that the first inequality
is not satisfied, we obtain b ≤ a′, i.e., a ≤ b′, hence

∨
{a ∈ L : a is an atom in C(Lϕ)} ≤ b′.

According to Lemma 5.4,
∨
{a ∈ L : a is an atom in C(Lϕ)} = 1 and therefore b = 0, which

is a contradiction.
According to Theorem 5.5, all atoms of C(Lϕ) are totally ϕ-invariant. Since all atoms of

Lϕ are dominated by atoms of C(Lϕ), all atoms of Lϕ are totally ϕ-invariant and therefore
they are atoms of L. �

6 Spectral families of automorphisms and a Stone-type theorem

Definition 6.1 Let L be an orthomodular lattice and Φ be a family of automorphisms of
L. The family Φ is spectral if there is a Boolean subalgebra B of L such that:

(ϕ(a) = a for every ϕ ∈ Φ) if and only if a↔ B . (P2)
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A Boolean algebra B satisfying condition (P2) is a spectral algebra of Φ. The set of Φ-invariant
elements of L (which is a subortholattice of L) is denoted by LΦ.

Let us remark that a family of (more than one) spectral automorphisms need not be a
spectral family of automorphisms—see Example 6.5.

Proposition 6.2 For every spectral family Φ of automorphisms of an orthomodular lattice
L there is the greatest spectral algebra of the family Φ.

Proof Let {Bi : i ∈ I} be the set of spectral algebras of the family Φ. If a ∈ Bi then a↔ Bi,
hence a ∈ LΦ and a ↔ Bj , for every i, j ∈ I. Hence Bi ↔ Bj for every i, j ∈ I and the
subortholattice of L generated by {Bi : i ∈ I} is a Boolean algebra (see [8]) and satisfies
condition (P2). Obviously, it is the greatest spectral algebra of the family Φ. �

Definition 6.3 Let Φ be a spectral family of automorphisms of an orthomodular lattice.
The spectrum σΦ of the family Φ is the greatest spectral algebra of the family Φ.

Proposition 6.4 Let Φ be a spectral family of automorphisms of an orthomodular lattice
L. Then:

(1) σΦ = C(LΦ);
(2) σΦ = C

(
K(σΦ)

)
(i.e., σΦ is C-maximal [3]);

(3) σΦ = K
(
K(σΦ)

)
.

Proof (1) According to Definition 6.1, B is a spectral algebra of Φ if and only if LΦ = K(B);
in such a case B ↔ B and therefore B ⊆ LΦ and B ⊆ C(LΦ). In particular, LΦ = K(σΦ) and
σΦ ⊆ C(LΦ). Obviously, LΦ ⊆ K

(
C(LΦ)

)
and, since σΦ ⊆ C(LΦ), K

(
C(LΦ)

)
⊆ K(σΦ) =

LΦ, hence C(LΦ) is a spectral algebra of Φ. Since σΦ ⊆ C(LΦ) and σΦ is the greatest spectral
algebra of Φ, we obtain σΦ = C(LΦ).

(2) According to part (1) and Definition 6.1, σΦ = C(LΦ) = C
(
K(σΦ)

)
.

(3) According to [3, Theorem 3.1], σΦ = C
(
K(σΦ)

)
if and only if σΦ = K

(
K(σΦ)

)
. �

Example 6.5 Let L be the lattice from Example 3.3, ϕ,ψ be automorphisms of L such that
a, b, c are ϕ-invariant, d, e are permuted by ϕ, c, d, e are ψ-invariant and a, b are permuted
by ψ. Then Φ = {ϕ,ψ} is a nonspectral family of spectral automorphisms. Indeed, we have
shown in Example 3.3 that ϕ is spectral, and, similarly, ψ is spectral, too. On the other hand,
LΦ = Lϕ ∩ Lψ = {0, c, c′,1} = C(LΦ), hence K(C(LΦ)) = L 6= LΦ and therefore, according
to Proposition 6.4, Φ is not a spectral family.

Theorem 6.6 Let L be an orthomodular lattice and Φ be a family of spectral automorphisms
of L. Then Φ is a spectral family if and only if σϕ ↔ σψ for every ϕ,ψ ∈ Φ. In this case,
the spectrum σΦ of the family contains all spectra σϕ, ϕ ∈ Φ.

Proof ⇒: Let ϕ ∈ Φ. For every a ∈ K(σΦ) = LΦ we have ϕ(a) = a and therefore a ↔ σϕ.
Hence, σϕ ↔ K(σΦ), and thus, using Proposition 6.4, σϕ ⊆ K

(
K(σΦ)

)
= σΦ. Since σΦ is a

Boolean algebra, we get σϕ ↔ σψ for every ϕ,ψ ∈ Φ.
⇐: Let us denote by B the subortholattice of L generated by

⋃
ϕ∈Φ σϕ. A subortholattice

of an orthomodular lattice generated by a family of pairwise commuting Boolean algebras
is a Boolean algebra (see [8]). The following statements are equivalent: ϕ(a) = a for every
ϕ ∈ Φ, a↔ σϕ for every ϕ ∈ Φ, a↔

⋃
ϕ∈Φ σϕ, a↔ B. Hence B is a spectral algebra and Φ
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is a spectral family. �

From the very beginning, the purpose of introducing and studying spectral automor-
phisms has been to construct something similar to the Hilbert space spectral theory without
using the specific instruments available in a Hilbert space setting, but using only the ab-
stract orthomodular lattice structure. The next result is intended as an analogue of the
Stone theorem concerning strongly continuous uniparametric groups of unitary operators.
Before stating it, we should notice the following easily verifiable facts:

Remark 6.7 (1) The identity id : L→ L is a spectral automorphism and σid = C(L).
(2) The inverse ϕ−1 of a spectral automorphism ϕ of L is also spectral and σϕ−1 = σϕ.

Theorem 6.8 Let L be an orthomodular lattice and Φ be a family of spectral automorphisms
of L. If Φ is an Abelian group and ϕ(Lψ) = Lϕψ for every ϕ,ψ ∈ Φ with ψ /∈ {id, ϕ−1} then:

(1) Lϕ = Lψ for every ϕ,ψ ∈ Φ \ {id};
(2) σϕ = σψ for every ϕ,ψ ∈ Φ \ {id};
(3) Φ is a spectral family.

Proof (1) Let ϕ,ψ ∈ Φ. The following statements are equivalent for every a ∈ L: a ∈ Lϕ,
ϕ(a) = a, ψ

(
ϕ(a)

)
= ψ(a), ϕ

(
ψ(a)

)
= ψ(a), ψ(a) ∈ Lϕ. Hence ψ(Lϕ) = Lϕ.

Let ϕ,ψ ∈ L \ {id} be different. If ψ = ϕ−1 then, obviously, Lϕ = Lψ. Let us suppose
that ψ 6= ϕ−1 and let us denote χ = (ϕψ)−1 = ψ−1ϕ−1. Since χ ∈ Φ \ {id, ϕ−1, ψ−1}, we
obtain Lϕ = Lχ−1ϕχ = χ−1

(
ϕ(Lχ)

)
= χ−1

(
ψ(Lχ))

)
= Lχ−1ψχ = Lψ.

(2) According to part (1) and Proposition 6.4 (1), σϕ = C(Lϕ) = C(Lψ) = σψ for every
ϕ,ψ ∈ Φ \ {id}.

(3) According to Proposition 3.2, σid = C(L) and therefore σid ↔ σϕ for every ϕ ∈ Φ.
Since, according to part (2), the set {σϕ : ϕ ∈ Φ} is at most 2-element, σϕ ↔ σψ for every
ϕ,ψ ∈ Φ. According to Theorem 6.6, Φ is a spectral family. �

Let us show a non-trivial example of an abelian group of spectral automorphisms satis-
fying the conditions of the Theorem 6.8.

Example 6.9 Let L be the orthomodular lattice described by the third Greechie diagram
in Fig. 1. L is the union of three blocks, the first determined by atoms {a, b, c}, the second
determined by atoms {c, d, e} and the last determined by atoms {e, f, g, h, i}. Let ϕ be an
automorphism of L such that a, b, c, d, e are ϕ-invariant and ϕ performs a cyclic permutation
on the atoms f, g, h, i (i.e., ϕ(f) = g, ϕ(g) = h, ϕ(h) = i and ϕ(i) = f). Clearly, ϕ4 = id and
Φ = {id, ϕ, ϕ2, ϕ3} is an abelian group of automorphisms of L. Lϕ = Lϕ2 = Lϕ3 = LΦ is the
set-theoretical union of the blocks determined by {a, b, c} and {c, d, e}. C(Lϕ) = C(Lϕ2) =
C(Lϕ3) = C(LΦ) = {0, c, c′,1} is the spectrum of automorphisms ϕ,ϕ2, ϕ3, and therefore of
the family Φ, because for x ∈ L, x↔ {0, c, c′,1} if and only if x↔ c if and only if x ∈ LΦ.

Let us remark that Theorem 6.8 gives purely algebraic conditions for a family of auto-
morphisms to have a spectrum. The last hypothesis (namely, that ϕ(Lψ) = Lϕψ) can be seen
as a replacement for the continuity condition in the original Stone theorem.
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