Constructions of Some Non- σ-porous Sets on the Real Line

Josef Tkadlec

MFF UK, Sokolovská 83, 18600 Praha 8, Czechoslovakia
The class of σ-porous sets introduced by E. P. Dolzenko [1] often appears as a description of exceptional sets in case these sets are of measure zero and of the first category. The fact that the class of σ-porous sets is strictly contained in the class \mathcal{A} of sets which are of measure zero and of the first category was demonstrated by L. Zajíček [4]. Since the class \mathcal{A} has the properties
(i) if a Borel set A does not belong to \mathcal{A}, then $A+A$ contains an interval, and
(ii) each disjoint family of Borel sets not belonging to \mathcal{A} is countable, it is natural to ask if these properties also hold with \mathcal{A} replaced by the class of σ-porous sets. These problems were posed by P. D. Humke [3] and W. Wilczynski at the symposium "Real Analysis" held in August 1982 in Esztergom, Hungary. J. Foran and P. D. Humke [2] showed some "enveloping" properties of σ-porous sets and posed a problem whether there exists a porous set contained in no σ-porous G_{δ} set.

Here we give positive answer to the last question and prove that the class of σ-porous sets has neither of the properties (i) or (ii) even for perfect sets. To construct the corresponding examples we give a general method of the construction of perfect non- σ-porous sets, a special case of which has been used by L. Zajíček [4] in his construction of perfect non- σ-porous set of measure zero.

For a subset S of the real line we define the set

$$
P(S)=\left\{x \in S ; \limsup _{\delta \rightarrow 0_{+}} \frac{l(S, x, \delta)}{\delta}>0\right\},
$$

where $l(S, x, \delta)$ is the length of the longest subinterval of $(x-\delta, x+\delta)$ disjoint from S. The set S is said to be porous if $P(S)=S$ and is said to be σ porous if it can be written as a countable union of porous sets. The Lebesgue measure of the set S will be denoted by $|S|$. By an open (closed) interval we mean any nonempty open (closed) connected subset of the real line. If x is a positive real number and I an open (closed) interval, then $x * I$ is the open (closed) interval with the same centre as I and with length $|x * I|=x \cdot|I|$. Through the paper we will distinguish the set of positive integers and the set of natural numbers (containing the number zero).

A general method of construction of perfect non- σ-porous sets.

 Assume that(a) $\left(k_{n}\right)_{n=1}^{\infty}$ is an arbitrary nondecreasing sequence of natural numbers such that $\lim _{n \rightarrow \infty} k_{n}=\infty$, and
(b) for every closed interval R and every positive integer n, a finite system $\mathcal{D}_{n}(R)$ of closed subintervals of R is given.
For every closed interval R and every positive integer n we define the system $\mathcal{R}_{n}(R)$ of closed, non-overlapping subintervals of R as follows: The set E of all those endpoints of the intervals $2^{k} * D, k=0, \ldots, k_{n}, D \in \mathcal{D}_{n}(R)$, which belong to $\operatorname{Int} R$ decompose R into $1+\operatorname{card} E$ closed, non-overlapping (necessarily non-degenerated) subintervals of R. The system $\mathcal{R}_{n}(R)$ is the system of all such subintervals of R which are not subsets of any element of $\mathcal{D}_{n}(R)$.

Let $a<b$ be real numbers. By induction we define systems \mathcal{R}_{n} of closed, non-overlapping intervals such that $\mathcal{R}_{0}=\{[a, b]\}$ and $\mathcal{R}_{n}=\bigcup\left\{\mathcal{R}_{n}(R) ; R \in\right.$ $\left.\mathcal{R}_{n-1}\right\}$ for every positive integer n.

Proposition. Suppose that for every positive integer n and every closed interval R the following conditions hold:
(C1) Whenever $D \in \mathcal{D}_{n}(R)$, then $2^{k_{n}+1} * D \subset R$.
(C2) Whenever $k \in\left\{0, \ldots, k_{n}\right\}$ and $D_{1}, D_{2} \in \mathcal{D}_{n}(R)$ are such that $\left(2^{k} *\right.$ $\left.D_{1}\right) \cap\left(2^{k} * D_{2}\right) \neq \emptyset$, then there is a $D \in \mathcal{D}_{n}(R)$ such that $\left(2^{k} * D_{1}\right) \cup$ $\left(2^{k} * D_{2}\right) \subset\left(2^{k} * D\right)$.
Then the set $S=\bigcap_{n=0}^{\infty} \bigcup\left\{R ; R \in \mathcal{R}_{n}\right\}$ is perfect and non- σ-porous.
Moreover, if the set S is nowhere dense and $G \supset P(S)$ is a G_{δ} set, then G is non- σ-porous.

Proof. It is easy to see that S is nonempty and perfect. Hence we need only to prove the second part of the proposition. Denote

$$
\begin{aligned}
\mathcal{D} & =\bigcup_{n=0}^{\infty}\left\{\operatorname{Int} D ; D \in \mathcal{D}_{n+1}(R) \text { and } R \in \mathcal{R}_{n}\right\} \backslash\{\emptyset\}, \\
G & =\bigcap_{m=1}^{\infty} G_{m},
\end{aligned}
$$

where $G_{m}(m=1,2, \ldots)$ are open sets.
Assume that G is σ-porous. Then there exists a sequence $\left(P_{m}\right)_{m=1}^{\infty}$ of porous sets such that

$$
\begin{equation*}
G=\bigcup_{m=1}^{\infty} P_{m} \tag{1}
\end{equation*}
$$

and such that for every positive integer m, for every $x \in P_{m}$ and every $\delta>0$, there exists an open interval $I \subset(x-\delta, x+\delta) \backslash P_{m}$ with $x \in 2 * I$ (this
immediately follows from [4], Theorem 4.5). We will construct a sequence $\left(F_{m}\right)_{m=0}^{\infty}$ of nonempty, perfect sets such that for every positive integer m, $F_{m} \cap P_{m}=\emptyset$ and $F_{m} \subset F_{m-1} \cap G_{m}$, which obviously contradicts (1). The sets F_{m} will be given by

$$
\begin{equation*}
F_{m}=R_{m} \backslash \bigcup\left\{2^{m} * D ; D \subset R_{m} \text { and } D \in \mathcal{D}\right\} \tag{2}
\end{equation*}
$$

where $R_{m} \subset G_{m}$ belongs to some $\mathcal{R}_{r_{m}}$ with

$$
\begin{equation*}
k_{r_{m}} \geq m+1 . \tag{3}
\end{equation*}
$$

From (2), (3) and the conditions (C1) and (C2) it is clear that the sets F_{m} will be nonempty and perfect.

Let r_{0} be a positive integer such that $k_{r_{0}} \geq 1$ and let $R_{0} \in \mathcal{R}_{r_{0}}$. We put

$$
F_{0}=R_{0} \backslash \bigcup\left\{D ; D \subset R_{0} \text { and } D \in \mathcal{D}\right\}=R_{0} \cap S .
$$

Suppose now that m is a positive integer and that F_{m-1} has been already defined. The set S is nowhere dense, hence $P(S) \cap \operatorname{Int} R_{m-1} \cap F_{m-1} \neq \emptyset$ and we can find a positive integer $r_{m}^{\prime} \geq r_{m-1}$ and an $R_{m}^{\prime} \in \mathcal{R}_{r_{m}^{\prime}}$ such that $R^{\prime} \subset R_{m-1} \cap G_{m}$ and such that the set

$$
F_{m}^{\prime}=R_{m}^{\prime} \backslash \bigcup\left\{2^{m-1} * D ; D \subset R_{m}^{\prime} \text { and } D \in \mathcal{D}\right\} \subset F_{m-1}
$$

is nonempty and perfect. We distinguish two cases:

1) $\bar{P}_{m} \not \supset F_{m}^{\prime}$. Then there exists a positive integer r_{m} and an $R_{m} \in \mathcal{R}_{r_{m}}$ such that (3) holds, $R_{m} \subset R_{m}^{\prime} \backslash \bar{P}_{m}$ and $R_{m} \cap F_{m}^{\prime}$ is infinite. We define F_{m} by (2).
2) $\bar{P}_{m} \supset F_{m}^{\prime}$. Because

$$
P_{m} \cap \operatorname{Int} R_{m}^{\prime} \subset \bigcup\left\{2 * I ; I \subset R_{m}^{\prime} \backslash P_{m} \text { is an open interval }\right\}
$$

and the components of $R_{m}^{\prime} \backslash F_{m}^{\prime}$ are $2^{m-1} * D$, where $D \subset R_{m}^{\prime}$ and $d \in \mathcal{D}$, it follows that

$$
P_{m} \cap \operatorname{Int} R_{m}^{\prime} \subset \bigcup\left\{2^{m} * D ; D \subset R_{m}^{\prime} \text { and } D \in \mathcal{D}\right\} .
$$

The set

$$
F_{m}^{\prime \prime}=R_{m}^{\prime} \backslash \bigcup\left\{2_{m} * D ; D \subset R_{m}^{\prime} \text { and } D \in \mathcal{D}\right\}
$$

is disjoint from $P_{m} \cap \operatorname{Int} R_{m}^{\prime}$, nonempty and perfect. There exist a positive integer r_{m} and an $R_{m} \in \mathcal{R}_{r_{m}}$ such that (3) holds, $R_{m} \subset \operatorname{Int} R_{m}^{\prime}$ and $R_{m} \cap F_{m}^{\prime \prime}$ is infinite. We define F_{m} by (2).

Corollary 1. There exists a porous set contained in no σ-porous G_{δ} set.

Theorem 1. There exists a perfect non- σ-porous set S such that for every finite sequence $\left(c_{1}, \ldots, c_{i}\right)$ the set $\sum_{j=1}^{i} c_{j} S$ is of measure zero; hence for every countable set C the set

$$
\left\{\sum_{j=1}^{i} c_{j} s_{j} ; i \text { is a natural number, } c_{j} \in C \text { and } s_{j} \in S\right\}
$$

does not contain any interval.
Proof. First we associate with every positive integer n, every closed interval $R=[c, d]$ and every positive integer N a system $\mathcal{D}_{n}(R, N)$ of closed subintervals of R and polynomial (not depending on R, N) P_{n} of one variable such that $\left|R \backslash \bigcup \mathcal{D}_{n}(R, N)\right| \leq n \cdot 3^{-N}|R|$ as follows.

Define the points $d_{m}, m=0, \pm 1, \ldots, \pm N, N+1$, by

$$
\begin{aligned}
{\left[d_{0}, d_{1}\right] } & =\frac{1}{2} *[c, d] \\
d_{-m}-c & =\frac{1}{3}\left(d_{-m+1}-c\right), \quad m=1, \ldots, N \\
d-d_{m} & =\frac{1}{3}\left(d-d_{m-1}\right), \quad m=2, \ldots, N+1
\end{aligned}
$$

It follows that

$$
\left|\left(c, d_{-N}\right)\right|=\left|\left(d_{N+1}, d\right)\right|=\frac{1}{4} \cdot 3^{-N}|R| .
$$

Hence it is possible to find in each interval $\left(d_{m}, d_{m+1}\right), m=0, \pm 1, \ldots, \pm N$, a closed subinterval such that the system $\mathcal{D}_{1}(R, N)$ of all these intervals fulfils

$$
\left|R \backslash \bigcup \mathcal{D}_{1}(R, N)\right| \leq 3^{-N}|R| .
$$

The number of intervals in $\mathcal{D}_{1}(R, N)$ is $P_{1}(N)=2 N+1$.
If $n>1$ is a positive integer and for every closed interval R^{\prime} and every positive integer N the system $\mathcal{D}_{n-1}\left(R^{\prime}, N\right)$ has been defined, then we define $\mathcal{D}_{n}(R, N)$ as follows: For every D from $\mathcal{D}_{1}(R, N)$ the endpoints of the intervals $2^{-k} * D, k=0, \ldots, n-1$, decompose D into $2 n-1$ non-overlapping closed subintervals. For each such subinterval I we constructed the system $\mathcal{D}_{n-1}(I, N)$. The system $\mathcal{D}_{n}(R, N)$ is the union of all such systems $\mathcal{D}_{n-1}(I, N)$ and of the set $\left\{2^{-n-1} * D ; D \in \mathcal{D}_{1}(R, N)\right\}$. Then

$$
\begin{aligned}
& \operatorname{card} \mathcal{D}_{n}(R, N)=(2 N+1) \cdot\left(1+(2 n-1) \cdot P_{n-1}(N)\right)=P_{n}(N) \\
& \left|R \backslash \bigcup \mathcal{D}_{n}(R, N)\right| \leq\left(3^{-N}+(n-1) \cdot 3^{-N}\right) \cdot|R| \leq n \cdot 3^{-N} \cdot|R|
\end{aligned}
$$

We select real numbers $a<b$, put $k_{n}=n-1$ for every positive integer n and construct the set S by our construction, where we put $\mathcal{D}_{n}(R)=\mathcal{D}_{n}\left(R, N_{n}\right)$ for suitable N_{n} such that

$$
\begin{equation*}
\left(\operatorname{card} \mathcal{R}_{n}\right)^{n} \cdot\left|\bigcup \mathcal{R}_{n}\right| \leq \frac{1}{n} \tag{4}
\end{equation*}
$$

for every positive integer n. This is possible, because
$\left(\operatorname{card} \mathcal{R}_{n}\right)^{n} \cdot\left|\bigcup \mathcal{R}_{n}\right| \leq\left(\left(2 n P_{n}\left(N_{n}\right)+1\right) \cdot \operatorname{card} \mathcal{R}_{n-1}\right)^{n} \cdot n \cdot 3^{-N_{n}} \cdot\left|\bigcup \mathcal{R}_{n-1}\right|$.
According to Proposition the set S is non- σ-porous. From (4) it follows that for every positive integer n

$$
\begin{aligned}
\left|\sum_{j 1}^{i} c_{j} S\right| & \leq\left|\sum_{j=1}^{i} c_{j}\left(\bigcup \mathcal{R}_{n}\right)\right|=\left|\bigcup_{R_{1} \in \mathcal{R}_{n}} \cdots \bigcup_{R_{i} \in \mathcal{R}_{n}} \sum_{j=1}^{i} c_{j} R_{j}\right| \\
& \leq \sum_{R_{1} \in \mathcal{R}_{n}} \cdots \sum_{R_{i} \in \mathcal{R}_{n}} \sum_{j=1}^{i}\left|c_{j}\right| \cdot\left|R_{j}\right| \\
& \leq i \cdot \max \left\{\left|c_{j}\right| ; j=1, \ldots, i\right\} \cdot\left(\operatorname{card} \mathcal{R}_{n}\right)^{i} \cdot\left|\bigcup \mathcal{R}_{n}\right| \\
& \leq \frac{i}{n} \cdot \max \left\{\left|c_{j}\right| ; j=1, \ldots, i\right\} \cdot\left(\operatorname{card} \mathcal{R}_{n}\right)^{i-n},
\end{aligned}
$$

hence $\left|\sum_{j=1}^{i} c_{j} S\right|=0$.
Theorem 2. Let K be of the first category. Then there exists a perfect, non- σ-porous set S of measure zero disjoint from K.

Proof. We need only to prove that for every F_{σ} set K of the first category and of full measure there exists a perfect, non- σ-porous set S disjoint from K. Denote $K=\bigcup_{m=1}^{\infty} F_{m}$, where $F_{m}(m=1,2, \ldots)$ are closed and nowhere dense. First we associate with every positive integer n, every closed interval R such that $K \cap$ bdry $R=\emptyset$ and with every positive integer m a finite system $\mathcal{D}_{n}(R, m)$ of closed subintervals of R such that

$$
\begin{equation*}
\left(F_{m} \cap R\right) \subset \bigcup\left\{\operatorname{Int} D ; D \in \mathcal{D}_{n}(R, m)\right\} \tag{5}
\end{equation*}
$$

as follows.
Because $F_{m} \cap$ bdry $R=\emptyset$ and because F_{m} is closed and nowhere dense, there exists a finite disjoint system $\mathcal{D}_{1}(R, m)$ of closed non-degenerated subintervals of R such that (5) holds and that $2 * D \subset R$ whenever $D \in$ $\mathcal{D}_{1}(R, m)$. Because the set K is of the first category it is possible to choose the system $\mathcal{D}_{1}(R, m)$ such that

$$
K \cap \bigcup\left\{\text { bdry } 2^{k} * D ; k \text { is an integer and } D \in \mathcal{D}_{1}(R, m)\right\}=\emptyset .
$$

If $n>1$ is a positive integer and for every closed interval R^{\prime} with $K \cap$ bdry $R^{\prime}=\emptyset$ and for every positive integer m the system $\mathcal{D}_{n-1}(R, m)$ has been defined, then we define $\mathcal{D}_{n}(R, m)$ as follows: For every D from $\mathcal{D}_{1}(R, m)$ the endpoints of the intervals $2^{-k} * D, k=0, \ldots, n-1$, decompose D
into $2 n-1$ non-overlapping closed subintervals $I_{j}(D), j=0, \ldots, 2 n-2$, $I_{0}(D)=2^{-n+1} * D$. We define

$$
\begin{aligned}
\mathcal{D}_{n}(R, m)= & \bigcup\left\{\mathcal{D}_{n-1}\left(I_{j}(D), m\right) ; j=1, \ldots, 2 n-2 \text { and } D \in \mathcal{D}_{1}(R, m)\right\} \\
& \cup\left\{2^{-n+1} * D ; D \in \mathcal{D}_{1}(R, m)\right\}
\end{aligned}
$$

We select real numbers $a<b$ not belonging to K and put $k_{n}=n-1$ for every positive integer $n, \mathcal{D}_{n}(R)=\mathcal{D}_{n}(R, n)$ for every closed interval R with $K \cap \operatorname{bdry} R=\emptyset$ and for every positive integer n. We construct the set S by our construction. It is easy to see that the conditions (C1) and (C2) hold and that for every positive integer $n,\left(\bigcup \mathcal{R}_{n+1}\right) \cap F_{n}=\emptyset$. Therefore $S \cap K=\emptyset$ and. according to Proposition, the set S is non- σ-porous.

Corollary 2. There exists an uncountable family of disjoint non- σ-porous perfect subsets of the real line.

Remark. By combining the constructions of $\mathcal{D}_{n}(R)$ from proofs of Theorems 1 and 2 it is possible to construct the set S from Theorem 1 disjoint from a given set K of the first category.

References

[1] E. P. Dolzenko: Boundary properties of arbitrary functions. Izv. Akad. Nauk SSSR Ser. Mat. 31 (1967), 3-14.
[2] J. Foran, P. D. Humke: Some set theoretic properties of σ-porous sets. Real Anal. Exchange 6 (1980-81), 114-119.
[3] P. D. Humke: Some problems in need solution. Real Anal. Exchange 7 (1981-82), 31-41.
[4] L. Zajíček: Sets of σ-porosity and sets of σ-porosity (q). Čas. pro pěst mat. 101 (1976), 350-359.

