Concrete Quantum Logics with Covering Properties

Vladimír Müller, ${ }^{1}$ Pavel Pták, ${ }^{2}$ and Josef Tkadlec ${ }^{2}$

Received April 8, 1991

Abstract

Let L be a concrete ($=$ set representable) quantum logic. Let n be a natural number (or, more generally, a cardinal). We say that L admits intrinsic coverings of the order n, and write $L \in \mathcal{C}_{n}$, if for any pair $A, B \in$ L we can find a collection $\left\{C_{i}: i \in I\right\}$, where card $I<n$ and $C_{i} \in L$ for any $i \in I$, such that $A \cap B=\bigcup_{i \in I} C_{i}$. Thus, in a certain sense, if $L \in \mathcal{C}_{n}$ then "the rate of noncompatibility" of an arbitrary pair $A, B \in L$ is less than a given number n. In this paper we first consider general and combinatorial properties of logics of \mathcal{C}_{n} and exhibit typical examples. In particular, for a given n we construct examples of $L \in \mathcal{C}_{n+1} \backslash \mathcal{C}_{n}$. Further, we discuss the relation of the classes \mathcal{C}_{n} to other classes of logics important within the quantum theories (e.g., we discover the interesting relation to the class of logics which have an abundance of Jauch-Piron states). We then consider conditions on which a class of concrete logics reduce to Boolean algebras. We conclude with some open questions.

1. PRELIMINARIES

Among the quantum logics, whose significance within the axiomatics of quantum theories has been advocated in $[1,13,4,7,3,8]$, etc., a special conceptual role play concrete logics. A concrete (quantum) logic L is the one which admits a set representation. In this paper we shall exclusively deal with concrete logics.

It is known (see e.g. [3, 9]), two sets $A, B \in L$ form a compatible pair in L if and only if $A \cap B \in L$. Obviously, if L should model a "genuinely quantum experiment" it has to contain noncompatible pairs (and, therefore, it cannot be a Boolean algebra). In this paper we consider those concrete logics where the relation of noncompatibility can be "approximated" by elements of L. As we shall see, apart from a potential application in the quantum theories, these logics also enjoy interesting combinatorial properties.

[^0]Let us now recall the main notion we shall deal with in the sequel.
Definition 1.1. A concrete logic is a pair (X, L), where L is such a collection of subsets of X which fulfills the following properties:
(1) $\emptyset \in L$.
(2) $A^{c}=X \backslash A \in L$ whenever $A \in L$.
(3) $A \cup B \in L$ whenever $A, B \in L$ with $A \cap B=\emptyset$.

Thus, concrete logics are (nonvoid) collections of subsets of a set which contain the empty set and which are closed under the formation of the complements and of the disjoint (finite) unions. Observe also that if $A, B \in L$ and $A \subset B$, then $B \backslash A=\left(A \cup B^{c}\right)^{c} \in L$.

2. CONCRETE LOGICS WITH "COVERING PROPERTIES"

A concrete logic (X, L) is a Boolean algebra if and only if $A \cap B \in L$ for any $A, B \in L$. Thus, for a general logic, it is natural to introduce a classification of logics expressed in terms of how many their elements are needed for the covering of intersections. This is done in the following definition. [Also, the definition has certain bearing on the physically significant notion of compatibility (resp. noncompatibility) as we have indicated in the introduction.]

Definition 2.1. Let α be a cardinal. Then \mathcal{C}_{α} denotes the class of concrete logics which are determined by the following property: If $A, B \in L$ with $A \neq B$ then there is a collection $\left\{C_{i}: i \in I\right\}$, where $\operatorname{card} I<\alpha$ and $C_{i} \in L$ for any $i \in I$, such that $A \cap B=\bigcup_{i \in I} C_{i}$.

Let us first consider the relation between the classes \mathcal{C}_{α}. Let us start with a simple observation (Note that in our classification, the class \mathcal{C}_{2} is exactly the class of all (concrete) Boolean algebras.).

Proposition 2.2. The following relation holds: $\emptyset \neq \mathcal{C}_{0} \varsubsetneqq \mathcal{C}_{1} \varsubsetneqq \mathcal{C}_{2} \nRightarrow \mathcal{C}_{3}$.
Proof. The inclusion $\mathcal{C}_{0} \subset \mathcal{C}_{1} \subset \mathcal{C}_{2} \subset \mathcal{C}_{3}$ is obvious. Moreover, $\mathcal{C}_{0}=$ $\{(\emptyset,\{\emptyset\})\} \neq \emptyset$. The class \mathcal{C}_{1} is the class of all concrete logics (X, L) such that $L=\{\emptyset, X\}$. Hence, $\mathcal{C}_{0} \neq \mathcal{C}_{1}$. The class \mathcal{C}_{2} is the class of concrete Boolean algebras. Hence, $\mathcal{C}_{1} \neq \mathcal{C}_{2}$. It remains to prove that $\mathcal{C}_{2} \neq \mathcal{C}_{3}$. Put $X=[0,1]$ and let L be the set of all Borel subsets of the interval $[0,1]$ such that their Lebesgue measure is a rational number. Then $(X, L) \in \mathcal{C}_{3} \backslash \mathcal{C}_{2}$. Indeed, every Borel subset of $[0,1]$ is a union of two Borel sets with a rational Lebesgue
measure and, on the other hand, there are Borel subsets of $[0,1]$ with a rational Lebesgue measure such that the Lebesgue measure of their intersection is not rational.

Proposition 2.3. Let n be a natural number with $n \geq 3$. Then $\mathcal{C}_{n} \neq \mathcal{C}_{n+1}$.
Proof. The inclusion $\mathcal{C}_{n} \subset \mathcal{C}_{n+1}$ is obvious. Let us construct a concrete $\operatorname{logic}(X, L) \in \mathcal{C}_{n+1} \backslash \mathcal{C}_{n}$. Put

$$
\begin{aligned}
X_{0} & =\{a, b, c, d\} \\
L_{0} & =\left\{\emptyset,\{a, b\},\{b, c\},\{c, d\},\{d, a\}, X_{0}\right\} \\
Y & =\{0,1,2, \ldots, n\} \\
K_{1} & =\{\emptyset\} \cup\{\{0, y\}: y \in Y \backslash\{0\}\} \\
K_{2} & =\left\{Y \backslash B: B \in K_{1}\right\}
\end{aligned}
$$

Then $\left(X_{0}, L_{0}\right),\left(Y, K_{1} \cup K_{2}\right)$ are concrete logics. Let us inductively define a sequence of concrete logics $\left(X_{k}, L_{k}\right), k \geq 1$. First, for every $A \subset X_{k-1} \times Y$, let us write

$$
\begin{aligned}
P_{x}(A) & =\{y \in Y:(x, y) \in A\} \text { for every } x \in X_{k-1} \\
P_{1}(A) & =\left\{x \in X_{k-1}: P_{x}(A) \in K_{1}\right\} \\
P_{2}(A) & =\left\{x \in X_{k-1}: P_{x}(A) \in K_{2}\right\}
\end{aligned}
$$

Now, put

$$
\begin{aligned}
X_{k} & =X_{k-1} \times Y \\
L_{k} & =\left\{A \subset X_{k}: P_{1}(A), P_{2}(A) \in L_{k-1}, P_{1}(A)=P_{2}(A)^{c}\right\}
\end{aligned}
$$

We shall prove (by induction) that $\left(X_{k}, L_{k}\right)$ is a concrete logic. Indeed, $\emptyset=$ $X_{k-1} \times \emptyset \in L_{k}$. For any $A \in L_{k}$ we have $P_{x}\left(A^{c}\right)=Y \backslash P_{x}(A)$. Hence, $P_{1}\left(A^{c}\right)=$ $P_{2}(A), P_{2}\left(A^{c}\right)=P_{1}(A)$ and therefore $A^{c} \in L_{k}$. Finally, suppose that $A, B \in L_{k}$ with $A \cap B=\emptyset$. Then $P_{x}(A) \cap P_{x}(B)=\emptyset$ for every $x \in X_{k-1}$ and therefore $P_{2}(A) \cap P_{2}(B)=\emptyset$ and $P_{2}(A \cup B)=P_{2}(A) \cup P_{2}(B) \in L_{k-1}$. On the other hand, $P_{x}(A \cup B)=P_{x}(A) \cup P_{x}(B) \in K_{1} \cup K_{2}$ for every $x \in X_{k-1}$. We infer that $P_{1}(A \cup B)=X_{k-1} \backslash P_{2}(A \cup B)$. Now, let us define

$$
\begin{aligned}
X & =X_{0} \times \prod_{i=1}^{\infty} Y \\
L & =\bigcup_{k=0}^{\infty}\left\{A_{k} \times \prod_{i=k+1}^{\infty} Y: A_{k} \in L_{k}\right\}
\end{aligned}
$$

It is easy to see that (X, L) is a concrete logic. It remains to be proved that $(X, L) \in \mathcal{C}_{n+1} \backslash \mathcal{C}_{n}$.

First, suppose that $A, B \in L$. Then there is a natural number k such that $A=A_{k} \times \prod_{i=k+1}^{\infty} Y, B=B_{k} \times \prod_{i=k+1}^{\infty} Y$ and $A_{k}, B_{k} \in L_{k}$. Since

$$
A \cap B=\left(A_{k} \cap B_{k}\right) \times \prod_{i=k+1}^{\infty} Y=\bigcup_{y \in Y \backslash\{0\}}\left(\left(A_{k} \cap B_{k}\right) \times\{0, y\} \times \prod_{i=k+2}^{\infty} Y\right)
$$

and $\left(A_{k} \cap B_{k}\right) \times\{0, y\} \in L_{k+1}$ for every $y \in Y \backslash\{0\}$, we have $(X, L) \in \mathcal{C}_{n+1}$. Finally, let us suppose that the set

$$
\{a\} \times \prod_{k=1}^{\infty} Y=\left(\{a, b\} \times \prod_{k=1}^{\infty} Y\right) \cap\left(\{a, d\} \times \prod_{k=1}^{\infty} Y\right)
$$

can be expressed as a union of m elements of L, where $m<n$. Let us seek a contradiction. There is a natural number $k \geq 1$ such that

$$
\{a\} \times \prod_{k=1}^{\infty} Y=\bigcup_{j=1}^{m}\left(A_{k, j} \times \prod_{i=k+1}^{\infty} Y\right)
$$

for some $A_{k, j} \in L_{k}, j \in\{1, \ldots, m\}$. For every $x \in\{a\} \times \prod_{i=1}^{k-1} Y$ we have

$$
Y=P_{x}\left(\{a\} \times \prod_{i=1}^{k} Y\right)=\bigcup_{j=1}^{m} P_{x}\left(A_{k, j}\right)
$$

Hence, $P_{x}\left(A_{k, j}\right) \in K_{2}$ and therefore $x \in P_{2}\left(A_{k, j}\right)$ for some $j \in\{1, \ldots, m\}$. Thus,

$$
\{a\} \times \prod_{k=1}^{\infty} Y=\bigcup_{j=1}^{m}\left(P_{2}\left(A_{k, j}\right) \times \prod_{i=k}^{\infty} Y\right)
$$

where $P_{2}\left(A_{k, j}\right) \in L_{k-1}$ for every $j \in\{1, \ldots, m\}$. Proceeding by induction, we obtain

$$
\{a\} \times \prod_{k=1}^{\infty} Y=\bigcup_{j=1}^{m}\left(A_{0, j} \times \prod_{i=1}^{\infty} Y\right)
$$

for some $A_{0, j} \in L_{0}(j \in\{1, \ldots, m\})$. This is a contradiction.
Remarks. 1. The construction in Proposition 2.3 can be used also for infinite cardinal numbers. It suffices to take Y of cardinality α and proceed by
transfinite induction up to α. Nevertheless, in the proof of Proposition 2.4 we will show a much more simple construction towards this aim.
2. It is possible to construct a concrete $\operatorname{logic}\left(X^{\prime}, L^{\prime}\right) \in \mathcal{C}_{n+1} \backslash \mathcal{C}_{n}$ such that X^{\prime} is a countable set. It suffices to consider only such sequences in X in the proof of Proposition 2.4 that are constant from some index on and put $L^{\prime}=\left\{A \cap X^{\prime}: A \in L\right\}$.

Proposition 2.4. For every infinite cardinal number α we have $\mathcal{C}_{\alpha} \nsubseteq \mathcal{C}_{\alpha^{+}}$.
Proof. The inclusion $\mathcal{C}_{\alpha} \subset \mathcal{C}_{\alpha^{+}}$is obvious. Let $X_{1}, X_{2}, X_{3}, X_{4}$ be disjoint sets each of cardinality α. Set $X=X_{1} \cup X_{2} \cup X_{3} \cup X_{4}$. Let us define a concrete logic (X, L) in the following way: L consists of the sets $A \subset X$ such that the set $(A \backslash B) \cup(B \backslash A)$ is finite for some set $B \in\left\{\emptyset, X_{1} \cup X_{2}, X_{2} \cup X_{3}, X_{3} \cup\right.$ $\left.X_{4}, X_{4} \cup X_{1}, X\right\}$.

Suppose that $A, B \in L$. Since the cardinality of $A \cap B$ is at most α, $A \cap B=\bigcup_{x \in A \cap B}\{x\}$. Since $\{x\} \in L$ for every $x \in X$, we have $(X, L) \in \mathcal{C}_{\alpha^{+}}$.

On the other hand, every element of L that is a subset of $X_{1}=\left(X_{1} \cup\right.$ $\left.X_{2}\right) \cap\left(X_{1} \cup X_{4}\right)$ is finite. Thus, X_{1} cannot be written as a union of less than α elements of L and therefore $(X, L) \notin \mathcal{C}_{\alpha}$.

Theorem 2.5. For every cardinal number α we have $\bigcup_{\beta<\alpha} \mathcal{C}_{\beta} \nsubseteq \mathcal{C}_{\alpha}$.
Proof. The inclusion $\bigcup_{\beta<\alpha} \mathcal{C}_{\beta} \subset \mathcal{C}_{\alpha}$ is obvious. According to Proposition 2.2, Proposition 2.3 and Proposition 2.4, for every cardinal number β there is a concrete $\operatorname{logic}\left(X_{\beta}, L_{\beta}\right) \in \mathcal{C}_{\beta^{+}} \backslash \mathcal{C}_{\beta}$. Let us define the concrete logic (X, L) in the following way (it is in fact the $0-1$ pasting of logics $\left(X_{\beta}, L_{\beta}\right)$; see e.g. $[3,8]$):

$$
\begin{aligned}
X & =\prod_{\beta<\alpha} X_{\beta} \\
L & =\left\{\prod_{\beta<\alpha} A_{\beta}: A_{\beta} \in L_{\beta} \text { and } A_{\beta} \neq L_{\beta} \text { for at most one } \beta<\alpha\right\}
\end{aligned}
$$

Then it is easy to check that $(X, L) \in \mathcal{C}_{\alpha} \backslash \bigcup_{\beta<\alpha} \mathcal{C}_{\beta}$ (all operations are coordinatewise).

Proposition 2.6. We have $\bigcup_{\alpha \in \operatorname{card}} \mathcal{C}_{\alpha}=\mathcal{C}_{\text {card }}$, where card is the class of all cardinal numbers.

Proof. The inclusions $\mathcal{C}_{\alpha} \subset \mathcal{C}_{\text {card }}$ are obvious. Suppose that $(X, L) \in \mathcal{C}_{\text {card }}$. For every $A, B \in L$ there is a cardinal number $\alpha_{A, B}$ such that $A \cap B$ is the union of less than $\alpha_{A, B}$ elements of L. Then $L \in \mathcal{C}_{\alpha}$ for $\alpha=\sup \left\{\alpha_{A, B}: A, B \in L\right\}$.

3. THE CLASSES \mathcal{C}_{α} AND JAUCH-PIRONNESS

In this section we shall show that there is an interesting link between covering properties (and our classes \mathcal{C}_{α}) and the Jauch-Piron property of states (see e.g. $[4,7,8]$). Let us first introduce and recall all properties of states we shall deal with.

Definition 3.1. Let (X, L) be a concrete logic. A state on (X, L) is a mapping $s: L \rightarrow[0,1]$ such that
(1) $s(A \cup B)=s(A)+s(B)$ whenever $A, B \in L$ with $A \cap B=\emptyset$,
(2) $s(X)=1$ if $X \neq \emptyset$.

A state s is called Jauch-Piron if for every $A, B \in L$ with $s(A)=s(B)=1$ there is a $C \in L$ such that $C \subset A \cap B$ and $s(C)=1$.

A two-valued state s on (X, L) is said to be carried by a point $x \in X$ (and denoted by s_{x}) if for every $A \in L$ we have $s(A)=1$ iff $x \in A$.

The set S of (not necessarily all) states on (X, L) is called full if for every $A, B \in L$ with $A \not \subset B$ there is a state $s \in S$ such that $s(A) \not \leq s(B)$.

It is easy to see that $s(\emptyset)=0$ and $s\left(A^{c}\right)=1-s(A)$ for every state s on a concrete logic (X, L) and for every $A \in L \backslash\{\emptyset\}$. Let us also observe that the set of all states carried by a point is already full.

A characterization of the class $\mathcal{C}_{\text {card }}$ gives the following proposition.
Proposition 3.2. $\mathcal{C}_{\text {card }}$ is the class of all concrete logics such that every state on it carried by a point is Jauch-Piron. (In particular, every concrete logic of the class $\mathcal{C}_{\text {card }}$ has a full set of two-valued Jauch-Piron states and, on the other hand, every concrete logic with a full set of two-valued Jauch-Piron states has a representation belonging to the class $\mathcal{C}_{\text {card }}$.)

Proof. A concrete logic (X, L) belongs to the class $\mathcal{C}_{\text {card }}$ iff for every pair $A, B \in L$ and for every $x \in A \cap B$ there is a $C \in L$ such that $x \in C \subset A \cap B$. In other words, for every state s_{x} carried by a point $x \in X$ and for every $A, B \in L$ with $s_{x}(A)=s_{x}(B)=1$ there is a $C \in L$ such that $C \subset A \cap B$ and $s_{x}(C)=1$. This proves Proposition 3.2, the remaining part is easy.

Proposition 3.3. Every two-valued state on a concrete logic of the class \mathcal{C}_{3} is Jauch-Piron. On the other hand, there is a concrete logic of the class \mathcal{C}_{3} with a state that is not Jauch-Piron.

Proof. Suppose that $(X, L) \in \mathcal{C}_{3}$. Suppose further that s is a two-valued state on (X, L) and $A, B \subset L$ with $s(A)=s(B)=1$. There are $C, D \in L$ such that $A \cap B=C \cup D$. Since the sets $(A \backslash C),(B \backslash D) \in L$ are disjoint, we have either $s(A \backslash C)=0$ or $s(B \backslash D)=0$. Thus, either $s(C)=1$ or $s(D)=1$. Hence, s is Jauch-Piron.

Let us now take the concrete logic $(X, L) \in \mathcal{C}_{3} \backslash \mathcal{C}_{2}$ of the proof of Proposition 2.2 and a Borel subset B of the interval $[0,1]$ with a non-rational Lebesgue measure. Then the state s on (X, L) defined, for every $A \in L$, by the formula $s(A)=\lambda(A \cap B) / \lambda(B)$, where λ denotes the Lebesgue measure, is not JauchPiron. Indeed, there are $A_{1}, A_{2} \in L$ such that $A_{1} \cap A_{2}=B$ and for every $A \in L$ with $A \subset B$ we have $s(A)<1$.

Proposition 3.4. Suppose that α is a cardinal number with $\alpha>3$. Then there is a concrete logic of the class \mathcal{C}_{α} with a two-valued state that is not Jauch-Piron.

Proof. Let us take the concrete logic (X, L) of the proof of Proposition 2.3 for $n=3$ and let us define by induction a two-valued state s on (X, L) as follows:

$$
\begin{aligned}
& s\left(\{a, b\} \times \prod_{i=1}^{\infty} Y\right)=s\left(\{a, d\} \times \prod_{i=1}^{\infty} Y\right)=1 \\
& s\left(A_{k} \times \prod_{i=k+1}^{\infty} Y\right)=s\left(P_{2}\left(A_{k}\right) \times \prod_{i=k}^{\infty} Y\right)
\end{aligned}
$$

for every $k \geq 1$ and for every $A_{k} \in L_{k}$. Then for every $A \in L$ with

$$
A \subset\{a\} \times \prod_{i=1}^{\infty} Y=\left(\{a, b\} \times \prod_{i=1}^{\infty} Y\right) \cap\left(\{a, d\} \times \prod_{i=1}^{\infty} Y\right)
$$

we have $s(A)=0$. Hence, s is not Jauch-Piron.
Theorem 3.5. The class of concrete logics with the property that every two-valued state is Jauch-Piron is a proper subclass of the class \mathcal{C}_{ω}, where ω denotes the first infinite cardinal number.

Proof. Suppose that (X, L) is a concrete logic such that every its twovalued state is Jauch-Piron. Consider the couple (X^{\prime}, L^{\prime}), where X^{\prime} is the set of all two-valued states, and A^{\prime} belongs to L^{\prime} if and only if there exists $A \in L$ such that A^{\prime} is exactly the set of all two-valued states s on L with $s(A)=1$. By applying the standard Boolean algebra reasoning, we can prove that L^{\prime} consist of (not necessarily all) clopen subsets of the compact topological space X^{\prime} whose base for open sets is precisely L^{\prime} (see e.g. [12] for the details). We can view X as a subset of X^{\prime} (we adopt the standard identification of the states carried by points of X with the corresponding points of X). Since L^{\prime} is the base of open sets of X^{\prime} and since X^{\prime} is compact, we infer that for every $A^{\prime}, B^{\prime} \in L^{\prime}$, the set $A^{\prime} \cap B^{\prime}$ is a union of a finite subset of L^{\prime}. Since $L=\left\{A \subset X: A=A^{\prime} \cap X\right.$ for some $\left.A^{\prime} \in L^{\prime}\right\}$, we obtain $(X, L) \in \mathcal{C}_{\omega}$ (It should be noted that an alternative proof of this result can be derived from the technique of the proof of Theorem 3.1 in [5].).

Theorem 3.6. The class $\mathcal{C}_{\text {card }}$ is a proper subclass of the class of all concrete logics with a full set of two-valued Jauch-Piron states.

Proof. The inclusion follows from Proposition 3.2. Let us take the concrete logic (X, L) of the proof of Proposition 2.4 for some infinite α and define a concrete logic $\left(X^{\prime}, L^{\prime}\right)$ as follows:

$$
\begin{aligned}
X^{\prime} & =X \cup\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\} \quad\left(X \cap\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}=\emptyset\right) \\
L^{\prime} & =\left\{A \cup B: A \in L \text { and } B=\left\{x_{i}: i \in\{1,2,3,4\} \text { and } A \cap X_{i} \text { is infinite }\right\}\right\}
\end{aligned}
$$

Then the states carried by points $x \in\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ are not Jauch-Piron and therefore $\left(X^{\prime}, L^{\prime}\right) \notin \mathcal{C}_{\text {card }}$.

Remarks. (The closedness of \mathcal{C}_{α} under logic isomorphisms.)

1. The class of concrete logics with a full set of two-valued Jauch-Piron states is the smallest class of concrete logics closed under isomorphisms and containing $\mathcal{C}_{\text {card }}$ (see Proposition 3.2).
2. The class of concrete logics with the property that every two-valued state is Jauch-Piron is the largest class of concrete logics closed under isomorphisms and contained in $\mathcal{C}_{\text {card }}$ (Indeed, every concrete logic (X, L) has a representation $\left(X^{\prime}, L^{\prime}\right)$ by means of all two-valued states; $\left(X^{\prime}, L^{\prime}\right) \in \mathcal{C}_{\text {card }}$ implies that every two-valued state is Jauch-Piron - see Proposition 3.2).
3. The classes $\mathcal{C}_{0}, \mathcal{C}_{1}, \mathcal{C}_{2}$ are obviously closed under isomorphisms. On the other hand, according to Proposition 3.4 and Part 2 of this remark, \mathcal{C}_{α} is not closed under isomorphisms for any $\alpha \geq 4$. It seems to be an open question whether \mathcal{C}_{3} is closed under isomorphisms.

4. WHEN DOES A CONCRETE LOGIC HAVE TO BE A BOOLEAN ALGEBRA?

In this section we shall discuss the conditions under which a class of concrete logics coincides with the important class \mathcal{C}_{2} (of concrete Boolean algebras). We improve and extend results of [5] in some places.

Let us recall that a subset Y in X, where (X, L) is a concrete logic, is called dense in L if for every $A \in L$ there is a $y \in A \cap Y$.

Theorem 4.1. Every concrete logic (X, L) such that each state on it is Jauch-Piron and such that there is a countable dense set Y in X is a Boolean algebra.

Proof. Suppose that $A, B \in L$ with $A \cap B \neq \emptyset$. Then $A \cap B \cap Y$ is a nonempty countable set. Therefore there is a state $s=\sum_{y \in A \cap B \cap Y} a_{y} s_{y}$, where $a_{y} \in(0,1)$ are suitable coefficients such that $\sum_{y \in A \cap B \cap Y} a_{y}=1$. Since $s(A)=s(B)=1$ and since s is Jauch-Piron, there is a $C \in L, C \subset A \cap B$, such that $s(C)=1$. Hence, $C \supset A \cap B \cap Y$. Let us suppose that $C \neq A \cap B$. We have $(A \backslash C) \cap(B \backslash C) \neq \emptyset$. Hence, there is a $D \in L$ such that $D \subset(A \backslash C) \cap(B \backslash C)$ and a $y \in D \cap Y \subset(A \cap B \cap Y) \backslash C$. This is a contradiction.

In the following proposition we employ a "dimension-like" notion which might also find an application elsewhere. Suppose that (X, L) is a concrete logic and n is a natural number. We say that L admits n-dimensional coarsings if for any pair $A, B \in L$ the following implication holds: If $A \cap B=\bigcup_{i \in I} C_{i}$, where I is a finite set and $C_{i} \in L$ for any $i \in I$, then there is a collection $\left\{D_{j}: j \in J\right\}$, where card $J \leq n$ and $D_{j} \in L$ for any $j \in J$, such that $A \cap B=\bigcup_{j \in J} D_{j}$ and such that for any $C_{i}(i \in I)$ there is a $j \in J$ with $C_{i} \subset D_{j}$.

Theorem 4.2. Let (X, L) be a concrete logic such that every state on (X, L) is Jauch-Piron. Let us suppose that there is a natural number n such that L admits n-dimensional coarsings. Then L is a Boolean algebra.

Proof. Suppose that a pair $A, B \in L$ is given. We have to show that $A \cap B \in L$. Put $S_{A, B}=\{s: s$ is a state on L with $s(A)=s(B)=1\}$. It can be proved by a standard argument that $S_{A, B}$ is a compact set when it is viewed with the pointwise topology (see e.g. [5] for details). Now, for any $C \in L$ with $C \subset A \cap B$ put $O_{C}=\left\{s \in S_{A, B}: s(C)>1-1 / n\right\}$. By the Jauch-Piron property of L, the set $O=\left\{O_{C}: C \in L\right.$ and $\left.C \subset A \cap B\right\}$ forms a covering of
$S_{A, B}$. Since every set in O is open, the collection O is an open covering of $S_{A, B}$ and we infer, making use of the compactness of $S_{A, B}$, that there is a finite set $\left\{C_{i}: i \in I\right\}$ such that $S_{A, B}=\bigcup_{i \in I} O_{C_{i}}$. Then $A \cap B=\bigcup_{i \in I} C_{i}$ and, moreover, for any state $s \in S_{A, B}$ there is an index $i \in I$ such that $s\left(C_{i}\right)>1-1 / n$. Let now $\left\{D_{j}: j \in J\right\}$ be an n-dimensional coarsing of $\left\{C_{i}: i \in I\right\}$. If $A \cap B \notin L$, then for any $j \in J$ we can find a point $x_{j} \in(A \cap B) \backslash D_{j}$. Let s_{j} denote the state carried by x_{j}. Put $s=(1 / \operatorname{card} J) \sum_{j \in J} s_{j}$. Then $s \in S_{A, B}$ but $s\left(C_{i}\right) \leq 1-1 / n$ for any $i \in I$. This is a contradiction and therefore $A \cap B \in L$. The proof is complete.

Corollary 4.3. Let (X, L) be a concrete logic. If every state on (X, L) is Jauch-Piron and L contains only finitely many maximal Boolean subalgebras then L is a Boolean algebra.

Proof. Let n be the number of all maximal Boolean subalgebras of L. Then one can easily prove that L admits n-dimensional coarsings and this corollary follows from Theorem 4.2.

It should be noted that this corollary has been independently obtained in [10] as a consequence of deeper results on (generally non-concrete) JauchPiron logics.

Let us say that a concrete logic (X, L) is downward-directed if for every $A, B \in L$ with $A \cap B \neq \emptyset$ there is a $C \in L \backslash\{\emptyset\}$ such that $C \subset A \cap B$. (Let us observe that every concrete logic of the class $\mathcal{C}_{\text {card }}$ is downward-directed.)

Proposition 4.4. (see also [5, 11]) Every downward-directed logic which is a lattice is a Boolean algebra.

Proof. Let (X, L) be a downward-directed logic which is a lattice. Suppose that there are $A, B \in L$ such that $A \wedge B \neq A \cap B$. Since $A \backslash(A \wedge B), B \backslash(A \wedge B) \in$ L are not disjoint, there is a $C \in L \backslash\{\emptyset\}$ such that $C \subset(A \backslash(A \wedge B)) \cap(B \backslash$ $(A \wedge B))$. Hence, $C \cup(A \wedge B) \in L$ and $A \wedge B \not \supset C \cup(A \wedge B) \subset A \cap B-\mathrm{a}$ contradiction.

Proposition 4.5. Every downward-directed logic (X, L) such that there is no infinite set in L of mutually disjoint elements is a Boolean algebra.

Proof. Suppose that $A, B \in L$ with $A \cap B \neq \emptyset$. Then there is a set $C_{1} \in L \backslash\{\emptyset\}$ such that $C_{1} \subset A \cap B$. Let us consider sets $\left(A \backslash C_{1}\right),\left(B \backslash C_{1}\right) \in L$. If $\left(A \backslash C_{1}\right) \cap\left(B \backslash C_{1}\right) \neq \emptyset$ then there is a $C_{2} \in L \backslash\{\emptyset\}$ such that $C_{2} \subset\left(A \backslash C_{1}\right) \cap$ $\left(B \backslash C_{1}\right)$. Proceeding by induction, we obtain a finite set $\left\{C_{1}, \ldots, C_{n}\right\} \subset L$ of mutually disjoint elements such that $A \cap B=C_{1} \cup \cdots \cup C_{n} \in L$.

Proposition 4.6. Every concrete logic (X, L) of the class \mathcal{C}_{3} that is a σ logic (i.e., that is closed under countable unions of mutually disjoint elements) is a Boolean algebra.

Proof. Suppose that $A, B \in L$. Let us define by induction $A_{k}, B_{k} \in L$ as follows:

$$
A_{0}=A, \quad B_{0}=B
$$

$A_{k}, B_{k} \in L$ such that $A_{k-1} \cap B_{k-1}=A_{k} \cup B_{k}$ for every $k \geq 1$
Then

$$
A \cap B=\bigcup_{k=1}^{\infty}\left(A_{2 k-1} \backslash A_{2 k}\right) \cup \bigcup_{k=1}^{\infty}\left(B_{2 k-1} \backslash B_{2 k}\right) \cup \bigcap_{k=1}^{\infty} A_{k} \in L
$$

because the right side of the equality is a countable union of mutually disjoint elements of L; indeed,

$$
\bigcap_{k=1}^{\infty} A_{k}=\left(\bigcup_{k=1}^{\infty} A_{k}^{c}\right)^{c}=\left(\left(A_{1}^{c}\right) \cup\left(A_{2}^{c} \backslash A_{1}^{c}\right) \cup\left(A_{3}^{c} \backslash A_{2}^{c}\right) \cup \ldots\right)^{c} \in L
$$

This completes the proof.

5. OPEN QUESTIONS

Answers to the following questions are presently not known to the authors.
Question 5.1. Is there a concrete logic not belonging to the class \mathcal{C}_{3} such that every two-valued state on it is Jauch-Piron? (Compare with Proposition 3.3.) If the answer is yes, is the class \mathcal{C}_{3} closed under isomorphisms?

Question 5.2. Is there a downward-directed logic that does not have a full set of two-valued Jauch-Piron states? (It is easy to see that a concrete logic with a full set of two-valued Jauch-Piron states is downward-directed.)

The next question is interesting in the connection with the classification presented in Section 2.

Question 5.3. Is it true that every concrete logic with the property that every two-valued state on it is Jauch-Piron belongs to the class \mathcal{C}_{n} for some natural number $n \geq 4$? (Compare with Proposition 3.4 and Theorem 3.5.)

The last question seems to be of major interest. It has already been posed in [5].

Question 5.4. Does every concrete logic each state of which is JauchPiron have to be a Boolean algebra? (Compare with Theorem 4.1 and Theorem 4.2.)

It should be noted that in the σ-additive case the answer to this question is no [2].

REFERENCES

[1] Birkhoff, G. and von Neumann, J.: The logic of quantum mechanics. Ann. of Math. 37 (1936), 823-843.
[2] Bunce, L.J., Navara, M., Pták, P. and Wright, J.D.M.: Quantum logics with Jauch-Piron states. Quart. J. Math. Oxford (2) 36 (1985), 261-271.
[3] Gudder, S.P.: Stochastic Methods in Quantum Mechanics. North Holland, New York, 1979.
[4] Jauch, J.: Foundations of Quantum Mechanics. Addison Wesley, Reading, Mass., 1968.
[5] Navara, M. and Pták, P.: Almost Boolean orthomodular posets. J. Pure Appl. Algebra 60 (1989), 105-111.
[6] Navara, M. and Tkadlec, J.: Automorphisms of concrete logics. Comm. Math. Univ. Carolinae 32 (1991), 15-25.
[7] Piron, C.: Foundation of Quantum Physics. Benjamin, Reading, Mass., 1976.
[8] Pták, P. and Pulmannová, S.: Orthomodular Structures as Quantum Logics. Kluwer, Dordrecht, 1991.
[9] Pták, P. and Wright, J.D.M.: On the concreteness of quantum logics. Aplikace Mat. 30 (1985), 274-285.
[10] Rogalewicz, V.: Jauch-Piron logics with finiteness conditions. Int. J. Theor. Physics 30 (1991), 437-445.
[11] Tkadlec, J.: A note on distributivity in orthoposets. Demonstratio Math. 24 (1991), 343-346.
[12] Tkadlec, J.: Partially additive measures and set representations of orthoposets. J. Pure Appl. Algebra 86 (1993), 79-94.
[13] Varadarajan, V.S.: Geometry of Quantum Theory I. Van Nostrand, Princeton, New Jersey, 1968.

[^0]: ${ }^{1}$ Institute of Mathematics, Czechoslovak Academy of Sciences, 11567 Praha, Czechoslovakia.
 ${ }^{2}$ Department of Mathematics, Technical University of Prague, 16627 Praha, Czechoslovakia.

