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Abstract

We introduce and study partially additive (i.e., additive on suitable substructures) mea-

sures on orthoposets. This generalizes several previous attempts to obtain extension

theorems and a proper set representation. We use set representations for completions of

orthoposets and for investigation of pointwise carrying of homomorphisms.

Introduction

Since the Stone representation of Boolean algebras (by means of clopen subsets
of totally disconnected compact Hausdorff topological spaces) it has been natural
to look for a topological representation of algebraic structures. Here we do this for
orthoposets. Ideally, we would like to find a set representation of an orthoposet
such that the least element corresponds to the empty set, the partial ordering
corresponds to the inclusion relation, the orthocomplementation corresponds to
the set theoretical complementation and (finite) orthogonal suprema correspond to
set theoretical unions. However, it is known that such a representation exists only
for orthoposets with a full set of two-valued measures (see [20] for orthomodular
posets). Thus, it is necessary to give up the latter correspondence and look for a
weaker one.

Previously, the investigation went in two directions. The first line of investi-
gation was based on the concept of an M-base [11, 12, 9] and led to a set rep-
resentation of an orthoposet. The second line was the effort to find a ‘better’
representation of orthomodular posets in the sense that some (finite) orthogonal
suprema correspond to unions. As a result, the representation then corresponded
to the Stone representation for some Boolean subalgebras of the orthomodular
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posets in question ([20, 8, 1] for the center, [19] for a given Boolean subalgebra).
In this paper we present a common generalization of all these results. The

character of the questions investigated here led us to introducing and analysing
so-called partially additive measures. Apart from results explicitly needed for
the representation theorem, we also obtain extension theorems for those measures
strengthening thus the results of [15, 1, 19]. As a consequence of the representation
theorem we obtain stronger versions of results on the completion of orthoposets
[10, 4, 16]. At the end, we consider the pointwise carrying of homomorphisms and
formulate a few open questions.

1. Basic notions

Definition 1.1. An orthoposet is a triple (P,≤,′ ), such that
(1) (P,≤) is a partially ordered set with a least element, 0, and a greatest

element, 1,
(2) ′ : P → P is an orthocomplementation, i.e., for any a, b ∈ P we have

(a) a′′ = a,
(b) a ≤ b⇒ b′ ≤ a′,
(c) a ∨ a′ = 1.

Let us call elements a, b ∈ P orthogonal (denoted by a ⊥ b) if a ≤ b′, and let us
denote by OS(P ) the set of all finite subsets of P of mutually orthogonal elements
that have a supremum in P .

An orthoposet (P,≤,′ ) is called an ω-orthocomplete poset if a∨ b exists for any
pair a, b ∈ P of orthogonal elements. An ω-orthocomplete poset (P,≤,′ ) is called
an orthomodular poset if the orthomodular law is valid in P , i.e., b = a ∨ (b ∧ a′)
for every a, b ∈ P such that a ≤ b.

An orthoposet (P,≤,′ ) is called Boolean if a ⊥ b for every a, b ∈ P such that
a ∧ b = 0.

An orthoposet (P,⊂,c ) with P ⊂ expX for some set X is called a set orthoposet
(denoted by (X,P )). A set orthoposet (X,P ) is called concrete if

∨
R =

⋃
R for

every R ∈ OS(P ).

Let us note that Boolean orthoposets are concrete and Boolean ortholattices
are exactly Boolean algebras (see e.g. [18]).

Dealing with an orthoposet (P,≤,′ ), we shall shortly denote it by P if there is
no danger of misunderstanding.

Definition 1.2. Let (P,≤,′ ) be an orthoposet and let P1 be a subset of P that
contains elements 0, 1 and a′ for any a ∈ P1. Then (P1,≤ |P1 ,

′ |P1) is called a
suborthoposet of (P,≤,′ ). A suborthoposet P1 of an orthoposet P is called a
subortholattice if it is a lattice and if the lattice operations on P1 are restrictions
of those in P .
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Definition 1.3. Let (P1,≤,′ ), (P2,≤,′ ) be orthoposets. A mapping h : P1 → P2

is called a homomorphism if for any a, b ∈ P1 the following conditions hold:
(1) h(0) = 0,
(2) h(a′) = h(a)′,
(3) a ≤ b⇒ h(a) ≤ h(b).

A homomorphism h is called an embedding if
(4) h(a) ≤ h(b)⇒ a ≤ b for any a, b ∈ P1.

An embedding h is called an isomorphism if h(P1) = P2.
A homomorphism h is called an orthohomomorphism if

(5) h(
∨
R) =

∨
h(R) for any R ∈ OS(P1).

An orthohomomorphism h is called an orthoembedding if it is an embedding and
if

(6)
∨
R ∈ h(P1) for any R ∈ OS(P2) such that R ⊂ h(P1).

Observe that ‘orthoisomorphism’ would not mean anything else than isomor-
phism.

2. Partially additive measures

In the Stone representation we can equivalently use various objects: ultrafilters,
prime ideals, homomorphisms into the two-element Boolean algebra or two-valued
measures. In some applications of the theory of orthostructures (e.g. in the
quantum logic theory) the natural object is a two-valued measure (state) or its
generalization. We will introduce it in the next definition. It should be noticed
that the definition covers various approaches (see [11, 20, 14, 19]).

Definition 2.1. Let (P,≤,′ ) be an orthoposet and let R ⊂ OS(P ). By a partially
additive measure on P with respect to R (abbr. R-measure) we mean a mapping
m : P → [0, 1] such that

(1a) m(1) = 1,
(1b) ∀a ∈ P : m(a) +m(a′) = 1,
(1c) ∀R ∈ R :

∑
a∈Rm(a) = m(

∨
R),

(2) ∀a, b ∈ P : a ≤ b⇒ m(a) ≤ m(b).
A partially additive measure (i.e., with respect to ∅ ) m is called Jauch-Piron

if for any a, b ∈ P with m(a) = m(b) = 1, there is a c ∈ P such that c ≤ a, b and
m(c) = 1.

A set M of some partially additive measures is called full if for any a, b ∈ P
with a 6≤ b there is an m ∈M such that m(a) 6≤ m(b).

Obviously, the larger the set R is, the more involved the R-measure is. An
OS(P )-measure on an orthoposet P is simply called a measure.

If the orthoposet P is ω-orthocomplete, we may restrict ourselves in the con-
dition (1c) to the two-element subsets of P . If the orthoposet P is orthomodular
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and R = OS(P ), the condition (2) follows from the condition (1c) and from the
orthomodular law.

It is an easy observation that every two-valued Jauch-Piron partially additive
measure is a measure.

Before stating several examples dealt with in the literature, let us recall that by
the center of an orthomodular poset P (denoted by C(P )) we mean the set of all
elements c ∈ P such that for any a ∈ P there are mutually orthogonal elements
a1, c1, b ∈ P such that c = c1 ∨ b and a = a1 ∨ b. The center of an orthomodular
poset is easily shown to be Boolean subalgebra (see e.g. [6]).

Examples 2.2. (1) R = ∅. Each R-measure m corresponds to the M-base
m−1(1). See [11, 12, 9].

(2) R = OS(C(P )). See [20, 8] for an orthomodular poset P .
(3) R ⊂ OS(P ) such that every R ∈ R contains at most one non-central

element. See [14, 1] for an orthomodular poset P .
(4) R = OS(B), where B is a Boolean subalgebra of P . See [19] for an ortho-

modular poset P .
(5) R = OS(P ). See [20, p. 262], for an orthomodular poset P .

3. Extensions of measures

In [14], Pták characterized orthomodular posets such that every measure on
each of its Boolean subalgebras can be extended to the entire orthomodular poset.
Using the same technique, in [14, 1, 19] it is shown that any (two-valued) measure
on a Boolean subalgebra of an orthomodular poset can be extended to a suitable
(two-valued) partially additive measure on a given orthomodular poset (see Ex-
amples 2.2(3) and 2.2(4)). Here we present generalizations of these results. We
shall need the following notion (for any a, b ∈ P we shall use the standard notation
[a, b] = {c ∈ P ; a ≤ c ≤ b}).

Definition 3.1. Let P be an orthoposet and let R ⊂ OS(P ). The set I ⊂ P is
called a partial ideal with respect to R (abbr. R-ideal) if the following holds:

(1) [0, a] ⊂ I for every a ∈ I,
(2)

∨
R ∈ I for every R ∈ R with R ⊂ I.

An R-ideal is called a proper R-ideal if it does not contain any pair of ortho-
complemented elements.

A proper R-ideal is called a maximal R-ideal if there is no other proper R-ideal
containing it.

A proper R-ideal is called a prime R-ideal if it contains exactly one element
out of every pair of orthocomplemented elements.

Lemma 3.2. Suppose that P is an orthoposet. Then there is a one-to-one corre-
spondence between two-valued R-measures and prime R-ideals given by the map-
ping m 7→ m−1(0).
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Proof. Obvious. 2

It is easy to see that every R-ideal is contained in a maximal R-ideal (Zorn’s
lemma) and that every prime R-ideal is a maximal R-ideal. The validity of the
converse inclusion will be in our interest here. Let us first introduce a notion that
is a generalization of two important properties.

Definition 3.3. Let P be an orthoposet. We say that a family R ⊂ OS(P ) has
the extension property if the following holds:

For every proper R-ideal I on P and for every a ∈ P with I ∩ {a, a′} = ∅ there
is a proper R-ideal J on P such that I ∪ {a} ⊂ J .

Lemma 3.4. Suppose that P is an orthoposet and that R ⊂ OS(P ) has the ex-
tension property. Then

(1) Every maximal R-ideal on P is a prime R-ideal on P .
(2) The set of all two-valued R-measures on P is full.

Proof. (1) Obvious.
(2) Suppose that a, b ∈ P and a 6≤ b. Then [0, b] is a proper R-ideal and,

according to the extension property, [0, b]∪ {a′} is contained in a proper R-ideal,
J . Then J is contained in a maximal R-ideal I that is (part (1)) a prime R-
ideal. According to Lemma 3.2, the prime R-ideal I corresponds to a two-valued
R-measure m such that m(a) = 1 and m(b) = 0. 2

Before stating our general extension theorem, let us recall properties of families
R from Examples 2.2.

Proposition 3.5. Suppose that P is an orthoposet.
(1) ∅ has the extension property.
(2) OS(C(P )) has the extension property, provided P is orthomodular.
(3) R ⊂ OS(P ), where every R ∈ R contains at most one non-central element,

has the extension property, provided P is orthomodular.
(4) OS(B) has the extension property for any Boolean subalgebra B of P .

Proof. (1) Obvious.
(2) See [20, Proposition 1.2].
(3) See [14, Lemma 1] (the orthomodularity of P seems to be essential).
(4) See [19, Proposition 2.4] (there was no need for orthomodularity or ω-ortho-

completeness of P ). 2

Since there are orthomodular lattices without a measure (see [5]) there is no
chance of an analogous result for R = OS(P ) (see Lemma 3.4).
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Theorem 3.6. Suppose that P is an orthoposet, L is a subortholattice of P ,
R ⊂ OS(P ) such that each maximal R-ideal is a prime R-ideal. Then for any
two-valued Jauch-Piron measure m on L there is a two-valued R-measure m̃ on
P such that m̃|L = m.

Proof. The set J = m−1(0) is a (lattice) prime ideal on L, the set I0 =
⋃
{[0, a];

a ∈ J} is an OS(P )-ideal on P , hence it is an R-ideal. According to the as-
sumptions, there is a prime R-ideal I ⊃ I0. Since I ∩ L = J , the corresponding
two-valued measure m̃ satisfies m̃|L = m. 2

Let us note that on a Boolean algebra every measure is Jauch-Piron.

Theorem 3.7. Suppose that P is an orthoposet, B is a Boolean subalgebra of P ,
R ⊂ OS(P ) such that each maximal R-ideal is a prime R-ideal. Then for any
measure m on B there is an R-measure m̃ on P such that m̃|B = m.

Proof. The set of all R-measures on P (denoted by SR(P )) is a closed subset of
a topological space [0, 1]P (with a product topology), hence compact (Tichonov’s
theorem).

Let us denote by D the set of all partitions of unity in P (i.e., the set of all
finite subsets D of non-zero mutually orthogonal elements such that

∨
D = 1).

Put FD = {m̄ ∈ SR(P ); m̄|B is a measure on B and m̄|D = m|D} for every
D ∈ D. We shall show that F = {FD; D ∈ D} is a filter base consisting of
nonempty closed subsets of SR(P ).

First, every set FD is closed (‘pointwise convergence’). Let D,E be two parti-
tions of unity in B. Then FD∩FE ⊃ F(D∧E)\{0}, where (D∧E)\{0} = {d∧e; d ∈
D and e ∈ E}\{0} is a partition of unity in B. Finally, let D be a partition of
unity in B. For every d ∈ D there is a two-valued measure md on B such that
md(d) = 1 (it is well-known that the set of all two-valued measures on a Boolean
algebra is full, it follows e.g. from Proposition 3.5(4) and from Lemma 3.4). Ac-
cording to Theorem 3.6, there is a two-valued R-measure m̃d on P such that
m̃d(d) = 1. Hence

∑
d∈Dm(d)m̃d ∈ FD.

Thus, F is the base of a proper filter in a compact space and we have an R-
measure m̃ ∈

⋂
F . It follows immediately from the definition of F that m̃ extends

m. The proof is complete. 2

It is easy to see from the above proof that the necessary and sufficient condition
for the latter extension property is that the set of all such R-measures on P whose
restrictions to B are measures on B is unital on B (i.e., for every a ∈ B\{0} there
is an m ∈ SR(P ) such that m|B is a measure on B and m(a) = 1). In fact, we
have proved that with given assumptions this condition is satisfied by the set of
all two-valued R-measures on P .

This observation gives immediately the following result (see also [15] for ortho-
modular posets).
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Corollary 3.8. Suppose that P is an orthoposet. Then the following statements
are equivalent:

(1) The set of all measures on P is unital on P .
(2) For every Boolean subalgebra B of P and for every measure m on B there

is a measure m̃ on P such that m̃|B = m.

The following corollary we obtain for family R from Proposition 3.5(4).

Corollary 3.9. Suppose that P is an orthoposet, B, B1 are Boolean subalgebras
of P and that m1 is a measure on B1. Then there is a OS(B)-measure m on P
such that m|B1 = m1.

If P is a Boolean algebra and if we take B = P , the above corollary gives a
topological proof of a well-known result of Horn and Tarski [7].

4. Set representations of orthoposets

We shall give a representation theorem that summarises and generalizes results
from [8, 1, 19, 20].

In the Stone representation we represent a Boolean algebra by clopen sets in a
topological space. In the present context it is useful to consider a more general
underlying space (see Theorem 4.2, parts (4) and (10)).

Definition 4.1. A closure space is a pair (M,− ) such that M 6= ∅ and − :
expM → expM is a closure operation, i.e.,

(1) ∅ = ∅ ,
(2) A ⊂ A ,
(3) A ⊂ B ⇒ A ⊂ B ,

(4) A = A .
A set A ⊂M is called closed if A = A, open if M \A is closed, clopen (denoted

by A ∈ CO(M)) if both A and M \A are open.
A family B ⊂ expM of open sets is called a base of open sets if for any open

A ⊂M there is a B1 ⊂ B such that A =
⋃
B1.

A closure space (M,− ) is called Hausdorff if any pair of points from M is
separated by disjoint open sets, compact if any open covering of M has a finite
subcovering, 0-dimensional if CO(M) is a base of open sets.

The union of two closed sets (the intersection of two open sets, resp.) in closure
space need not be closed (open). On the other hand, the intersection of any family
of closed sets (the union of any family of open sets, resp.) has to be closed (open).

If we replace the condition (3) by a stronger condition
(3’) A ∪B = A ∪B,

we obtain the definition of a topological space.
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Every 0-dimensional Hausdorff closure space is totally disconnected, i.e., any
pair of points in it is separated by disjoint clopen sets.

Every family B ⊂ expM such that
⋃
B = M is a base of open sets for some

closure space (M,− ) (we put A = M \
⋃
{B ∈ B; B∩A = ∅} for any A ⊂M) and a

subbase for the associated topological space. According to Alexander’s sub-base
theorem, the closure space is compact if and only if the associated topological
space is compact.

Theorem 4.2. Suppose that (P,≤,′ ) is an orthoposet, R ⊂ OS(P ), M is a
nonempty set of two-valued R-measures on P , h : (P,≤,′ )→ (expM,⊂,c ), where
h(a) = {m ∈ M ; m(a) = 1} for any a ∈ P and h(P ) is the base of open sets in
(M,− ). Then:

(1) h is a homomorphism.
(2) h(P ) ⊂ CO(M) .
(3) (M,− ) is a 0-dimensional Hausdorff closure space.
(4) If A ⊂ h(P ) and

∨
A exists in (h(P ),⊂), then

∨
A =

⋃
A.

(5) h(
∨
R) =

∨
h(R) =

⋃
h(R) for every R ∈ R.

(6) h is an embedding iff M is full.
(7) h is an orthohomomorphism iff each R-measure in M is a measure.
(8) h is an orthoembedding iff P is an orthomodular poset and M is a full set

of two-valued measures on P .
(9) If M is the set of all two-valued R-measures, then (M,− ) is a compact

closure space.
(10) If P is an ortholattice, M is the set of all two-valued R-measures and is

full, then h(P ) = CO(M).
(11) If each m ∈ M is Jauch-Piron then (M,− ) is a topological space. On the

other hand, if (M,− ) is a topological space and M is full, then each m ∈ M is
Jauch-Piron.

Proof. (1) Obvious.
(2) For any a ∈ P the set h(a) is open in (M,− ). Since h(a) = h(a′)c, it is

closed, too.
(3) Since h(P ) ⊂ CO(M) is a base of open sets, the closure space (M,− ) is

0-dimensional. Suppose that s1, s2 ∈ M , s1 6= s2. Then there is an a ∈ P such
that s1(a) 6= s2(a). Hence h(a), h(a′) are disjoint clopen sets that separate s1, s2.

(4) According to the definition of the closure space (M,− ), we have
∨
A =⋂

{B ∈ h(P ); B ⊃
⋃
A} =

⋂
{B ⊂M ; B closed and B ⊃

⋃
A} =

⋃
A.

(5) Since h is a homomorphism, h(
∨
R) ⊃

⋃
h(R). Suppose that m ∈ h(

∨
R).

Then 1 = m(
∨
R) =

∑
a∈Rm(a), hence m ∈

⋃
h(R).

(6) Obvious.
(7) Suppose that each R-measure in M is a measure. According to (1) and (5),

h is an orthohomomorphism.
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Suppose now that h is an orthohomomorphism and that m ∈ M . For any
R ∈ OS(P ) with m(

∨
R) = 1 we have m ∈ h(

∨
R) =

⋃
h(R). Since h(R) consists

of mutually disjoint sets, m ∈ h(a) for exactly one a ∈ R, hence 1 =
∑

a∈Rm(a).
The R-measure m is a measure.

(8) Suppose that P is ω-orthocomplete poset and that M is a full set of two-
valued measures on P . According to (6) and (7), h is orthohomomorphism and
embedding.

Suppose now that h is an orthoembedding. According to (6) and (7), M is a
full set of two-valued measures. Since expM is an ω-orthocomplete poset, P is
ω-orthocomplete, too. Every ω-orthocomplete poset with a full set of two-valued
measures is orthomodular—indeed, for every a, b ∈ P with a ≤ b we obtain
m(a ∨ (b ∧ a′)) = m(a ∨ (b′ ∨ a)′) = m(a) + 1− (1−m(b) +m(a)) = m(b).

(9) The closure space (M,− ) is compact iff the associated topological space is
compact. The associated topological space is a closed subspace of {0, 1}P (with
the product topology) that is compact (Tichonov’s theorem).

(10) Suppose that A ∈ CO(M). Since A is open, there is a set F ⊂ P such that
A =

⋃
h(F ). Since A is closed, hence compact (part (9)), we can choose a finite

covering h(F0). According to (6) and (4), h(
∨
F0) =

∨
h(F0) =

⋃
h(F0) = A = A

(
∨
h(F0) taken in (h(P ),⊂)).

(11) Suppose that each m ∈ M is Jauch-Piron. Then for any a, b ∈ P and for
any m ∈ h(a) ∩ h(b) there is a c ∈ P such that m ∈ h(c) ⊂ h(a) ∩ h(b). Hence
(M,− ) is a topological space.

Suppose now that (M,− ) is a topological space and that M is full. Then for
any m ∈M and for any a, b ∈ P with m(a) = m(b) = 1 we have m ∈ h(a) ∩ h(b).
Since h(a) ∩ h(b) is open, there is a c ∈ P such that m ∈ h(c) ⊂ h(a) ∩ h(b). It
means that m(c) = 1 and, according to (6), c ≤ a, b. 2

The following consequence of the representation theorem and Proposition 3.5
is in our general context one of the main results of this paper.

Corollary 4.3. Suppose that (P,≤,′ ) is an orthoposet, B is a Boolean subalgebra
of P , R = OS(B). Then there is a set representation (h(P ),⊂,c ) of (P,≤,′ ) by
means of clopen sets in a 0-dimensional compact Hausdorff closure space such
that the image of B is ‘almost’ its Stone representation (i.e., the (finite) suprema
in B correspond to set theoretical unions). Moreover, if P is an ortholattice, then
we can ensure that the representation contains all clopen sets.

We have shown that every orthoposet has a set representation, i.e., it can be
embedded into a Boolean algebra. The following corollary generalizes a result of
[20].

Corollary 4.4. (1) An orthoposet P can be embedded into a Boolean algebra by
an orthohomomorphism (i.e., it has a concrete representation) iff the set of all
two-valued measures on P is full.
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(2) An orthoposet P can be orthoembedded into a Boolean algebra iff P is an
orthomodular poset with a full set of two-valued measures.

Proof. Suppose that P is an orthoposet and that h is an embedding of P to a
Boolean algebra. Every Boolean algebra can be considered as a subalgebra of
expX for some set X. Every x ∈ X may be identified with a two-valued partially
additive measure mx on P defined in a such a way that for any a ∈ P we have
mx(a) = 1 iff x ∈ h(a). Hence, the embedding h may be considered of the form
from Theorem 4.2. The rest follows from Theorem 4.2, parts (7) and (8). 2

5. Completions of orthoposets

In this section we shall show several consequences of Theorem 4.2(4). First of
all, let us state basic definitions.

Definition 5.1. An ortholattice L is called complete if
∨
A exists in L for every

A ⊂ L.
Let P be an orthoposet and let L be a complete ortholattice. An embedding

h : P → L is called completion if h(
∨
A) =

∨
h(A) for every A ⊂ P such that

∨
A

exists in P .

Standard methods for a completion of orthoposets are the completion by cuts
and the completion by using the orthogonality relation [2, 10, 4]. Using these
methods we (can) obtain a set representation such that suprema correspond to set-
theoretic unions, whereas the orthocomplementation is more complicated. Here
we obtain a completion such that the orthocomplementation corresponds to the
set-theoretic complementation and suprema correspond to closures of set-theoretic
unions (if we use an appropriate closure operation). Moreover, we shall generalize
the result of Sekanina [16], who shows that every complete ortholattice is of the
form of the set of all regularly open subsets of a closure space. Before stating our
results, let us recall basics about regularly open sets and formulate a corollary of
Theorem 4.2.

Definition 5.2. Let (M,− ) be a closure space. A set A ⊂ M is called regularly

open (denoted by A ∈ RO(M)), if A = (A
c
)
c
.

It is known [16] that the set of all regularly open subsets of a closure space with
the ordering given by inclusion and the orthocomplementation given by A′ = A

c

is a complete ortholattice. For every open set A the set (A
c
)
c

is the smallest
regularly open superset of A and is called the regularisation of A.

Every clopen set is regularly open, hence CO(M) is a suborthoposet of RO(M).
It is known, too, that CO(M) and RO(M) are Boolean algebras in a topological
space (M,− ).
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Let us recall that a closure space is called extremally disconnected if CO(M) =
RO(M) (i.e., A is open for every open A ⊂ M). Every extremally disconnected
Hausdorff closure space is totally disconnected.

Proposition 5.3. Suppose that P , R, M and h are as in Theorem 4.2 and that
M is full. Then the embedding h : P → RO(M) is a completion.

Proof. Suppose that A ⊂ P such that
∨
A exists in P . According to Theo-

rem 4.2(6),
∨
h(A) = h(

∨
A) in h(P ). According to Theorem 4.2(4),

∨
h(A) =⋃

h(A). Thus, making use of Theorem 4.2(2), h(
∨
A) =

⋃
h(A) ∈ CO(M) ⊂

RO(M). The least regularly open set containing
⋃
h(A) is the regularisation of⋃

h(A), i.e.,
∨
h(A) = (

⋃
h(A)

c
)
c

=
⋃
h(A) = h(

∨
A). 2

Let us note that RO(S) in the above proposition is so-called MacNeille com-
pletion of P (see e.g. [3]; for every element A ∈ RO(S) there are A1,A2 ⊂ h(P )
such that A =

∨
A1 =

∧
A2)

Corollary 5.4. Every complete ortholattice is isomorphic to a family of all clopen
subsets of a 0-dimensional extremally disconnected compact Hausdorff closure
space.

Proof. According to Theorem 4.2, Proposition 3.5 and Lemma 3.4, every ortho-
lattice is isomorphic to CO(M) for some 0-dimensional compact Hausdorff closure
space. Suppose that A is a regularly open set. Since CO(M) is a base of open
sets, there is an A ⊂ CO(M) such that A =

⋃
A. Then A =

∨
A in RO(M) and,

according to Proposition 5.3, A is clopen. Hence RO(M) = CO(M) and the proof
is complete. 2

This result generalizes the well-known representation theorem for complete
Boolean algebras. In comparison with [16] we have proved several properties
of underlying closure space and ensured that the orthocomplementation in a set
representation is set-theoretic.

The first part of the following corollary is well-known (see [10], here it is proved
in a different way). The second part seems to be new and interesting in quantum
logic theory. Let us note that, according to Theorem 4.2(10), every orthoposet
with a full set of two-valued Jauch-Piron measures can be completed to a Boolean
algebra. Since such an orthoposet has to be Boolean, the following statement is
more general and shows that relatively large class of orthoposets can be completed
to a Boolean algebra (see [13]).

Corollary 5.5. (1) Every orthoposet can be completed to an ortholattice.
(2) The MacNeille completion of a Boolean orthoposet is a Boolean algebra.

11



Proof. (1) It follows immediately from Propositions 5.3 and 3.5 and Lemma 3.4.
(2) Let us take the completion of a Boolean orthoposet P to an ortholattice

RO(M) as in part (1). It suffices to prove that RO(M) is a Boolean ortholattice.
Suppose that A,B ∈ RO(M) such that A ∩ B 6= ∅. Since h(P ) is a base of open
sets, there are C,D ∈ h(P ) such that C ⊂ A, D ⊂ B and C ∩ D 6= ∅. Since
h(P ) is a Boolean orthoposet, there is an E ∈ h(P ) \ {∅} ⊂ RO(M) such that
E ⊂ C ∩D ⊂ A ∩B. The proof is complete. 2

6. Homomorphisms of orthoposets

In this section we shall study the question when a homomorphism of orthoposets
is carried by a point mapping. We shall need the following definitions.

Definition 6.1. Let (X1, P1) and (X2, P2) be set orthoposets.
We say that a homomorphism h : P1 → P2 is carried by a point mapping

f : X2 → X1 if h(A) = f−1(A) for every A ∈ P1.
We say that a two-valued partially additive measure m on a set orthoposet

(X1, P1) is carried by a point x ∈ X1 if m(A) = 1 iff x ∈ A (A ∈ P1). The
partially additive measure carried by a point x is denoted by mx.

Definition 6.2. We say that a set P ⊂ expX is separating on X if for each pair
of points x, y ∈ X there is an A ∈ P such that x ∈ A and y 6∈ A.

Every point x ∈ X in a set orthoposet (X,P ) carries a two-valued partially
additive measure on P . A set orthoposet (X,P ) is separating on X iff there is
no pair of points of X that carry the same two-valued partially additive measure
on P . If (X,P ) is non-separating we may identify the points of X that carry
the same two-valued partially additive measure and, as a result, we obtain a
separating representation (X̃, P̃ ) of (X,P ) (X̃ ⊂ X, P̃ = {A ∩ X̃; A ∈ P}).

Every set orthoposet can be identified with its set representation (Theorem 4.2)
by means of the set of all two-valued partially additive measures carried by a point.
Let us call a maximal set representation (abbr. MSR) of an orthoposet such a
separating set representation that each two-valued partially additive measure is
carried by a point (i.e., the set representation by means of all two-valued partially
additive measures).

Lemma 6.3. Suppose that (X1, P1) and (X2, P2) are set orthoposets and that
h : P1 → P2 is a homomorphism carried by a point mapping f : X2 → X1. Then
my ◦ h = mf(y) for all y ∈ X2.

Proof. For all y ∈ X2 and all A ∈ P1 the following statements are equivalent:
(my ◦ h)(A) = 1, y ∈ h(A), f(y) ∈ A, mf(y)(A) = 1. 2

12



Proposition 6.4. Suppose that (X1, P1) and (X2, P2) are set orthoposets and
that h : P1 → P2 is a homomorphism. Let us denote by D(f) the set of all y ∈ X2

for which the set {x ∈ X1; mx = my ◦ h} is nonempty. For every y ∈ D(f), let
us choose some f(y) from this set. Then the mapping f : D(f)→ X1 satisfies the
following conditions:

(1) f−1(A) = h(A) ∩ D(f) for all A ∈ P1; particularly, if D(f) = X2 then h is
carried by the mapping f ,

(2) if h(P1) is separating on X2 then f is one-to-one,
(3) if D(f) = X2 and h is an isomorphism then A =

∧
{B ∈ P1; B ⊃ f(h(A))}

for all A ∈ P1.

Proof. (1) We have y ∈ f−1(A) iff y ∈ D(f) and f(y) ∈ A. The latter condition
is equivalent to each of the following conditions: mf(y)(A) = 1, (my ◦ h)(A) =
1, y ∈ h(A).

(2) Suppose that y, z ∈ X2 and that f(y) = f(z). Then my ◦ h = mz ◦ h, i.e.,
sy(h(A)) = sz(h(A)) for all A ∈ P1. Since h(P1) is separating on X2, we obtain
y = z.

(3) According to part (1), h(A) = f−1(A), hence f(h(A)) = A. Suppose that
B ⊃ f(h(A)). According to part (1), h(B) = f−1(B) ⊃ h(A), hence B ⊃ A. 2

Corollary 6.5. (cf. [17, Section 11B]) Let (X1, P1) and (X2, P2) be set ortho-
posets. A homomorphism h : P1 → P2 is carried by a point mapping iff for each
two-valued partially additive measure my on P2 (carried by a point y ∈ X2) the
two-valued partially additive measure my ◦ h on P1 is carried by a point.

Proof. It follows from Lemma 6.3 and Proposition 6.4(1). 2

Corollary 6.6. (1) Every homomorphism of an MSR into a set orthoposet is
carried by a point mapping.

(2) If there is an isomorphism of a separating set orthoposet (X,P ) to its MSR
(X̃, P̃ ) that is carried by a point mapping f , then f is a one-to-one mapping of
X̃ onto X.

Proof. (1) It follows from Proposition 6.4(1).
(2) According to Proposition 6.4(2), the mapping f is one-to-one. Suppose that

x ∈ X. Then mx ◦h−1 is a two-valued partially additive measure on P̃ and hence
it is carried by a point y ∈ X̃. According to Lemma 6.3, mf(y) = my ◦ h =

mx ◦ h−1 ◦ h = mx. Since P is separating, we obtain x = f(y). Thus, f(P̃ ) = P .
2

Corollary 6.7. Suppose that (X,P ) is a separating set orthoposet, (X̃, P̃ ) is its
MSR and that h : P̃ → P is an isomorphism. Then there is a one-to-one mapping
f : X → X̃ such that
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h(A) = f−1(A) for all A ∈ P̃ ,
h−1(C) =

∧
{B ∈ P̃ ; B ⊃ f(C)} for all C ∈ P .

Proof. It follows from Proposition 6.4. 2

Let us recall that a mapping f : (X1,
− ) → (X2,

− ) ((X1,
− ) and (X2,

− ) are
closure spaces) is called continuous if for each open set A ⊂ X2 the set f−1(A) is
open. It is called a homeomorphism if there exists f−1 and both f and f−1 are
continuous.

It is easy to see that a continuous mapping on a closure space is also continuous
on the associated topological space. Indeed, let (X1, τ1) and (X2, τ2) be topological
spaces associated with (X1,

− ), (X2,
− ), B2 be a base of open sets for (X2,

− ),
f : (X1,

− )→ (X2,
− ) be a continuous mapping; then B2 is a subbase of open sets

for (X2, τ2) and f−1(A) is open for every A ∈ B2; thus, f : (X1, τ1)→ (X2, τ2) is
continuous.

The converse to the previous statement need not be true as the following exam-
ple shows: Let (X,− ) be the closure space with X = {a, b, c, d} and with the base
{{a, b}, {b, c}, {c, d}, {d, a}} of open sets. Then the topology on the associated
topological space (X, τ) is discrete. Thus, every mapping on (X, τ) is continuous.
On the other hand, the mapping f on (X,− ) defined by f(a) = a, f(b) = c,
f(c) = b, f(d) = d, is not continuous (f−1({a, b}) = {a, c} is not open).

Proposition 6.8. Suppose that (X1, P1) and (X2, P2) are set orthoposets, (X1,
− )

and (X2,
− ) are their associated closure spaces (with bases P1, P2 of open sets) and

that h : P1 → P2 is a homomorphism carried by a point mapping f : X2 → X1.
Then the mapping f : (X2,

− )→ (X1,
− ) is continuous.

Proof. Suppose that A ⊂ X1 is open. Then A =
⋃
S for some S ⊂ P1 and

therefore the set f−1(A) = f−1(
⋃
S) =

⋃
f−1(S) =

⋃
h(S) is open. 2

Theorem 6.9. Every automorphism of an MSR (X,P ) is carried by a homeo-
morphism of (X,− ), where (X,− ) is the closure space with the base P of open
sets.

Proof. According to Corollary 6.6, there is a one-to-one mapping f of X onto X
that carries the given automorphism h of P . It is easy to see that the isomorphism
h−1 is carried by f−1 and, according to Proposition 6.8, both f and f−1 are
continuous. 2

Proposition 6.10. Every set orthoposet can be embedded into a Boolean algebra
B such that every automorphism on it has an extension over B.
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Proof. Let (X,P ) be the MSR of a given orthoposet and let B be the Boolean
algebra of clopen subsets of a topological space (X, τ) with the subbase P of
open sets. Suppose that h is an automorphism on P . According to Theorem 6.9,
h is carried by a homeomorphism of (X, τ). It is easy to see that f carries an
automorphism h̃ of B such that h̃|P = h. 2

Remarks 6.11. (1) In concrete orthoposets every point carries a measure, hence
we can use a generalized Stone representation (i.e., the set representation by means
of all two-valued measures) instead of an MSR. All results in this section remain
valid except Corollary 6.6(1) which we have to state for orthohomomorphisms.
Moreover, the embedding in Proposition 6.10 is then an orthohomomorphism.

(2) Instead of an MSR or a generalized Stone representation in Theorem 6.9 we
can use for some orthoposets a set representation by means of other suitable full
set of two-valued partially additive measures (cf. Corollary 6.5), e.g. by means of
a full set of all two-valued Jauch-Piron measures.

7. Open problems

We have given several results—set representation of an orthoposet and extension
properties of partially additive measures—for a suitable family R ⊂ OS(P ). The
best results we have obtained for families R from Examples 2.2(3) and 2.2(4).
These results are independent, hence it is natural to ask whether we can take the
union of these families. It is not known if the set of all such defined two-valued
R-measures on an orthomodular poset is full. On the other hand, maximal R-
ideals need not be prime R-ideals, hence we cannot use the technique given in
this paper.

Further, there is an orthomodular lattice P such that the set of all two-valued
(OS(B1)∪OS(B2))-measures on P is not full for suitable Boolean subalgebras B1,
B2 of P (see [19]).

Problem 7.1. Find a greater family R ⊂ OS(P ) for an (orthomodular) ortho-
poset P such that the set of all two-valued R-measures on P is full or such that
every maximal R-ideal is a prime R-ideal.

In Corollary 5.5 we gave a partial solution for the following problem that is
interesting in the quantum logic theory (see [3]).

Problem 7.2. Which orthoposets (orthomodular posets, orthomodular lattices,
resp.) can be completed to an orthomodular lattice?

References

[1] J. Binder and P. Pták, A representation of orthomodular lattices, Acta Univ.
Carolin.—Math. Phys., 31 (1991), 21–26.

15



[2] G. Birkhoff, Lattice Theory, Amer. Math. Soc. Colloquium Publication 25, 3rd ed.,
Providence, 1967.

[3] G. Bruns, R. Greechie, J. Harding and M. Roddy, Completions of orthomodular
lattices, Order 7 (1990), 67–76.

[4] R.I. Goldblatt, The Stone space of an ortholattice, Bull. London Math. Soc. 7 (1975),
45–48.

[5] R.J. Greechie, Orthomodular lattices admitting no states, J. Combin. Theory Ser.
A 10 (1971), 119–132.

[6] M.P. Gudder, Stochastic Methods in Quantum Mechanics, (North-Holland, New
York, 1979).

[7] A. Horn, A. Tarski, Measures in Boolean algebras, Trans. Amer. Math. Soc. 64
(1948), 467–497.

[8] L. Iturrioz, A representation theory for orthomodular lattices by means of closure
spaces, Acta Math. Hungar. 47 (1986), 145–151.
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