PARTIALLY ADDITIVE STATES ON ORTHOMODULAR POSETS

BY
JOSEF TKADLEC (PRAGUE)

We fix a Boolean subalgebra B of an orthomodular poset P and study the mappings $s: P \rightarrow[0,1]$ which respect the ordering and the orthocomplementation in P and which are additive on B. We call such functions B-states on P. We first show that every P possesses "enough" two-valued B-states. This improves the main result in [13], where B is the centre of P. Moreover, it allows us to construct a closure-space representation of orthomodular lattices. We do this in the third section. This result may also be viewed as a generalization of [6]. Then we prove an extension theorem for B-states giving, as a by-product, a topological proof of a classical Boolean result.

1. Basic definitions and preliminaries.

1.1. Definition. An orthomodular poset (abbr. an OMP) is a triple $\left(P, \leq,{ }^{\prime}\right)$ such that
(1) (P, \leq) is a partially ordered set with a least element 0 and a greatest element 1 ,
(2) the operation ' $: P \rightarrow P$ is an orthocomplementation, i.e. for every $a, b \in P$ we have $a^{\prime \prime}=a$ and $b^{\prime} \leq a^{\prime}$ whenever $a \leq b$,
(3) the least upper bound exists for every pair of orthogonal elements in $P\left(a, b \in P\right.$ are orthogonal, $a \perp b$, if $\left.a \leq b^{\prime}\right)$,
(4) the orthomodular law is valid in $P: b=a \vee\left(b \wedge a^{\prime}\right)$ whenever $a \leq b$ $(a, b \in P)$.

A typical example of an OMP is the lattice of all projections in a Hilbert space or, of course, a Boolean algebra. (We do not assume that P is a lattice. If it is, we call it an orthomodular lattice.)

Throughout the paper, P will be an arbitrary OMP and B an arbitrary Boolean subalgebra of P. (By a Boolean subalgebra of P we mean a subset of P which forms a Boolean algebra with respect to \leq and ' inherited from P, see also [4], [7].) Let us state our basic definition.
1.2. Definition. Let B be a Boolean subalgebra of P. A partially additive state with respect to B (abbr. a B-state) is a mapping $s: P \rightarrow[0,1]$ such that
(1) if $a \leq b$ then $s(a) \leq s(b)(a, b \in P)$,
(2) $s\left(a^{\prime}\right)=1-s(a)(a \in P)$,
(3) $s(a \vee b)=s(a)+s(b)$ provided $a \perp b$ and $a, b \in B$.

Let us denote the set of all B-states on P by $S_{B}(P)$. Thus $S_{B}(P) \subset$ $[0,1]^{P}$. In what follows we will make use of the following observations: The set $S_{B}(P)$ viewed as a subset of $[0,1]^{P}$ is a convex compact. Indeed, the convexity is obvious and the compactness is a standard consequence of the Tikhonov theorem $\left([0,1]^{P}\right.$ is considered with the pointwise topology). It should be noted that the "ordinary" state on P is exactly an element of the intersection $\bigcap S_{B}(P)$, where B runs over all Boolean subalgebras of P.
2. Two-valued B-states. B-ideals. Let us denote by $S_{B}^{2}(P)$ the set of all two-valued B-states on P. We will show in this section that $S_{B}^{2}(P)$ is rich enough to determine the ordering in P. This extends [13] which contains the same result in the much easier situation of B being the centre of P.

Let us first introduce an auxiliary notion.
2.1. Definition. Let B be a Boolean subalgebra of P. A partial ideal I on P with respect to B (abbr. a B-ideal) is a nonempty subset of P such that
(A) if $a \in I$ and $b \leq a$ then $b \in I(a, b \in P)$,
(B) $a \vee b \in I$ provided $a, b \in I \cap B$.

Further, we call a B-ideal I proper if
(C1) $a \in I$ implies $a^{\prime} \notin I$.
Finally, we call a proper B-ideal I a B-prime ideal if
(C2) $a \in P \backslash I$ implies $a^{\prime} \in I$.
In what follows we will sometime replace without noticing the condition (B) by the apparently weaker condition (B^{\prime}) equivalent to (B):
(B') $a \vee b \in I$ provided $a, b \in I \cap B$ and $a \perp b$.
The link between two-valued B-states and B-ideals is presented in the following simple proposition.
2.2. Proposition. There is a one-to-one correspondence between twovalued B-states and B-prime ideals given by the mapping $s \mapsto s^{-1}(0)$.

Proof. Obvious.

In the course of the following propositions we will show that any pair of noncomparable elements in P is separated by a B-prime ideal.
2.3. Proposition. Let $\left\{I_{\alpha} ; \alpha \in A\right\}$ be a collection of B-ideals in P. Then the least B-ideal containing all $I_{\alpha}(\alpha \in A)$ is $J=\bigcup\left\{I_{\alpha} ; \alpha \in A\right\} \cup\{a \in$ $P ; a \leq b_{1} \vee \cdots \vee b_{n}$, where $b_{k} \in I_{\alpha_{k}} \cap B$ for any $\left.k \in\{1, \ldots, n\}\right\}$.

Proof. The proof requires only a verification of the properties from the definition of a B-ideal.

Let us agree to call the B-ideal J from Proposition 2.3 the B-ideal generated by $\left\{I_{\alpha} ; \alpha \in A\right\}$.

Prior to the next propositions, observe that the elements $b_{k}(k \in$ $\{1, \ldots, n\})$ in Proposition 2.3 can be chosen pairwise orthogonal.
2.4. Proposition. Let $I \subset P$ be a proper B-ideal. Suppose that $\left\{a, a^{\prime}\right\} \cap$ $I=\emptyset$ for an $a \in P$. Then the B-ideal generated by $\{I,[0, a]\}$ is proper.

Proof. Suppose that the B-ideal J generated by $\{I,[0, a]\}$ is not proper and seek a contradiction. If J is not proper, then there is an $e \in P$ such that $\left\{e, e^{\prime}\right\} \subset J$. Observe that $\left\{e, e^{\prime}\right\} \not \subset I \cup[0, a]$. Indeed, both e, e^{\prime} cannot be in I and if $e \in[0, a]$ then $a^{\prime} \leq e^{\prime}$; hence $e^{\prime} \notin I$.

According to Proposition 2.3 we may assume that $e \leq b_{1} \vee b_{2}, b_{1} \in I \cap B$, $b_{2} \in[0, a] \cap B$ and $b_{1} \perp b_{2}$. We may also assume without any loss of generality that $e=b_{1} \vee b_{2}$. Hence $e^{\prime} \in J \cap B$ and therefore there are $b_{3} \in I \cap B$, $b_{4} \in[0, a] \cap B$ such that $b_{3} \perp b_{4}$ and $e^{\prime}=b_{3} \vee b_{4}$. Then $b_{1}, b_{2}, b_{3}, b_{4}$ are pairwise orthogonal and, moreover, $1=e \vee e^{\prime}=b_{1} \vee b_{2} \vee b_{3} \vee b_{4}$. Thus, $a^{\prime} \leq\left(b_{2} \vee b_{4}\right)^{\prime}=b_{1} \vee b_{3} \in I$, a contradiction.
2.5. Proposition. Each proper B-ideal is contained in a B-prime ideal.

Proof. By Zorn's lemma, each proper B-ideal is contained in a maximal proper B-ideal. By Proposition 2.4, each maximal proper B-ideal is a B prime ideal.
2.6. Proposition. Suppose that $a \not \leq b(a, b \in P)$. Then there exists a B-prime ideal I such that $a \notin I$ and $b \in I$.

Proof. By Proposition 2.4, the B-ideal generated by $\left\{[0, b],\left[0, a^{\prime}\right]\right\}$ is proper. The rest follows from Proposition 2.5.
2.7. Theorem. Let B be a Boolean subalgebra of P. Suppose that $a \not \leq b$ $(a, b \in P)$. Then there exists a two-valued B-state $s \in S_{B}^{2}(P)$ such that $s(a)=1$ and $s(b)=0$.

Proof. This follows immediately from Propositions 2.6 and 2.2.
In the next section we will need the following result.
2.8. Theorem. Let B, B_{1} be Boolean subalgebras of P. Let s_{1} be a twovalued state on B_{1}. Then there exists a two-valued B-state s on P such that $s \mid B_{1}=s_{1}$.

Proof. Put $I_{1}=s_{1}^{-1}(0)$. Put further $J=\{b \in P ;$ there exists $a \in$ I_{1} with $\left.b \leq a\right\}$. Then J is a proper B-ideal and, according to Proposition $2.5, J$ is contained in a B-prime ideal $I . I_{1}$ is a prime ideal on B_{1}, hence $I \cap B=I_{1}$. The rest follows from Proposition 2.2.

As the following example (due to Mirko Navara) shows, Theorem 2.7 cannot be improved in such a way that $s \in S_{B_{1}}(P) \cap S_{B_{2}}(P)$ for given Boolean subalgebras B_{1}, B_{2} of P.

Fig. 1
2.9. Example. Figure 1 shows the Greechie diagram (see [3]) of an orthomodular lattice P. The elements $a, b^{\prime} \in P$ are not orthogonal, hence $a \not \leq b$, but there is no $s \in S_{B_{1}}(P) \cap S_{B_{2}}(P)$ such that $s(a)=1$ and $s(b)=0$.
3. A representation theorem for orthomodular lattices. The main result in this section is a representation of P by means of clopen sets in a compact Hausdorff closure space (a generalized Stone representation). We will show as an improvement of [6] (where B is the centre of P) that if P is a lattice and if we are given a Boolean subalgebra B in P, we can ensure that the restriction of the representation to B becomes the Stone representation.

First we reformulate results of the previous section in a way convenient for our representation theorem.
3.1. Proposition. Let \mathcal{P} be the set of all B-prime ideals in P. Let the mapping $i: P \rightarrow \exp \mathcal{P}$ be defined by $i(a)=\{I \in \mathcal{P} ; a \notin I\}$. Finally, write $\overline{\mathcal{A}}=\bigcap\{i(b) ; b \in P$ and $\mathcal{A} \subset i(b)\}$ for any $\mathcal{A} \subset \mathcal{P}$. Then

1) $i(0)=\emptyset, i(1)=\mathcal{P}$ and $i:\left(P, \leq,^{\prime}\right) \rightarrow\left(i(P), \subset,^{\prime}\right)$ is an isomorphism,
2) if $\mathcal{A}_{\alpha} \in i(P)(\alpha \in A)$ and $\bigvee_{\alpha \in A} \mathcal{A}_{\alpha}$ exists in $\left(i(P), \subset{ }^{\prime}\right)$, then $\bigvee_{\alpha \in A} \mathcal{A}_{\alpha}=\overline{\bigcup_{\alpha \in A} \mathcal{A}_{\alpha}}$,
3) if $\mathcal{A}, \mathcal{B} \in i(B)$ then $\mathcal{A} \vee \mathcal{B}=\mathcal{A} \cup \mathcal{B}$ and $\mathcal{A} \wedge \mathcal{B}=\mathcal{A} \cap \mathcal{B}$.

Proof. The first property follows from the definition of i and from Theorem 2.7. As for the second property, we know that $\bigvee_{\alpha \in A} \mathcal{A}_{\alpha} \in i(P)$ contains all $\mathcal{A}_{\alpha}(\alpha \in A)$ and therefore $\bigcup_{\alpha \in a} \mathcal{A}_{\alpha} \subset \bigvee_{\alpha \in A} \mathcal{A}_{\alpha}$. Then the equality $\overline{\bigcup_{\alpha \in a} \mathcal{A}_{\alpha}}=\bigvee_{\alpha \in A} \mathcal{A}_{\alpha}$ follows from the definition of the "bar" operation. Finally, suppose that $I \in i(a \vee b), a, b \in B$. Then $a \vee b \notin I$ and therefore either $a \notin I$ or $b \notin I$. Hence $I \in i(a) \cup i(b)$. Thus, $i(a \vee b)=i(a) \cup i(b)$ and we have $\mathcal{A} \vee \mathcal{B}=\mathcal{A} \cup \mathcal{B}$. Dually, $\mathcal{A} \wedge \mathcal{B}=\left(\mathcal{A}^{\prime} \vee \mathcal{B}^{\prime}\right)^{\prime}=\left(\mathcal{A}^{\prime} \cup \mathcal{B}^{\prime}\right)^{\prime}=\mathcal{A} \cap \mathcal{B}$.

Prior to stating our main result in this section let us shortly review basic facts on closure spaces (see [2], [6]). By a closure space we mean a pair $\left(X,{ }^{-}\right)$, where X is a nonempty set and ${ }^{-}: \exp X \rightarrow \exp X$ is an operation which has the following four properties:
(1) $\bar{\emptyset}=\emptyset$,
(2) $A \subset \bar{A}$ for any $A \subset X$,
(3) $A \subset B$ implies $\bar{A} \subset \bar{B}(A, B \subset X)$,
(4) $\overline{\bar{A}}=\bar{A}$ for any $A \subset X$.

A set $A \subset X$ is called closed in $\left(X,{ }^{-}\right)$if $\bar{A}=A$ and $B \subset X$ is called open if $X \backslash B$ is closed. A closure space $\left(X,{ }^{-}\right)$is called Hausdorff if any pair of points in X can be separated by disjoint open sets, and $\left(X,{ }^{-}\right)$is called compact if any open covering of X has a finite subcovering. It should be noted that the intersection of any collection of closed sets is again a closed set. However, the union of two closed sets need not be closed.

Let us agree to write $C O(X)$ for the collection of all subsets of X which are simultaneously closed and open.
3.2. Theorem. Let \mathcal{P}, i and $^{-}$have the same meaning as in Proposition 3.1. Then \mathcal{P} is a compact Hausdorff closure space and $i(P) \subset C O(\mathcal{P})$. If P is a lattice, then $i(P)=C O(\mathcal{P})$.

Proof. One verifies easily that \mathcal{P} is a closure space. Suppose that $a \in P$. Then $i(a)=\overline{i(a)}$ and therefore $i(a)$ is closed. Also, $i(a)=i\left(a^{\prime \prime}\right)=i\left(a^{\prime}\right)^{\prime}$ and therefore $i(a)$ is open. Thus $i(P) \subset C O(\mathcal{P})$. This allows us to prove that $\left(\mathcal{P},{ }^{-}\right)$is Hausdorff and compact. Indeed, if $I_{1}, I_{2} \in \mathcal{P}$ and $I_{1} \neq I_{2}$, then there is an element $a \in P$ such that $a \in I_{1} \backslash I_{2}\left(a^{\prime} \in I_{2} \backslash I_{1}\right)$. We therefore have two disjoint open sets $i(a), i\left(a^{\prime}\right)$ which separate I_{1}, I_{2}.

To show that \mathcal{P} is compact, consider an open covering $\left\{\mathcal{A}_{\alpha} ; \alpha \in A\right\}$ of P. Since every closed set in \mathcal{P} is an intersection of elements of $i(P)$, every open set is a union of elements of $i(P)$. We therefore may (and will) suppose that $\mathcal{A}_{\alpha}=i\left(a_{\alpha}\right)\left(a_{\alpha} \in P, \alpha \in A\right)$. Hence there is no B-prime ideal I such that $I \supset\left\{a_{\alpha} ; \alpha \in A\right\}$. This means that the B-ideal J generated by $\left\{\left[0, a_{\alpha}\right] ; \alpha \in A\right\}$ is not proper, It follows that for some $d \in P$ we have one of the following possibilities (see Proposition 2.3): Either $d \in\left[0, a_{\alpha_{1}}\right]$, $d^{\prime} \in\left[0, a_{\alpha_{2}}\right]\left(\alpha_{1}, \alpha_{2} \in A\right)$ or $d \leq b_{1} \vee \cdots \vee b_{n}$ for $b_{k} \in B \cap\left[0, a_{\alpha_{k}}\right]\left(\alpha_{k} \in A\right.$,
$k \in\{1, \ldots, n\}), d^{\prime} \in J$. In the former case $a_{\alpha_{1}}^{\prime} \leq d^{\prime} \leq a_{\alpha_{2}}$ and therefore $\mathcal{P}=i\left(a_{\alpha_{1}}\right) \cup i\left(a_{\alpha_{1}}^{\prime}\right) \subset i\left(a_{\alpha_{1}}\right) \cup i\left(a_{\alpha_{2}}\right)$. In the latter case we may (and will) assume the equality instead of the inequality. thus, we have $d \in B$. Hence $d^{\prime} \in J \cap B$ and therefore we can write $d^{\prime}=\tilde{b}_{1} \vee \cdots \vee \tilde{b}_{m}\left(b_{k} \in\left[0, a_{\alpha_{k}}\right] \cap B\right.$, $\left.\alpha_{k} \in A, k \in\{1, \ldots, m\}\right)$. Then we have

$$
\begin{aligned}
\mathcal{P} & =i\left(d \vee d^{\prime}\right)=i\left(b_{1} \vee \cdots \vee b_{n} \vee \tilde{b}_{1} \vee \cdots \vee \tilde{b}_{m}\right) \\
& =i\left(b_{1}\right) \cup \cdots \cup i\left(b_{n}\right) \cup i\left(\tilde{b}_{1}\right) \cup \cdots \cup i\left(\tilde{b}_{m}\right) \\
& \subset i\left(a_{\alpha_{1}}\right) \cup \cdots \cup i\left(a_{\alpha_{m}}\right)
\end{aligned}
$$

Thus, in both cases we have found a finite subcovering of $\left\{\mathcal{A}_{\alpha} ; \alpha \in A\right\}$.
Suppose now that P is a lattice and $\mathcal{A} \in \operatorname{CO}(\mathcal{P})$. According to the definition of the closure operation we may write $\mathcal{A}=\bigcup_{\alpha \in A} i\left(a_{\alpha}\right)$ for some $a_{\alpha} \in P$. Making use of the compactness of \mathcal{P} we have $\mathcal{A}=\bigcup_{k=1}^{n} i\left(a_{\alpha_{k}}\right)$ $\left(\alpha_{k} \in A, k \in\{1, \ldots, n\}\right)$. Thus, $\mathcal{A}=\bigvee_{k=1}^{n} i\left(a_{\alpha_{k}}\right)=i\left(\bigvee_{k=1}^{n} a_{\alpha_{k}}\right) \in i(P)$.

Before we state our last result in this section, recall that a mapping $f: L_{1} \rightarrow L_{2}$ between two orthomodular lattices is called orthoisomorphism if f is one-to-one and respects ordering and orthocomplementation.
3.3. Theorem. Let B be a Boolean subalgebra of an orthomodular lattice P. Then there exists a compact Hausdorff closure space \mathcal{P} such that P is orthoisomorphic to $C O(\mathcal{P})$. Moreover, the orthoisomorphism $f: P \rightarrow$ $C O(\mathcal{P})$ can be taken such that $f(B)$ is the Stone representation of B.

Proof. This follows from Theorems 3.2 and 2.8.
4. Extensions of B-states. It is obvious that a trace of a B-state on B is a state. It is natural to ask whether any state on B is a trace of a B state, i.e. whether the restriction $r: S_{B}(P) \rightarrow S(B)$ is onto. In Theorem 2.8 we have showed that this is true for two-valued states. Here we generalize this result to arbitrary states on B.
4.1. Theorem. Let B, B_{1} be Boolean subalgebras of P. If s_{1} is a state on B_{1}, then there exists a B-state son P such that $s \mid B_{1}=s_{1}$.

Proof. We use the compactness of $S=S_{B}(P) \cap S_{B_{1}}(P)$. In some places we partially utilize the technique of [11] and [10].

Let s_{1} be a state on B_{1} and let $D=\left\{d_{1}, \ldots, d_{n}\right\}$ be a partition of B_{1}. Thus, $\bigvee_{k=1}^{n} d_{k}=1$ and $d_{i} \perp d_{j}$ for $i \neq j(i, j \in\{1, \ldots, n\})$. Put $F_{D}=\{s \in$ $\left.S ; s\left|D=s_{1}\right| D\right\}$. Let \mathcal{D} denote the set of all partitions of B_{1}. We will show that $\mathcal{F}=\left\{F_{D} ; D \in \mathcal{D}\right\}$ is a filter base consisting of nonempty closed sets in S. First, every set F_{D} is closed by the definition of the topology in S ("pointwise convergence"). Let now D_{1}, D_{2} be two partitions of B_{1}. Then $F_{D_{1}} \cap F_{D_{2}} \supset F_{D_{1} \wedge D_{2}}$, where $D_{1} \wedge D_{2}=\left\{d_{1} \wedge d_{2} ; d_{1} \in D_{1}\right.$ and $\left.d_{2} \in D_{2}\right\}$ is
a partition of B_{1}. Finally, let D be a partition of B_{1}. For every $d \in D \backslash\{0\}$ take a state $s_{d} \in S_{B_{1}}^{2}\left(B_{1}\right)$ such that $s_{d}(d)=1$ (Theorem 2.7). According to Theorem 2.8, for every $d \in D \backslash\{0\}$ there exists a B-state $\tilde{s}_{d} \in S_{B}^{2}(P)$ such that $\tilde{s}_{d} \mid B_{1}=s_{d}$. hence $\tilde{s}_{d} \in S$ and $s=\sum_{d \in D \backslash\{0\}} s_{1}(d) \tilde{s}_{d} \in F_{D}$. Thus, \mathcal{F} is a centred system. Since S is compact, we have a B-state s such that $s \in \cap \mathcal{F}$. It follows immediately from the definition of \mathcal{F} that s extends s_{1}. The proof is complete.

It may be of independent interest to note the following corollary of the previous result which might be viewed as a topological proof of a classical Boolean result (see [5], [11], compare also [8]).
4.2. Corollary. Let B_{1} be a Boolean subalgebra of a Boolean algebra B. Then every state on B_{1} extends over B.
5. Open questions. Another concept of partial additivity of states (also stronger than in [13]) is studied in [12] and [1], where a theorem analogous to Theorem 2.7 is proved. The definition of the so-called central state (abbr. c-state) differs from the definition of B-state in the third condition:
$\left(3^{c}\right) s(a \vee b)=s(a)+s(b)$ provided $a \perp b$ and $a \in C(P), b \in P$,
where $C(P)$ is the centre of P.
It is an open problem whether results analogous to those in this paper are valid for B-states that are simultaneously c-states.

REFERENCES

[1] J. Binder and P. Pták, A representation of orthomodular lattices, Acta Univ. Carolin.-Math. Phys. 31 (1990), 21-26.
[2] E. Čech, Topological Spaces, Publ. House of the Czechoslovak Academy of Sciences, Prague, and Interscience, London 1966.
[3] R. J. Greechie, Orthomodular lattices admitting no states, J. Combin. Theory Ser. A 10 (1971), 119-132.
[4] S. P. Gudder, Stochastic Methods in Quantum Mechanics, North-Holland, New York, 1979.
[5] A. Horn, A. Tarski, Measures in Boolean algebras, Trans. Amer. Math. Soc. 64 (1948), 467-497.
[6] L. Iturrioz, A representation theory for orthomodular lattices by means of closure spaces, Acta Math. Hungar. 47 (1986), 145-151.
[7] G. Kalmbach, Orthomodular Lattices, Academic Press, London, 1983.
[8] M. J. Ma̧czyński, Probability measures on a Boolean algebra, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 19 (1971), 849-852.
[9] R. Mayet, Une dualité pour les ensembles ordonnés orthocomplémentés, C. R. Acad. Sci. Paris Sér. I 294 (1982), 63-65.
[10] R. Mayet, Varietes of orthomodular lattices related to states, Algebra Universalis 20 (1985), 368-396.
[11] P. Pták, Extensions of states on logics, Bull. Polish. Acad. Sci. Math. 33 (1985), 493-497.
[12] -, Weak dispersion-free states and the hidden variables hypothesis, J. Math. Phys. 24 (1983), 839-840.
[13] N. Zierler, M. Schlessinger, Boolean embeddings of orthomodular sets and quantum logic, Duke Math. J. 32 (1965), 251-262.

DEPARTMENT OF MATHEMATICS
FACULTY OF ELECTRICAL ENGINEERING
TECHNICAL UNIVERSITY OF PRAGUE
16627 PRAHA, CZECHOSLOVAKIA

