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PARTIALLY ADDITIVE STATES ON ORTHOMODULAR POSETS

BY

JOSEF TKADLEC (PRAGUE)

We fix a Boolean subalgebra B of an orthomodular poset P and study
the mappings s : P → [0, 1] which respect the ordering and the orthocom-
plementation in P and which are additive on B. We call such functions
B-states on P . We first show that every P possesses “enough” two-valued
B-states. This improves the main result in [13], where B is the centre of P .
Moreover, it allows us to construct a closure-space representation of ortho-
modular lattices. We do this in the third section. This result may also be
viewed as a generalization of [6]. Then we prove an extension theorem for
B-states giving, as a by-product, a topological proof of a classical Boolean
result.

1. Basic definitions and preliminaries.

1.1. Definition. An orthomodular poset (abbr. an OMP) is a triple
(P,≤,′ ) such that

(1) (P,≤) is a partially ordered set with a least element 0 and a greatest
element 1,

(2) the operation ′ : P → P is an orthocomplementation, i.e. for every
a, b ∈ P we have a′′ = a and b′ ≤ a′ whenever a ≤ b,

(3) the least upper bound exists for every pair of orthogonal elements
in P (a, b ∈ P are orthogonal, a ⊥ b, if a ≤ b′),

(4) the orthomodular law is valid in P : b = a ∨ (b ∧ a′) whenever a ≤ b
(a, b ∈ P ).

A typical example of an OMP is the lattice of all projections in a Hilbert
space or, of course, a Boolean algebra. (We do not assume that P is a
lattice. If it is, we call it an orthomodular lattice.)

Throughout the paper, P will be an arbitrary OMP and B an arbitrary
Boolean subalgebra of P . (By a Boolean subalgebra of P we mean a subset
of P which forms a Boolean algebra with respect to ≤ and ′ inherited from P ,
see also [4], [7].) Let us state our basic definition.

1.2. Definition. Let B be a Boolean subalgebra of P . A partially
additive state with respect to B (abbr. a B-state) is a mapping s : P → [0, 1]
such that
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(1) if a ≤ b then s(a) ≤ s(b) (a, b ∈ P ),
(2) s(a′) = 1− s(a) (a ∈ P ),
(3) s(a ∨ b) = s(a) + s(b) provided a ⊥ b and a, b ∈ B.

Let us denote the set of all B-states on P by SB(P ). Thus SB(P ) ⊂
[0, 1]P . In what follows we will make use of the following observations: The
set SB(P ) viewed as a subset of [0, 1]P is a convex compact. Indeed, the
convexity is obvious and the compactness is a standard consequence of the
Tikhonov theorem ([0, 1]P is considered with the pointwise topology). It
should be noted that the “ordinary” state on P is exactly an element of the
intersection

⋂
SB(P ), where B runs over all Boolean subalgebras of P .

2. Two-valued B-states. B-ideals. Let us denote by S2
B(P ) the set

of all two-valued B-states on P . We will show in this section that S2
B(P )

is rich enough to determine the ordering in P . This extends [13] which
contains the same result in the much easier situation of B being the centre
of P .

Let us first introduce an auxiliary notion.

2.1. Definition. Let B be a Boolean subalgebra of P . A partial ideal
I on P with respect to B (abbr. a B-ideal) is a nonempty subset of P such
that

(A) if a ∈ I and b ≤ a then b ∈ I (a, b ∈ P ),
(B) a ∨ b ∈ I provided a, b ∈ I ∩B.

Further, we call a B-ideal I proper if

(C1) a ∈ I implies a′ /∈ I.

Finally, we call a proper B-ideal I a B-prime ideal if

(C2) a ∈ P \ I implies a′ ∈ I.

In what follows we will sometime replace without noticing the condi-
tion (B) by the apparently weaker condition (B’) equivalent to (B):

(B’) a ∨ b ∈ I provided a, b ∈ I ∩B and a ⊥ b.

The link between two-valued B-states and B-ideals is presented in the fol-
lowing simple proposition.

2.2. Proposition. There is a one-to-one correspondence between two-
valued B-states and B-prime ideals given by the mapping s 7→ s−1(0).

P r o o f. Obvious.

In the course of the following propositions we will show that any pair of
noncomparable elements in P is separated by a B-prime ideal.

2



2.3. Proposition. Let {Iα; α ∈ A} be a collection of B-ideals in P .
Then the least B-ideal containing all Iα (α ∈ A) is J =

⋃
{Iα; α ∈ A}∪{a ∈

P ; a ≤ b1 ∨ · · · ∨ bn, where bk ∈ Iαk
∩B for any k ∈ {1, . . . , n}}.

P r o o f. The proof requires only a verification of the properties from the
definition of a B-ideal.

Let us agree to call the B-ideal J from Proposition 2.3 the B-ideal gen-
erated by {Iα; α ∈ A}.

Prior to the next propositions, observe that the elements bk (k ∈
{1, . . . , n}) in Proposition 2.3 can be chosen pairwise orthogonal.

2.4. Proposition. Let I ⊂ P be a proper B-ideal. Suppose that {a, a′}∩
I = ∅ for an a ∈ P . Then the B-ideal generated by {I, [0, a]} is proper.

P r o o f. Suppose that the B-ideal J generated by {I, [0, a]} is not proper
and seek a contradiction. If J is not proper, then there is an e ∈ P such
that {e, e′} ⊂ J . Observe that {e, e′} 6⊂ I ∪ [0, a]. Indeed, both e, e′ cannot
be in I and if e ∈ [0, a] then a′ ≤ e′; hence e′ /∈ I.

According to Proposition 2.3 we may assume that e ≤ b1∨b2, b1 ∈ I∩B,
b2 ∈ [0, a]∩B and b1 ⊥ b2. We may also assume without any loss of generality
that e = b1 ∨ b2. Hence e′ ∈ J ∩ B and therefore there are b3 ∈ I ∩ B,
b4 ∈ [0, a] ∩ B such that b3 ⊥ b4 and e′ = b3 ∨ b4. Then b1, b2, b3, b4 are
pairwise orthogonal and, moreover, 1 = e ∨ e′ = b1 ∨ b2 ∨ b3 ∨ b4. Thus,
a′ ≤ (b2 ∨ b4)′ = b1 ∨ b3 ∈ I, a contradiction.

2.5. Proposition. Each proper B-ideal is contained in a B-prime ideal.

P r o o f. By Zorn’s lemma, each proper B-ideal is contained in a maximal
proper B-ideal. By Proposition 2.4, each maximal proper B-ideal is a B-
prime ideal.

2.6. Proposition. Suppose that a 6≤ b (a, b ∈ P ). Then there exists a
B-prime ideal I such that a /∈ I and b ∈ I.

P r o o f. By Proposition 2.4, the B-ideal generated by {[0, b], [0, a′]} is
proper. The rest follows from Proposition 2.5.

2.7. Theorem. Let B be a Boolean subalgebra of P . Suppose that a 6≤ b
(a, b ∈ P ). Then there exists a two-valued B-state s ∈ S2

B(P ) such that
s(a) = 1 and s(b) = 0.

P r o o f. This follows immediately from Propositions 2.6 and 2.2.

In the next section we will need the following result.
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2.8. Theorem. Let B,B1 be Boolean subalgebras of P . Let s1 be a two-
valued state on B1. Then there exists a two-valued B-state s on P such that
s|B1 = s1.

P r o o f. Put I1 = s−1
1 (0). Put further J = {b ∈ P ; there exists a ∈

I1 with b ≤ a}. Then J is a proper B-ideal and, according to Proposi-
tion 2.5, J is contained in a B-prime ideal I. I1 is a prime ideal on B1,
hence I ∩B = I1. The rest follows from Proposition 2.2.

As the following example (due to Mirko Navara) shows, Theorem 2.7
cannot be improved in such a way that s ∈ SB1(P ) ∩ SB2(P ) for given
Boolean subalgebras B1, B2 of P .
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Fig. 1

2.9. Example. Figure 1 shows the Greechie diagram (see [3]) of an
orthomodular lattice P . The elements a, b′ ∈ P are not orthogonal, hence
a 6≤ b, but there is no s ∈ SB1(P )∩SB2(P ) such that s(a) = 1 and s(b) = 0.

3. A representation theorem for orthomodular lattices. The
main result in this section is a representation of P by means of clopen sets
in a compact Hausdorff closure space (a generalized Stone representation).
We will show as an improvement of [6] (where B is the centre of P ) that
if P is a lattice and if we are given a Boolean subalgebra B in P , we can
ensure that the restriction of the representation to B becomes the Stone
representation.

First we reformulate results of the previous section in a way convenient
for our representation theorem.

3.1. Proposition. Let P be the set of all B-prime ideals in P . Let the
mapping i : P → expP be defined by i(a) = {I ∈ P; a /∈ I}. Finally, write
A =

⋂
{i(b); b ∈ P and A ⊂ i(b)} for any A ⊂ P. Then

1) i(0) = ∅, i(1) = P and i : (P,≤,′ ) → (i(P ),⊂,′ ) is an isomorphism,
2) if Aα ∈ i(P ) (α ∈ A) and

∨
α∈AAα exists in (i(P ),⊂,′ ), then∨

α∈AAα =
⋃

α∈AAα,
3) if A,B ∈ i(B) then A ∨ B = A ∪ B and A ∧ B = A ∩ B.
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P r o o f. The first property follows from the definition of i and from The-
orem 2.7. As for the second property, we know that

∨
α∈AAα ∈ i(P ) con-

tains all Aα (α ∈ A) and therefore
⋃

α∈aAα ⊂
∨

α∈AAα. Then the equality⋃
α∈aAα =

∨
α∈AAα follows from the definition of the “bar” operation. Fi-

nally, suppose that I ∈ i(a∨b), a, b ∈ B. Then a∨b /∈ I and therefore either
a /∈ I or b /∈ I. Hence I ∈ i(a) ∪ i(b). Thus, i(a ∨ b) = i(a) ∪ i(b) and we
have A ∨ B = A ∪ B. Dually, A ∧ B = (A′ ∨ B′)′ = (A′ ∪ B′)′ = A ∩ B.

Prior to stating our main result in this section let us shortly review
basic facts on closure spaces (see [2], [6]). By a closure space we mean a pair
(X, ), where X is a nonempty set and : expX → expX is an operation
which has the following four properties:

(1) ∅ = ∅,
(2) A ⊂ A for any A ⊂ X,
(3) A ⊂ B implies A ⊂ B (A,B ⊂ X),
(4) A = A for any A ⊂ X.

A set A ⊂ X is called closed in (X, ) if A = A and B ⊂ X is called open
if X \ B is closed. A closure space (X, ) is called Hausdorff if any pair
of points in X can be separated by disjoint open sets, and (X, ) is called
compact if any open covering of X has a finite subcovering. It should be
noted that the intersection of any collection of closed sets is again a closed
set. However, the union of two closed sets need not be closed.

Let us agree to write CO(X) for the collection of all subsets of X which
are simultaneously closed and open.

3.2. Theorem. Let P, i and have the same meaning as in Proposi-
tion 3.1. Then P is a compact Hausdorff closure space and i(P ) ⊂ CO(P).
If P is a lattice, then i(P ) = CO(P).

P r o o f. One verifies easily that P is a closure space. Suppose that a ∈ P .
Then i(a) = i(a) and therefore i(a) is closed. Also, i(a) = i(a′′) = i(a′)′ and
therefore i(a) is open. Thus i(P ) ⊂ CO(P). This allows us to prove that
(P, ) is Hausdorff and compact. Indeed, if I1, I2 ∈ P and I1 6= I2, then
there is an element a ∈ P such that a ∈ I1 \ I2 (a′ ∈ I2 \ I1). We therefore
have two disjoint open sets i(a), i(a′) which separate I1, I2.

To show that P is compact, consider an open covering {Aα; α ∈ A}
of P . Since every closed set in P is an intersection of elements of i(P ),
every open set is a union of elements of i(P ). We therefore may (and will)
suppose that Aα = i(aα) (aα ∈ P , α ∈ A). Hence there is no B-prime ideal
I such that I ⊃ {aα; α ∈ A}. This means that the B-ideal J generated
by {[0, aα]; α ∈ A} is not proper, It follows that for some d ∈ P we have
one of the following possibilities (see Proposition 2.3): Either d ∈ [0, aα1 ],
d′ ∈ [0, aα2 ] (α1, α2 ∈ A) or d ≤ b1 ∨ · · · ∨ bn for bk ∈ B ∩ [0, aαk

] (αk ∈ A,
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k ∈ {1, . . . , n}), d′ ∈ J . In the former case a′α1
≤ d′ ≤ aα2 and therefore

P = i(aα1) ∪ i(a′α1
) ⊂ i(aα1) ∪ i(aα2). In the latter case we may (and will)

assume the equality instead of the inequality. thus, we have d ∈ B. Hence
d′ ∈ J ∩ B and therefore we can write d′ = b̃1 ∨ · · · ∨ b̃m (bk ∈ [0, aαk

] ∩ B,
αk ∈ A, k ∈ {1, . . . ,m}). Then we have

P = i(d ∨ d′) = i(b1 ∨ · · · ∨ bn ∨ b̃1 ∨ · · · ∨ b̃m)
= i(b1) ∪ · · · ∪ i(bn) ∪ i(b̃1) ∪ · · · ∪ i(b̃m)
⊂ i(aα1) ∪ · · · ∪ i(aαm).

Thus, in both cases we have found a finite subcovering of {Aα; α ∈ A}.
Suppose now that P is a lattice and A ∈ CO(P). According to the

definition of the closure operation we may write A =
⋃

α∈A i(aα) for some
aα ∈ P . Making use of the compactness of P we have A =

⋃n
k=1 i(aαk

)
(αk ∈ A, k ∈ {1, . . . , n}). Thus, A =

∨n
k=1 i(aαk

) = i(
∨n

k=1 aαk
) ∈ i(P ).

Before we state our last result in this section, recall that a mapping
f : L1 → L2 between two orthomodular lattices is called orthoisomorphism
if f is one-to-one and respects ordering and orthocomplementation.

3.3. Theorem. Let B be a Boolean subalgebra of an orthomodular lat-
tice P . Then there exists a compact Hausdorff closure space P such that P
is orthoisomorphic to CO(P). Moreover, the orthoisomorphism f : P →
CO(P) can be taken such that f(B) is the Stone representation of B.

P r o o f. This follows from Theorems 3.2 and 2.8.

4. Extensions of B-states. It is obvious that a trace of a B-state
on B is a state. It is natural to ask whether any state on B is a trace of a B-
state, i.e. whether the restriction r : SB(P ) → S(B) is onto. In Theorem 2.8
we have showed that this is true for two-valued states. Here we generalize
this result to arbitrary states on B.

4.1. Theorem. Let B,B1 be Boolean subalgebras of P . If s1 is a state
on B1, then there exists a B-state s on P such that s|B1 = s1.

P r o o f. We use the compactness of S = SB(P )∩SB1(P ). In some places
we partially utilize the technique of [11] and [10].

Let s1 be a state on B1 and let D = {d1, . . . , dn} be a partition of B1.
Thus,

∨n
k=1 dk = 1 and di ⊥ dj for i 6= j (i, j ∈ {1, . . . , n}). Put FD = {s ∈

S; s|D = s1|D}. Let D denote the set of all partitions of B1. We will show
that F = {FD; D ∈ D} is a filter base consisting of nonempty closed sets
in S. First, every set FD is closed by the definition of the topology in S
(“pointwise convergence”). Let now D1, D2 be two partitions of B1. Then
FD1 ∩ FD2 ⊃ FD1∧D2 , where D1 ∧D2 = {d1 ∧ d2; d1 ∈ D1 and d2 ∈ D2} is
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a partition of B1. Finally, let D be a partition of B1. For every d ∈ D \ {0}
take a state sd ∈ S2

B1
(B1) such that sd(d) = 1 (Theorem 2.7). According

to Theorem 2.8, for every d ∈ D \ {0} there exists a B-state s̃d ∈ S2
B(P )

such that s̃d|B1 = sd. hence s̃d ∈ S and s =
∑

d∈D\{0} s1(d)s̃d ∈ FD. Thus,
F is a centred system. Since S is compact, we have a B-state s such that
s ∈

⋂
F . It follows immediately from the definition of F that s extends s1.

The proof is complete.

It may be of independent interest to note the following corollary of the
previous result which might be viewed as a topological proof of a classical
Boolean result (see [5], [11], compare also [8]).

4.2. Corollary. Let B1 be a Boolean subalgebra of a Boolean alge-
bra B. Then every state on B1 extends over B.

5. Open questions. Another concept of partial additivity of states
(also stronger than in [13]) is studied in [12] and [1], where a theorem anal-
ogous to Theorem 2.7 is proved. The definition of the so-called central state
(abbr. c-state) differs from the definition of B-state in the third condition:

(3c) s(a ∨ b) = s(a) + s(b) provided a ⊥ b and a ∈ C(P ), b ∈ P ,

where C(P ) is the centre of P .
It is an open problem whether results analogous to those in this paper

are valid for B-states that are simultaneously c-states.
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