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Abstract We give an overview and clear up some relations between various
properties of effect algebras based on properties of sets of upper bounds, e.g.,
completeness, orthocompleteness, weak orthocompleteness, maximality prop-
erty, interpolation property.
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1 Introduction

Effect algebras become a basic notion for quantum structures (originated in
quantum physics) as “unsharp” generalizations of orthomodular lattices, ortho-
modular posets and orthoalgebras [3, 4].

There are various properties of effect algebras based on properties of upper
bounds for some sets of elements used in the literature. E.g., being a lattice,
completeness, orthocompleteness, interpolation property (e.g., [5, 1]), weak or-
thocompleteness (e.g., [11, 14]), property (W+) (e.g., [2]), maximality property
(e.g., [12, 13, 15]), property (CU) (e.g., [15]). Some of these properties were
introduced in a different way (interpolation property, maximality property) but
since an effect algebra is a de Morgan poset (with an antitone involution—the
orthosupplement), we can use equivalent (in effect algebras) definitions using a
common scheme.

We present a unifying attempt to the above mentioned properties introducing
new ones. The properties might be classified according to the cardinality and the
structure of considered systems (we should accept that elements might appear
more than once in case of orthogonal systems) and according to properties of
created sets of upper bounds:
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• We consider two-element systems, finite systems or systems of an arbitrary
cardinality.

• We consider orthogonal systems, chains or sets. The set of majorants
(upper bounds of finite sums) is used for orthogonal systems, the set of
upper bounds is used otherwise.

• We consider the following properties of the set of upper bounds: has the
least element; has a minimal element; is downward directed; either has
the least element or no minimal element.

The paper is organized as follows: Basic notions and known properties are
summarized in Section 2. In Section 3, the introduction of the general scheme
of properties of effect algebras, connnections to notions already used in various
papers and relations between the introduced properties that are easy to verify
are given. Section 4 brings results concerning the relations between properties
based on chains and on orthogonal systems. Examples showing differences be-
tween various properties (even for concrete orthomodular posets) are presented
in Section 5. Most of the orthomodular posets used in these examples are known
but some of their properties proved in this paper have not been verified yet.

2 Basic notions and properties

2.1 Definition. An effect algebra is an algebraic structure (E,⊕,0,1) such
that E is a set, 0 and 1 are different elements of E, and ⊕ is a partial binary
operation on E such that for every a, b, c ∈ E the following conditions hold:

(1) a⊕ b = b⊕ a, if one side exists;
(2) a⊕ (b⊕ c) = (a⊕ b)⊕ c, if one side exists;
(3) there is a unique orthosupplement a′ such that a⊕ a′ = 1;
(4) a = 0 whenever a⊕ 1 is defined.

For simplicity, we will use the notation E for an effect algebra. A partial
ordering on an effect algebra E is defined by a ≤ b if there is a c ∈ E such that
b = a ⊕ c. Such an element c is unique (if it exists) and is denoted by b 	 a.
In particular, 1 	 a = a′. With respect to this partial ordering, 0 (1, resp.) is
the least (the greatest, resp.) element of E. The orthosupplementation is an
antitone involution, i.e., for every a, b ∈ E, a′′ = a and b′ ≤ a′ whenever a ≤ b.
An orthogonality relation on E is defined by a ⊥ b if a⊕ b exists (that is if and
only if a ≤ b′). It can be shown that a ⊕ 0 = a for every a ∈ E and that the
cancellation law is valid: if a⊕c ≤ b⊕c then a ≤ b (in particular, if a⊕c = b⊕c
then a = b). See, e.g., [3, 4].

2.2 Definition. Let P be a partially ordered set. An a ∈ P is the least element
of P if a ≤ P (i.e., a ≤ p for every p ∈ P ). An a ∈ P is a minimal element of
P if there is no p ∈ P \ {a} with p ≤ a. An a ∈ P is an upper bound of a set
S ⊆ P if S ≤ a. P is downward directed if for every a, b ∈ P there is a c ∈ P
such that c ≤ a, b. A chain in P is a linearly (totally) ordered subset of P .

Obviously, the least element of a partially ordered set is its minimal element.
On the other hand, there are partially ordered sets with more minimal elements
(hence, without the least element and not downward directed).

2.3 Definition. An effect algebra is complete if every its subset has the least
upper bound.
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2.4 Definition. Let E be an effect algebra. A system (ai : i ∈ I) of elements
of E is orthogonal if

⊕
(ai : i ∈ F ) is defined for every finite set F ⊆ I. A

majorant of an orthogonal system is an upper bound of all its finite sums. The
sum

⊕
(ai : i ∈ I) of an orthogonal system (ai : i ∈ I) is its least majorant (if

it exists). An effect algebra E is orthocomplete if the sum of every orthogonal
system in E exists.

2.5 Definition. An effect algebra is separable if every orthogonal system of its
distinct elements is countable. An effect algebra is Archimedean if there is no
infinite orthogonal system consisting of the same nonzero element.

It is easy to see that an Archimedean effect algebra is separable if and only
if every orthogonal system of its nonzero elements is countable. On the other
hand, there is an uncountable orthogonal system of nonzero elements in every
non-Archimedean effect algebra—for a nonzero non-Archimedean element a and
an uncountable index set I we can take the orthogonal system (a : i ∈ I).

2.6 Definition. Let P be a partially ordered set. An ordered chain in P is
a system (cβ : β ∈ α) such that α is an ordinal, cβ ∈ P for every β ∈ α and
cβ < cγ for every β, γ ∈ α with β < γ.

Let us show that, for every chain, we can find an ordered subchain indexed
by a cardinal with the same set of upper bounds (this seems to be known but
we did not find a proper reference).

2.7 Lemma. Let P be a partially ordered set and C ⊆ P be a chain. Then there
is a cardinal α ≤ cardC such that there is an ordered subchain (cβ : β ∈ α) of
C with the the same set of upper bounds as C.

Proof. If C = ∅ then we put α = 0. If C has a maximal element c then we put
α = 1 and c0 = c. Let us suppose that C is nonempty and does not have a
maximal element.

First, let us prove by induction that there is an ordinal α with the desired
property. Let us choose a c0 ∈ C. If β is an ordinal such that cβ has not been
defined yet and cγ has been defined for every γ < β then for Cβ = {cγ : γ ∈ β}
we choose an upper bound cβ ∈ C \ Cβ of Cβ (if it exists). The construction
stops before reaching an ordinal with the cardinality greater then cardC.

Let α be the least ordinal with the desired property and let us prove that
α is a cardinal. Let us denote C ′ = {cβ : β ∈ α}, a bijection f : cardα → α
and let us use the induction. Let us choose a c′0 ∈ C ′. If β is an ordinal such
that c′β has not been defined yet and c′γ has been defined for every γ < β then
for Cβ =

⋃
γ∈β{c′γ , cf(γ)} we choose an upper bound c′β ∈ C ′ \ Cβ of Cβ . The

construction stops before reaching cardα+ 1. Since α is the least ordinal with
the desired property, we obtain that α ≤ cardα, i.e., α is a cardinal.

The following relations between chains and orthogonal systems will be used
in the sequel. The second is a reformulation of the method used in the proof [8,
Theorem 4.9].

2.8 Lemma. Let C = (cβ : β ∈ α) be an ordered chain. Then the system
O = (cβ+1 	 cβ : β + 1 ∈ α) is orthogonal and every upper bound of C is a
majorant of O.

Proof. Let O′ be a finite subsystem of O with cardO′ = n ∈ N. If n = 0 then
the statement is true (

⊕
∅ = 0). If n > 0 then there are ordinals β1 < · · · < βn
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such that βn + 1 ∈ α and O′ = (cβi+1 	 cβi
: i ∈ {1, . . . , n}). Then

⊕
O′ ≤

cβn+1 	 cβ1
≤ cβn+1 ∈ C.

2.9 Lemma. Let C = (cβ : β ∈ α) be an ordered chain such that
∨
{cγ : γ ∈ β}

exists for every limit ordinal β < α. Then there is an ordered chain C ′ = (c′β :
β ∈ α′), α′ ∈ {α, α + 1}, with the same set of upper bounds as C such that
c′β =

∨
{c′γ : γ ∈ β} for every limit ordinal β < α′.

Proof. For every β ∈ α we put c′β =
∨
{cγ : γ ∈ β} if β is a limit ordinal,

c′β = cβ if β < cardN, c′β+1 = cβ otherwise.

3 Properties of effect algebras

We will introduce various properties of effect algebras in the form (XY Z) and
will show basic relations between them.

3.1 Definition. We denote some properties of a partially ordered set P :
(L): P has the least element.
(M): P has a minimal element.
(D): P is downward directed.
(W): P either has the least element or no minimal element.

3.2 Definition. An effect algebra E has the property (XY Z) if every set of
upper bounds specified by XY has the property (Z), Z ∈ {L,M,D,W}. The
specification is as follows.

The symbol X gives the maximal cardinality of considered systems: X = T
for two-valued, X = F for finite, empty X for no restriction.

The symbol Y gives the structure of considered systems and resulting set of
upper bounds: Y = S for a set, Y = C for a chain, Y = O for an orthogonal
system. We consider the set of majorants for Y = O, the set of upper bounds
otherwise.

3.3 Examples. Translations of notations introduced in Definition 3.2 to usual
notions for some properties of effect algebras.

(TSL): E is a lattice.
(SL): E is a complete lattice.
(OL): orthocompleteness.
(TSD): interpolation property. Introduced by Goodearl [5] for abelian groups,

by Bennet and Foulis [1] for effect algebras.
(OW): weak orthocompleteness. Introduced by Ovchinnikov [11] for ortho-

modular posets as alternativity, by Tkadlec [14] for effect algebras.
(OD): property (W+). Introduced by De Simone and Navara [2].
(TSM): maximality property. Introduced by Tkadlec [12].
(CD): property (CU). Introduced by Tkadlec [15].

There are obvious implications between properties of partially ordered sets:
(L)⇒ (M), (L)⇒ (D)⇒ (W):

3.4 Proposition. If a partially ordered set has the least element then it has a
minimal element and is downward directed. Every downward directed partially
ordered set either has the least element or no minimal element.
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Moreover, a partially ordered set has the property (L) if and only if it
has both properties (M) and (W). As a corollary, we can add an arbitrary
specification XY to obtain corresponding implications for properties (XY Z),
Z ∈ {L,M,D,W}, of an effect algebra.

Obviously, a greater restriction to the cardinality of considered sets leads to
a smaller restriction to the effect algebra, i.e., (Y Z) ⇒ (FY Z) ⇒ (TY Z) for
every Y ∈ {S,C,O} and every Z ∈ {L,M,D,W}.

The least upper bound of a finite chain and the least majorant of a finite
orthogonal system always exist. Hence, every effect algebra has all ‘cardinality
restricted’ properties for chains and orthogonal systems discussed in this paper,
i.e., (XY Z) for X ∈ {T,F}, Y ∈ {C,O} and Z ∈ {L,M,D,W}.

It is well-known and easy to see that (TSL) ⇔ (FSL) in partially ordered
sets. The equivalence (TSD) ⇔ (FSD) is proved in [5, Proposition 2.2] but we
will present a bit modified proof to make the paper more self-contained.

3.5 Proposition. Let P be a partially ordered set such that the set of upper
bounds of every pair of its elements is downward directed (P has the interpolation
property). Then for every pair of nonempty finite subsets A,B of P with A ≤ B
(i.e., a ≤ b for every a ∈ A and b ∈ B) there is an element c ∈ P such that
A ≤ c ≤ B.

Proof. Let us use the induction for cardA = n. For n = 1 we can put c to
be the element of A. Let A = {a1, . . . , an} and there is a cn−1 ∈ P such that
{a1, . . . , an−1} ≤ cn−1 ≤ B. The set B is a subset of the set of upper bounds
U of cn−1, an. Since U is downward directed, we can use the induction to prove
that there is an element cn ∈ U (and therefore A ≤ cn) with cn ≤ B.

We obtained that the only interesting (in the sense that they bring some-
thing new) ‘cardinality restricted’ versions of properties (XY Z) (i.e., with X ∈
{F,T}) are (FSL), (FSM), (FSD), (FSW), (TSM), (TSW).

In special cases we have some other relations between the considered prop-
erties or statements about them. Only cardinalities up to the cardinality of the
effect algebra effectively applies, i.e., (FSZ)⇔ (SZ) for every Z ∈ {L,M,D,W}
in a finite effect algebra. Moreover, every chain-finite effect algebra has proper-
ties (SM) and (CL) (and their consequences).

Since chains are sets and considering orthogonal systems leads to considering
sets of majorants, (SZ)⇒ (CZ), (OZ) for every Z ∈ {L,M,D,W}.

4 Chains versus orthogonal systems

We will study relations between properties based on chains and on orthogonal
systems using a natural correspondence between chains and orthogonal systems:
using partial sums of an orthogonal system we obtain an ordered chain, using
differences of subsequent elements of an ordered chain (according to Lemma 2.7,
we can consider ordered chains only) we obtain an orthogonal system. The
correspondence need not be one-to-one and the set of upper bounds of a chain
need not be the set of majorants of an orthogonal system. Example 5.6 shows
that we can obtain an upper bound of corresponding chain that is not a majorant
of a given orthogonal system. On the other hand, according to Lemma 2.8, every
upper bound of a chain is a majorant of corresponding orthogonal system. The
reverse implication need not be true. The problem arises if an element ordered
by a limit ordinal is not the least upper bound of smaller elements. This is
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solvable in orthocomplete effect algebras by adding such least upper bounds
(see Lemma 2.9) and was done in [8, 9] considering the existence of least upper
bounds of chains or sums of orthogonal systems up to a given cardinality.

4.1 Theorem. The properties (CL) and (OL) are equivalent in every effect
algebra.

Proof. It is a consequence of [9, Theorem 3.2].

The following proposition generalizes [8, Lemma 4.8] in the sense that the
orthocompleteness assumption is omitted. (The cited result is stated in a more
general context of positive cancellative partially abelian monoids, the following
result might be reformulated to this context, too.) Let us remark that, in view
of Lemma 2.9, instead of the equality cβ =

∨
(cγ : γ ∈ β) (for limit ordinals

β < α) it would be sufficient to suppose the existence of the least upper bound
(the description of the orthogonal system would be more complicated).

4.2 Proposition. Let E be an effect algebra, C = (cγ : γ ∈ α) be an ordered
chain in E such that α > 0, c0 = 0 and cβ =

∨
(cγ : γ ∈ β) for every limit

ordinal β < α. Then the set of upper bounds of the chain Cβ = (cγ : γ ∈ β) is
the set of majorants of the orthogonal system Oβ = (cγ+1 	 cγ : γ + 1 ∈ β) for
every β ≤ α.

In particular,
∨
Cα =

⊕
Oα whenever

∨
Cα exists (e.g., if α is not a limit

ordinal) and
∨
Cβ =

⊕
Oβ for every β < α.

Proof. If β = 0 then
∨
C0 = 0 =

⊕
O0.

Let us suppose 0 < β ≤ α. According to the assumptions,
∨
Cβ = cβ for

a limit ordinal β < α,
∨
Cβ = cβ−1 for a nonlimit ordinal β ≤ α. According

to Lemma 2.8, the system Oβ is orthogonal and every upper bound of Cβ is a
majorant of Oβ . Let us use the induction to prove that every every majorant
of Oβ is an upper bound of Cβ . It is true for β = 1 (

∨
C1 = c0 = 0 =

⊕
O1).

Let us suppose that β > 1,
∨
Cγ =

⊕
Oγ for every γ < β and a is a majorant

of Oβ . We distinguish three cases.
1) If β is a limit ordinal then, for every γ ∈ β, we have γ + 1 ∈ β and

therefore cγ =
∨
Cγ+1 =

⊕
Oγ+1 ≤ a.

2) If β is not a limit ordinal and β−1 is a limit ordinal then
∨
Cβ = cβ−1 =∨

Cβ−1 =
⊕
Oβ−1 ≤ a.

3) If neither β nor β − 1 are limit ordinals then
∨
Cβ = cβ−1 = cβ−2 ⊕

(cβ−1 	 cβ−2) =
∨
Cβ−1 ⊕ (cβ−1 	 cβ−2) =

⊕
Oβ−1 ⊕ (cβ−1 	 cβ−2) ≤ a.

There is no problem in case we can skip limit ordinals, i.e., if we can use
only countable chains or orthogonal system. We will show that the conditions
(CZ) and (OZ) are equivalent in separable Archimedean effect algebras for every
Z ∈ {M,D,W} (see [16, 17] for properties (CD) and (OD)).

4.3 Proposition. Let E be a separable effect algebra.
1) For every orthogonal system O in E there is a chain C in E such that

the set of majorants of O is the set of upper bounds of C.
2) If E is Archimedean then for every chain C in E there is an orthogonal

system O in E such that the set of upper bounds of C is the set of majorants
of O.

Proof. 1) Since it is not important to distinguish infinite multiplicities of ele-
ments in orthogonal systems, we may suppose that they are countable. Since
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the effect algebra is separable, the number of elements in O is countable and we
can put O = (ai : i ∈ I), I = N or I = {1, . . . , n} for some n ∈ N. The set of

upper bounds of the chain {
⊕k

i=1 ai : k ∈ I} is the set of majorants of O.
2) According to Lemma 2.7, there is a cardinal α and an ordered subchain

{cβ : β ∈ α} of C with the same set of upper bounds as for C. The system
O =

(
cβ+1	cβ : β+1 ∈ α

)
is orthogonal. Since E is separable and Archimedean,

O is countable and therefore α = cardN and the set of majorants of O is the
set of upper bounds of C.

4.4 Corollary. Let E be a separable effect algebra, Z ∈ {M,D,W}.
1) If E has the property (CZ) then it has the property (OZ).
2) If E is Archimedean and has the property (OZ) then it has the property

(CZ).

5 Examples

Let us present examples showing that some implications between given prop-
erties are not true. There is a plenty of such implications (see, e.g., [15, 16]),
let us take care to clear up the differences between properties (L), (M), (D)
and (W) for the same specification FS, S, C or O and the differences between
specifications FS and S, C and O for these properties.

The examples were already used (some of them are well-known), however,
usually for other properties than those studied in this paper. E.g., Example 5.1
was used in [6, Example 1], Example 5.3 was used in [7], Example 5.4 (as
well as Example 5.3) was used in [10, proof of Theorem 3.4], Example 5.6 is a
modification of [11, Example 3.9] where one set was considered countable.

More related appearances are the following. Example 5.4 was used in [2, Ex-
ample 3.3] to show that (OW) 6⇒ (OL), (TSL), (OD) and in [15, Example 3.8]
as an example of an effect algebra without the property (TSM). Example 5.5
(a bit different version) was used in [2, Example 3.5] as an example of an or-
thomodular poset without the property (OW). Example 5.6 was used in [16,
Example 2.6] to show that (CD) 6⇒ (OW).

All examples in this section are the so-called concrete (set-representable)
orthomodular posets. In particular, the ⊕ operation is the union of disjoint
sets, the least element is the empty set, the partial ordering is the inclusion and
the orthosupplement is the set-theoretic complement.

5.1 Example. Let E be the family of even-element subsets of a 6-element set
X, A⊕B = A∪B for disjoint A,B ∈ E. Then (E,⊕, ∅, X) is an effect algebra.

Since E is finite, it is orthocomplete and every set of elements has a minimal
upper bound. There are pairs of elements in E (e.g., different nondisjoint two-
element sets) with more minimal upper bounds.

I.e., (XSM) 6⇒ (XSW) for X empty or X ∈ {F,T}, (CL) 6⇒ (FSL), (OL) 6⇒
(FSL).

5.2 Example. Let E be a family of finite and cofinite subsets of an infinite set
X, A ⊕ B = A ∪ B for disjoint elements of E. Then (E,⊕, ∅, X) is an effect
algebra.

The set of upper bounds of every set of elements is downward directed.
There is an infinite orthogonal set (e.g., of singletons) with a coinfinite union
and therefore without a minimal majorant. There is an infinite chain (e.g.,
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of finite sets) with a coinfinite union and therefore without a minimal upper
bound. E is a non-complete lattice.

I.e., (YD) 6⇒ (YM) for Y ∈ {S,C,O}, (FSL) 6⇒ (SL).

5.3 Example. Let E be the family of (Lebesgue) measurable subsets of [0, 1]
with a rational measure, A ⊕ B = A ∪ B for disjoint elements of E. Then
(E,⊕, ∅, [0, 1]) is an effect algebra.

E has the property (SW): If S ⊆ E then either
⋃
S ∈ E (

⋃
S is the least

upper bound of S) or for every upper bound A of S there is an x ∈ A \
⋃
S and

therefore there is a smaller upper bound A \ {x} of S.
E does not have the property (FSD): Let x ∈ (0, 0.3) be an irrational number,

A = (0.3, 0.6), B = (0.3 + x, 0.6 + x), C = (x, 0.6 + x), D = (0.3, 0.9). Then
C,D are upper bounds of {A,B} with no smaller upper bound of {A,B}.

I.e., (FSW) 6⇒ (FSD), (SW) 6⇒ (SD).

5.4 Example. Let X1, X2, X3, X4 be mutually disjoint infinite sets, X =⋃4
i=1Xi,

E0 = {∅, X1 ∪X2, X2 ∪X3, X3 ∪X4, X4 ∪X1, X} ,
E = {(A \ F ) ∪ (F \A) : A ∈ E0, F ⊆ X is finite},

A⊕B = A ∪B for disjoint A,B ∈ E. Then (E,⊕, ∅, X) is an effect algebra.
E has the property (SW): Let S ⊆ E. If

⋃
S is infinite and coinfinite in

some Xn, n ∈ {1, 2, 3, 4}, and A is an upper bound of S then A is cofinite in
Xn, there is an x ∈ Xn \

⋃
S, A \ {x} is an upper bound of S, hence there is no

minimal upper bound of S. Let us suppose that
⋃
S is finite or cofinite in every

Xi, i ∈ {1, 2, 3, 4}. If the set of indices i ∈ {1, 2, 3, 4} such that
⋃
S is cofinite

in Xi is empty, 4-element or belongs to
{
{1, 2}, {2, 3}, {3, 4}, {4, 1}

}
then

⋃
S is

the least upper bound of S. For remaining possibilities and for an upper bound
A of S, there is an n ∈ {1, 2, 3, 4} such that A is cofinite in Xn and Xn ∩

⋃
S

is finite, there is an x ∈ Xn ∩ (A \
⋃
S), A \ {x} is an upper bound of S, hence

there is no minimal upper bound of S.
The set of upper bounds of every finite set of elements is downward directed.

There are pairs of elements in E (e.g., X1 ∪ X2, X1 ∪ X4) without a minimal
upper bound. X1∪X2, X1∪X4 are majorants of

{
{x} : x ∈ X1

}
with no smaller

majorant of this orthogonal set and upper bounds of infinite chains C ⊆ X1 with
no smaller upper bound of C.

I.e., (FSD) 6⇒ (TSM), (YW) 6⇒ (YD) for Y ∈ {S,C,O}), (FSD) 6⇒ (SD).

5.5 Example. LetX1, X2, X3, X4 be mutually disjoint infinite setsX =
⋃4
i=1Xi,

E0 = {∅, X1 ∪X2, X2 ∪X3, X3 ∪X4, X4 ∪X1, X} ,
E = {(A \ F ) ∪ (F \A) : A ∈ E0, F ⊆ X1 is finite},

A⊕B = A ∪B for disjoint A,B ∈ E. Then (E,⊕, ∅, X) is an effect algebra.
The set of upper bounds of every finite set of elements is downward directed.

X1 ∪X2, X1 ∪X4 are minimal upper bounds of
{
{x1} : x1 ∈ X1

}
.

I.e., (FSW) 6⇒ (SW).

5.6 Example. Let X,Y be disjoint uncountable sets of the same cardinality,

E0 = {A ⊆ (X ∪ Y ) : card(A ∩X) = card(A ∩ Y ) is finite} ,
E = E0 ∪ {(X ∪ Y ) \A : A ∈ E0} ,
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A⊕B = A∪B for disjoint A,B ∈ E. Then (E,⊕, ∅, X ∪Y ) is an effect algebra.
E has the property (FSM): Is S ⊆ E is finite then

⋃
S is either finite or

cofinite. In both cases we can add a finite subset of one of the sets X,Y to
obtain a minimal upper bound of S.

E does not have the property (SM): There is an S ⊆ E consisting of an
infinite number of disjoint two-element sets such that their union is coinfinite.
Every upper bound of S is cofinite, hence there is a smaller upper bound of S.

E has the property (CD): Let C be a chain in E, A,B ∈ E be upper bounds
of C. If C contains a cofinite subset of X ∪Y then C has a maximal element and
therefore the least upper bound. If C does not contain an infinite set then the
set
⋃
C is countable and there is an element C ∈ E such that

⋃
C ⊆ C ⊆ A∩B.

E does not have the property (OW): Let x0 ∈ X, y0 ∈ Y . There is a
bijection f : X → Y \ {y0}. The orthogonal set

{
{x, f(x)} : x ∈ X \ {x0}

}
has

different minimal upper bounds (X ∪ Y ) \ {x0, f(x0)} and (X ∪ Y ) \ {x0, y0}.
I.e., (FSM) 6⇒ (SM), (CD) 6⇒ (OD), (CW) 6⇒ (OW).

The following questions seems to be open.

5.7 Questions. Is there an effect algebra with some of the following properties:
1) Every pair of its elements has a minimal upper bound and there is a finite

set of its elements without a minimal upper bound, i.e., (TSM) 6⇒ (FSM)?
2) Every pair of its elements either has the least upper bound or no minimal

majorant and there is a finite set of its elements with a minimal upper bound
that is not its least upper bound, i.e., (TSW) 6⇒ (FSW)?

3) Every its chain (orthogonal system, resp.) has a minimal upper bound
(majorant, resp.) and there is a chain (orthogonal system, resp.) without the
least upper bound (majorant, resp.), i.e., (CM) 6⇒ (CW), (OM) 6⇒ (OW)?

4) Every its chain has a minimal upper bound and there is an orthogonal
system without a minimal majorant, i.e., (CM) 6⇒ (OM)?

5) For every its orthogonal system the set of majorants has a minimal element
(is downward directed, has the least element or no minimal element, resp.) and
there is a chain such that the set of its upper bounds does not have a minimal
element (is not downward directed, has a minimal element that is not the least
element, resp.), i.e., (OZ) 6⇒ (CZ) for Z ∈ {M,D,W}?
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