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A Boolean orthoposet is the orthoposet P fulfilling the following condi-
tion: If a, b ∈ P and a ∧ b = 0 then a ⊥ b. This condition seems to
be a sound generalization of distributivity in orthoposets. Also, the class
of (orthomodular) Boolean orthoposets may play an interesting role in
quantum logic theory. This class is wide enough and, on the other hand,
enjoys some properties of Boolean algebras. In this paper we summarize
results on Boolean orthoposets involving distributivity, set representation,
properties of the state space, existence of Jauch–Piron states, and results
concerning orthocompleteness and completion.

1. BASIC NOTIONS

Definition 1.1. An orthoposet is a triple (P,≤,′ ) such that:

1. (P,≤) is a partially ordered set with a least element 0 and a greatest
element 1.

2. ′ : P → P is an orthocomplementation, i.e., (i) a′′ = a, (ii) a ≤ b ⇒
b′ ≤ a′, (iii) a ∧ a′ = 0 for every a, b ∈ P .

Elements a, b of P are called orthogonal (denoted by a ⊥ b) if a ≤ b′. An
orthoposet (P,≤,′ ) is called Boolean if a ⊥ b whenever a ∧ b = 0.

Definition 1.2. Let α be a cardinal number. An orthoposet P is called
α-orthocomplete if every set of cardinality less than α consisting of mutually
orthogonal elements of P has a supremum. An orthoposet is called orthocom-
plete if it is α-orthocomplete for every cardinal number α.

Definition 1.3. An ω0-orthocomplete (ω0 denotes the first infinite cardi-
nal) orthoposet is called orthomodular if b = a ∨ (b ∧ a′) for every a, b ∈ P
with a ≤ b.

2. DISTRIBUTIVITY

The following theorem [10] shows some distributivity property of Boolean
orthoposets. Let us note that analogous results (but only in one-way) can
be found in [2, Lemma 3.7] (for orthomodular posets) and in [8, Proposition
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1.3.10] (for orthomodular lattices) provided some compatibility conditions are
fulfilled.

Theorem 2.1. Suppose that P is a Boolean orthoposet and that S1∪ . . .∪
Sn ⊂ P such that S1 ∧ . . . ∧ Sn,

∨
S1, . . . ,

∨
Sn exist in P . Then∨

(S1 ∧ . . . ∧ Sn) = (
∨
S1) ∧ . . . ∧ (

∨
Sn)

if at least one side of this equality exists.

We use the following abbreviation S1 ∧ . . . ∧ Sn = {s1 ∧ . . . ∧ sn; s1 ∈
S1, . . . , sn ∈ Sn}.

Corollary 2.2. Every ω0-orthocomplete (ω0 denotes the first infinite car-
dinal) Boolean orthoposet is orthomodular.

3. ORTHOCOMPLETENESS

In Corollary 2.2 we have shown that every ω0-orthocomplete Boolean
orthoposet is orthomodular. The following result [13] is a generalization of
various results from [4, 10, 6, 5].

Theorem 3.1. Every orthocomplete Boolean orthoposet is a Boolean al-
gebra.

Let us note that an orthocomplete Boolean algebra is complete. As the fol-
lowing proposition shows, the condition of orthocompleteness in Theorem 3.1
cannot be weakened to α-orthocompleteness for any cardinal number α.

Proposition 3.2. For every cardinal number α there is an α-complete or-
thomodular Boolean orthoposet that is not a Boolean algebra.

4. COMPLETION

An important problem in quantum theories is determining which ortho-
modular posets can be completed to an orthomodular lattice (see, e.g., [1]).
Here we give a partial solution to this problem [12].

Definition 4.1. An ortholattice L is called complete if
∨
A exists in L for

every A ⊂ L.
Let P be an orthoposet. A complete ortholattice L ⊃ P is called the

MacNeille completion of P if the following hold:

1. P is a suborthoposet of L, i.e., basic relations and operations on P (0,
1, ≤, ′) are restrictions of those on L.
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2.
∨

P A =
∨

LA for every A ⊂ P such that
∨

P A exists.
3. For every a ∈ L there are A1, A2 ⊂ P such that a =

∨
A1 =

∧
A2.

Theorem 4.2. The MacNeille completion of a Boolean orthoposet is a
Boolean algebra.

5. STATE SPACE

In this section we will show that the state space of a Boolean orthoposet
is rich enough [9, 13] and give a characterization of Boolean orthoposets by
means of two-valued states [11].

Definition 5.1. A state on an orthoposet P is a mapping s:P → [0, 1]
such that:

1. s(1) = 1.
2. s(a) ≤ s(b) whenever a ≤ b.
3. s(

∨
F ) =

∑
a∈F s(a) for every finite set F ∈ P of mutually orthogonal

elements such that
∨
F exists in P .

Definition 5.2. A set S of (not necessarily all) states on an orthoposet P
is called: unital if for every a ∈ P \ {0} there is a state s ∈ S such that
s(a) = 1; full if for every pair a, b ∈ P with a 6≤ b there is a state s ∈ S such
that s(a) 6≤ s(b).

Theorem 5.3. The set of two-valued states on a Boolean orthoposet is full.

Theorem 5.4. Let P be an orthoposet. The following two properties are
equivalent:

1. P is a Boolean orthoposet.
2. The orthoposet P has a unital set of two-valued states and every unital

set of two-valued states on P is full.

6. JAUCH–PIRON STATES

In quantum logic theory an important role is played by so-called Jauch–
Piron states [3, 7, 8]. In this section we will clear up the connection between
Boolean orthoposets and orthoposets with enough two-valued Jauch–Piron
states [11].

Definition 6.1. A state s on P is called Jauch–Piron if for every pair
a, b ∈ P with s(a) = s(b) = 1 there is a c ∈ P with s(c) = 1 such that c ≤ a, b.

Theorem 6.2. Every orthoposet with a full set of two-valued Jauch–Piron
states is Boolean.
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Theorem 6.3. Every atomic Boolean orthoposet has a full set of two-
valued Jauch–Piron states.

Theorem 6.4. There is a Boolean orthomodular poset that has no two-
valued Jauch–Piron state.

As an example of a Boolean orthomodular poset without any two-valued
Jauch–Piron state we can take an orthomodular poset generated by suitable
triangles in a given square.

7. SET REPRESENTATION

Since the set of two-valued states on a Boolean orthoposet is full (Theo-
rem 5.3) there is a Stone-like representation [9, 12, 13]:

Theorem 7.1. Every Boolean orthoposet has a set representation such
that 0 corresponds to ∅, ordering corresponds to inclusion, orthocomplemen-
tation corresponds to set-theoretic complementation, and finite suprema of
mutually orthogonal elements correspond to unions.
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