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Greechie Diagrams of Small Quantum Logics

with Small State Spaces

Josef Tkadlec1

Received July 4, 1997

We present Greechie diagrams of various quantum logics with small state spaces
(i.e., the set of two-valued states is empty, not unital, not separating, not full,
resp.). We present the smallest known examples of such so-called Kochen–
Specker type constructions.

1. INTRODUCTION

Quantum logics are usually derived from Hilbert spaces where quantum
propositions form an orthomodular lattice (a quantum logic) of closed subspaces.
Since the 3-dimensional Hilbert space R3 is the least Hilbert space where the
situation is nontrivial and since examples in Hilbert spaces with greater dimen-
sions can be derived from those in R3, we restrict ourselves to R3.

Obviously, the set of states on the quantum logic L(R3) of closed sub-
spaces of R3 is large (full). On the other hand, there is no two-valued state
on L(R3). This is a consequence of the well-known Gleason theorem. While
Gleason’s theorem uses substantially an infinite number of elements, Kochen
and Specker (1967) showed that this fact follows from a given finite number of
elements (lines).

We are interested in examples of quantum logics representable in L(R3)
with small (empty is a special case of smallness) set of two-valued states. For a
physical background (connection of two-valued states with yes–no experiments
and with the hidden variable hypothesis) in this context see, e.g., Kochen and
Specker (1967), Bub (1996), or Svozil and Tkadlec (1996).
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We give examples of quantum logics by means of Greechie diagrams. While
a description of a set of lines by means of points on a cube surface (see, e.g.,
Bub, 1996) gives an insight into which lines are considered, a Greechie diagram
enables better insight into why the set of two-valued states is small.

2. BASIC NOTIONS AND PROPERTIES

The basic set for our considerations is the set L(R3) of closed subspaces of
a 3-dimensional Hilbert space. L(R3) consists of a zero subspace, lines, planes
and of R3 and forms an orthomodular lattice (meet is the intersection, join is
the span of the union, orthocomplement is the set of vectors orthogonal to all
vectors in a given element).

It can be shown (see, e.g., Svozil and Tkadlec, 1996) that there is only a
very limited number of types of finite subortholattices of L(R3). They are either
Boolean algebras (with one, two, or three atoms) or pastings of a finite number
of 3-atomic Boolean algebras for a given atom—there is a line such that all
other lines form orthogonal pairs orthogonal to this line (this corresponds to
the 2-dimensional case). These structures are not interesting for us, hence we
will use more general subsets—either sets of lines or suborthoposets.

Definition 2.1. A nonempty subset L of L(R3) is called a suborthoposet of
L(R3) if

(1) a⊥ = {x ∈ R3; x ⊥ y for every y ∈ a} ∈ L whenever a ∈ L.
(2) a ∨ b = Sp(a ∪ b) ∈ L whenever a, b ∈ L with a ⊥ b.

It can be shown that a suborthoposet of L(R3) forms a lattice. [The lattice
operation need not be the same as in L(R3)—the join of a pair of nonorthogo-
nal elements might be R3 in a suborthoposet, while it is the plane containing
these lines in L(R3).] We say that a suborthoposet L of L(R3) is generated
(orthogenerated, resp.) by a set M ⊂ L if every element of L can be expressed
using the elements of M and the operations of join (of orthogonal elements,
resp.) and orthocomplementation. Let us note that if a pair of orthogonal lines
belongs to a suborthoposet of L(R3), then the line orthogonal to both of them
also belongs to this suborthoposet.

A two-valued state on a suborthoposet L of L(R3) is a mapping s : L →
{0, 1} such that s(R3) = 1 and s(a ∨ b) = s(a) + s(b) whenever a, b ∈ L with
a ⊥ b. Let us introduce the notion of a two-valued state also in another setting.

Definition 2.2. A two-valued state on a set M ⊂ L(R3) of lines is a mapping
s : M → {0, 1} such that

(1) s(a) + s(b) ≤ 1 whenever a, b ∈M with a ⊥ b.
(2) s(a) + s(b) + s(c) = 1 whenever a, b, c ∈M are mutually orthogonal.
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Obviously, if s is a two-valued state on a suborthoposet L of L(R3), then
its restriction to a set of lines in L is a two-valued state on this set.

We will use several concepts of “smallness” of the set of two-valued states:
emptiness and not “large” in some of the following interpretations.

Definition 2.3. A set S of two-valued states on a suborthoposet L of L(R3)
is called:

(1) unital, if for every a ∈ L with a 6= {(0, 0, 0)} there is an s ∈ S such that
s(a) = 1;

(2) separating, if for every a, b ∈ L with a 6= b there is an s ∈ S such that
s(a) 6= s(b);

(3) full, if for every a, b ∈ L with a 6⊥ b there is an s ∈ S such that
s(a) = s(b) = 1.

It is well known and easy to see that a full (separating, resp.) set of two-
valued states is separating (unital, resp.). All these notions are studied in quan-
tum theories. Orthomodular posets with a full (separating, resp.) set of two-
valued states are called concrete logics (partition logics, resp.); see, e.g., Pták
and Pulmannová (1991), Schaller and Svozil (1994).

We will define a unital (separating, full, resp.) set of two-valued states on
a set of lines of L(R3) by the same condition as in the above definition. [The
proper generalization of the notion of a separating set of two-valued states might
be stronger: a unital set such that for every a, b with a 6= b and a 6⊥ b there are
two-valued states s1, s2 with s1(a) = s1(b) and s2(a) 6= s2(b).]

Every suborthoposet of L(R3) can be represented by a Greechie diagram as
follows: We represent atoms (lines in our constructions) by points and maximal
subsets of mutually orthogonal atoms (triads—triples of mutually orthogonal
lines in our constructions) by smooth curves (usually by line segments) contain-
ing corresponding points. We will use ‘almost’ Greechie diagrams—since each
smooth curve connects exactly three points in our examples, we will omit points
which belong to only one curve. This makes the diagrams a bit simpler.

The Greechie diagram exhibits clearly orthogonality relations. Hence, it is
easy to verify whether a set of lines generates (orthogenerates, resp.) a subortho-
poset of L(R3)—we add consecutively points which are connected by smooth
curves with (which belong to the same smooth curve as, resp.) a pair of points al-
ready generated (orthogenerated, resp.). Moreover, we can easily verify whether
a mapping on a set of lines is a two-valued state and properties of the state space.

3. EXAMPLES

The suborthoposet of L(R3) given by the first diagram in Fig. 1 is gener-
ated by 3 lines (e.g., by those marked by a circle), orthogenerated by 6 lines
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121 101̄ 1̄21̄

21̄0 210

121̄ 101 1̄21

121 101̄ 1̄21̄

21̄0 210

121̄ 101 1̄21

×

×

211 011̄ 21̄1̄

1̄20 120

211̄ 011 21̄1

010

001

100

Fig. 1 ‘Almost’ Greechie diagrams of suborthoposets of L(R3) without a full and without a
separating set of two-valued states [e.g., 121̄ = Sp(1,

√
2,−1)].

(e.g., by all marked except 101̄ and 101), contains 13 lines (4 of them are not
drawn in slanted line segments, 1 is not drawn in the vertical line segment),
7 triads, and an 8-element set of lines [all marked; see, e.g., Kochen and Specker
(1967) for both diagrams] without a full set of two-valued states. Indeed, if the
set of two-valued states is full, then there is a two-valued state s such that
s(21̄0) = s(210) = 1; hence s(121) = s(1̄21̄) = s(121̄) = s(1̄21) = 0 and there-
fore s(101̄) = s(101) = 1—a contradiction.

The suborthoposet of L(R3) given by the second diagram in Fig. 1 is gen-
erated by 4 lines (e.g., by those marked by a circle), orthogenerated by 10 lines
(e.g., by the same as in the previous example and by 001, 211, 21̄1̄, 211̄), and
contains 27 lines, 17 triads, and a 17-element set of lines (all marked except
those which are crossed) without a separating set of two-valued states. Indeed,
if s(21̄0) = 1 for a two-valued state s then s(001) = s(210) = 0 (we use the
fact proven in the previous example) and therefore s(1̄20) = 1; due to the sym-
metry, the reverse implication is also satisfied, hence s(21̄0) = s(1̄20) for every
two-valued state s.

The suborthoposet of L(R3) given in Fig. 2 is generated by 3 lines (e.g.,
by those marked by a circle), orthogenerated by 11 lines [e.g., by those given by
Schütte; see Clavadetscher-Seeberger (1983)—the above-mentioned generators,
vertices of the ‘hexagon’, 102 and 201], and contains 37 lines, 26 triads, and a
25-element set of lines (all marked) without a unital set of two-valued states.
Indeed, let us suppose that there is a two-valued state on these lines such that
s(100) = 1 and therefore s(010) = s(001) = s(011) = s(011̄) = 0. First, let us
suppose that s(1̄02) = 1: we consecutively obtain s(21̄1) = s(211) = 0, s(111̄) =
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010

101

101̄

11̄1

111

1̄11

11̄2

110

111̄

21̄1

011

001

1̄10

211

100

011̄

112

1̄12

201

1̄02

211̄

102

201̄

1̄1̄221̄1̄

Fig. 2 ‘Almost’ Greechie diagram of a suborthoposet of L(R3) without a unital set of
two-valued states [e.g., 121̄ = Sp(1, 2,−1)].

s(1̄11) = 1, s(1̄10) = s(110) = 0 = s(001)—a contradiction. Hence s(201) = 1
and s(1̄12) = s(1̄1̄2) = 0. Now, let us suppose that s(102) = 1: we obtain
s(21̄1̄) = s(211̄) = 0, s(111) = s(11̄1) = 1, s(1̄10) = s(110) = 0 = s(001)—
a contradiction. Hence s(201̄) = 1 and s(112) = s(11̄2) = 0. Finally, let us
suppose that s(110) = 0: we obtain s(1̄11) = s(11̄1) = 1, s(101) = s(101̄) = 0 =
s(010)—a contradiction. Hence s(1̄10) = 0 and we obtain s(111̄) = s(111) = 1,
s(101) = s(101̄) = 0 = s(010)—a contradiction.

The suborthoposet of L(R3) given in Fig. 3 is generated by 3 lines (e.g.,
by those marked by a circle), orthogenerated by 17 lines (e.g., by 100, 001, and
by all lines which arise from 012, 11̄2, 1̄1̄2 using permutations of coordinates),
and contains 57 lines, 40 triads, and a 33-element set of lines [all marked; given
by Peres (1991)] without any two-valued state. Indeed, if there is a two-valued
state, then there is a two-valued state s such that s(010) = s(1̄21) = 1 (we
use symmetries) and therefore s(100) = s(001) = s(210) = s(01̄2) = 0. Hence
s(1̄20) = 1, s(211̄) = s(211) = 0. Let us suppose that s(120) = 1: we obtain
s(21̄1) = s(21̄1̄) = 0, s(011) = s(011̄) = 1—a contradiction. Hence s(21̄0) = 1
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1̄21̄

121

1̄01

101

010

121̄1̄21

210

1̄20

001

012

021̄

100

21̄1̄

211
1̄1̄2
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011̄
011
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110

211̄

21̄1

1̄12
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120
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201̄
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Fig. 3 ‘Almost’ Greechie diagram of a suborthoposet of L(R3) without any two-valued
state [e.g., 121̄ = Sp(1,

√
2,−1)].

and we obtain s(121) = 0, s(1̄21̄) = 1, s(012) = 0, s(021̄) = 1, s(1̄12) = s(112) =
0. Since s(021) = 1 we obtain s(1̄1̄2) = s(11̄2) = 0, s(1̄10) = s(110) = 1—a
contradiction.

It should be noted that there is also another example of 33 lines without
any two-valued state by Bub (1996) and an example with 31 lines by Conway
and Kochen [unpublished; see Bub (1996)].
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