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Vector states on orthoposets and quantum logics are analyzed. These states
are characterized and the sphere-valued states are shown to be orthogonally
scattered in the sense of Ref. 1 and Ref. 2. The relation between the sphere-
valued states and extremal (= pure) states is investigated. It will be shown
that for the strictly convex spaces the sphere-valued states are always extremal
whereas the reverse inclusion is valid only for special types of orthoposets
(Propositions 3.4 and 3.6). Finally, extensions of vector states from Boolean
subalgebras are considered. A positive result for normed linear spaces, which
have a predual (Theorem 5.1), is obtained.

I. INTRODUCTION

In this paper we shall consider states on orthoposets ranging in normed linear space.
Let us first review basics on orthoposets.

1.1. Definition. An orthoposet is a triple (P,≤,′ ) such that the couple (P,≤) is a
partially ordered set with a least element, 0, and a greatest element, 1, and with
the operation of orthocomplementation ′ : P → P . Thus, for any a, b ∈ P we have
(1) a′′ = a, (2) a ≤ b implies b′ ≤ a′, (3) a ∨ a′ = 1.

Let us call elements a, b ∈ P orthogonal (denote by a ⊥ b) if a ≤ b′.
Further, let us call an orthoposet (P,≤,′ ) orthocomplete poset if a ∨ b exists for

any pair a, b ∈ P of orthogonal elements.
In the agreement with the standard terminology3 let us call an orthocomplete

poset (P,≤,′ ) an orthomodular poset, if b = a ∨ (b ∧ a′) for every pair a, b ∈ P such
that a ≤ b (an orthomodular poset is sometimes called a quantum logic).

Typical example of an orthoposet is a Boolean algebra or the lattice of projectors
on a Hilbert space (these are even orthomodular posets).

Dealing with an orthoposet (P,≤,′ ), we shall shortly denote it by P if there is
no danger of misunderstanding.

1.2. Definition. A finite subset D = {d1, . . . , dn} of an orthoposet P is called a
partition of unity in P if D consists of mutually orthogonal nonzero elements and if
d1 ∨ · · · ∨ dn = 1.
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Let us now recall elements of normed linear spaces as we shall use them in the
sequel.4 We shall restrict ourselves to real normed linear spaces. We use the notion R
for real numbers and B(x, r) [B′(x, r), resp.] for the closed ball (the sphere, resp.)
with the center x and the radius r.

1.3. Definition. Let X be a normed linear space and let S be a subset of X. By
the convex hull of S we mean the set

coS = {t1x1 + · · ·+ tnxn; (x1, . . . , xn) ∈ Sn, (t1, . . . , tn) ∈ [0, 1]n, t1 + · · ·+ tn = 1}.

If coS = S, we call S convex.
Further, we call an element x of a convex set S an extremal point of S (denote

by x ∈ ExtS), if x /∈ co (S \ {x}).
Following the standard notion, let us call a normed linear space strictly convex

if ExtB(0, 1) = B′(0, 1).

1.4. Lemma. Suppose that X is a normed linear space and that (x1, . . . , xn) ∈ Xn.
Then

{t1x1 + · · ·+ tnxn; (t1, . . . , tn) ∈ [0, 1]n} = co
{∑
k∈I

xk; I ⊂ {1, . . . , n}
}
.

Proof. Without any loss of generality we may suppose that t1 ≤ · · · ≤ tn. Then
t1x1 + · · ·+ tnxn = t1(x1 + · · ·+ xn) + (t2 − t1) · (x2 + · · ·+ xn) + · · ·+ (tn − tn−1) ·
xn + (1− tn) · 0 (we use the convention that

∑
k∈∅ xk = 0).

For every normed linear space X, let us denote by X∗ the dual of X. The predual
of X is a normed linear space Y such that Y ∗ = X. (It is well-known that every
Hilbert space is strictly convex and has a predual.)

1.5. Proposition. Suppose that X is a normed linear space. Then for every e ∈ X
such that ‖e‖ = 1 there is an f ∈ X∗ such that f(e) = ‖f‖ = 1. In particular,
f(B(e/2, 1/2)) = [0, 1]. Moreover, if X is a Hilbert space, then f(x) = (x, e) for any
x ∈ X.

Proof. The first part follows from Hahn–Banach theorem, the second part follows
from the differentiability of the ball in a Hilbert space.4

1.6. Lemma. Suppose that H is a Hilbert space. Then ‖x − e/2‖2 + (x, e − x) =
‖e‖2/4 for every e ∈ H.

Proof. ‖x−e/2‖2 = (x−e/2, x−e/2) = (x, x−e)+(e/2, e/2) = −(x, e−x)+‖e‖2/4.
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II. VECTOR STATES

Let us now state our basic definition.

2.1. Definition. Let P be an orthoposet and let X be a normed linear space. A
mapping s : P → X is called

normed if ‖s(1)‖ = 1;
monotone if (f ◦ s)(a) ≤ (f ◦ s)(b) for every functional f ∈ X∗ with (f ◦ s)(1) =

‖f‖ = ‖s(1)‖ and for every a, b ∈ P such that a ≤ b;
additive if s(1) =

∑
d∈D s(d) for every partition of unity D in P .

Finally, a normed monotone additive mapping s : P → X is called vector state
[denoted by s ∈ S(P,X)] if

s(P ) ⊂ B(s(1)/2, 1/2); (1)

vector ′-state [denoted by s ∈ S′(P,X)] if

s(P ) ⊂ B′(s(1)/2, 1/2). (2)

Let us now observe immediate consequences of the latter definition.

2.2. Remark. (1) If P is an orthomodular poset, then the additivity and the con-
dition (1) implies monotonicity.

(2) Vector states s : P → R with s(1) = 1 are called states; the set of all states
on P we denote by S(P ).

(3) S(P,R) = S(P ) ∪ (− S(P )).
(4) We have f ◦ s ∈ S(P ) for every s ∈ S(P,X) and for every f ∈ X∗ such that

f(s(1)) = ‖f‖ = 1.

Let us first consider the important case of X being a Hilbert space. We find
a characterization of vector states and show that vector ′-states can be viewed as
a generalization of orthogonal vector states.1,2 Moreover, if P is an orthocomplete
poset we obtain a new characterization of orthogonal vector states.

2.3. Theorem. Suppose that P is an orthoposet and H is a Hilbert space. Suppose
further that s : P → H is an additive mapping. Consider the following three
conditions:

(1) s(a) ⊥ s(b) for every orthogonal pair a, b ∈ P ;
(2) s(a) ⊥ s(a′) for every a ∈ P ;
(3) s(P ) ⊂ B′(s(1)/2, ‖s(1)‖/2).

Then (1)⇒(2)⇔(3) and, moreover, if P is an orthocomplete poset then (3)⇒(1).

Proof. (1)⇒(2). Evident.
(2)⇔(3). Suppose that a ∈ P . Then s(a′) = s(1) − s(a) and, according to

Lemma 1.6, ‖s(a)− s(1)/2‖ = ‖s(1)‖/2 if and only if (s(a), s(a′)) = 0.
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(3)⇒(1). Suppose that a, b ∈ P and a ⊥ b. Then s(a) + s(b) = s(a ∨ b) ∈ s(P ).
According to Lemma 1.6 and the condition (3), (x, x) = (s(1), x) for any x ∈ s(P ).
Hence,

(s(a), s(b)) =
(
(s(a) + s(b), s(a) + s(b))− (s(a), s(a))− (s(b), s(b))

)
/2

=
(
(s(1), s(a) + s(b))− (s(1), s(a))− (s(1), s(b))

)
/2 = 0.

This completes the proof.

2.4. Proposition. Suppose that P is an orthoposet, H is a Hilbert space and s :
P → H is an additive mapping. Then the following statements are equivalent:

(1) (s(a), s(a′)) ≥ 0 for any a ∈ H,
(2) s(P ) ⊂ B(s(1)/2, ‖s(1)‖/2).

Proof. According to Lemma 1.6, ‖s(a)−s(1)/2‖ ≤ ‖s(1)‖/2 if and only if (s(a), s(a′))
≥ 0.

As the following simple example shows, there is no formal analogy of this situa-
tion with Theorem 2.3. The verification is routine.

2.5. Example. Let B be the eight-element Boolean algebra and let a, b, c be its
atoms. Then there is a vector state s ∈ S(B,R2) such that s(a) = (1/4,

√
3/4),

s(b) = (1/4,−
√

3/4), s(c) = (1/2, 0). Hence, for this vector state s, (s(a), s(b)) < 0.

In the Remark 2.2 we observed that composing an appropriate linear functional
with a vector state leads to a state. We now show how to obtain a vector state from
states. We shall need the following notion.

2.6. Definition. Let X be a normed linear space. A finite sequence (x1, . . . , xn) ∈
Xn is called a partition of unity in X if ‖x1 + · · ·+ xn‖ = 1 and

∑
k∈I xk ∈ B((x1 +

· · ·+ xn)/2, 1/2) for every I ⊂ {1, . . . , n}.

2.7. Proposition. Suppose that P is an orthoposet and X is a normed linear space.
Then x1s1+ · · ·+xnsn is a vector state on X for every partition of unity (x1, . . . , xn)
in X and every sequence (s1, . . . , sn) of states on P .

Proof. Put e = x1+· · ·+xn. Obviously, the mapping s = x1s1+· · ·+xnsn is normed
and additive. According to Lemma 1.4, s(P ) ⊂ co {

∑
k∈I xk; I ⊂ {1, . . . , n}} ⊂

B(e/2, 1/2). It remaines to be proved that the mapping s is monotone. Let f ∈ X∗
be such a functional that f(e) = ‖f‖ = 1 and let a, b ∈ P be such that a ≤ b. Then
sk(a) ≤ sk(b) for any k ∈ {1, . . . , n}. Hence, (f ◦ xksk)(a) ≤ (f ◦ xksk)(b). The
linearity of f gives (f ◦ s)(a) ≤ (f ◦ s)(b) and this completes the proof.
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For the potential applications in quantum axiomatics, it may be useful to know
which orthoposets posesses “enough” vector states. As the following result says,
this occurs exactly in case when the orthoposet posesses “enough” ordinary states
[Recall3 that an orthoposet P is called unital if for any a ∈ P \ {0} there is a state
s on P such that s(a) = 1].

2.8. Proposition. Suppose that P is an orthoposet and X is a normed linear space.
Then the following statements are equivalent:

(1) P is unital.
(2) For any partition of unity {a1, . . . , an} in P and for any partition of unity

(x1, . . . , xn) in X there is a vector state s : P → X such that s(ak) = xk for
every k ∈ {1, . . . , n}.

Proof. (1)⇒(2). According to our assumption, there are states s1, . . . , sn on P such
that s1(a1) = · · · = sn(an) = 1. According to Lemma 2.7, s = x1s1 + · · · + xnsn is
a vector state on P . The rest is obvious.

(2)⇒(1). Suppose that a ∈ P \ {0} and that e ∈ X such that ‖e‖ = 1. Then
either {a, a′} or {a} is a partition of unity in P . For appropriate partition of unity
(e, 0) or (e) in X there is a vector state s : P → X such that s(a) = e. According
to Theorem 1.5, there is an f ∈ X∗ such that f(e) = ‖f‖ = 1 and, according to
Remark 2.2, f ◦s is a state on P . Moreover, (f ◦s)(a) = 1 and the proof is complete.

III. EXTREMAL VECTOR STATES

Among all states the significant role is usually played by the extremal states (“pure”
states). In this paragraph we shall discuss the connection between extremal vector
states and vector ′-states. We restrict ourselves to strictly convex normed linear
spaces. The reason for this restriction indicates the following example.

3.1. Example. Let B = {0, a, a′, 1} be a four-element Boolean algebra and let X
be a normed linear space that is not strictly convex. Then

S′(B,X) 6⊂ Ext coS′(B,X).

Proof. For any x ∈ B′(0, 1) there is a vector ′-state sx : B → X such that sx(a) =
sx(1) = x. Since the space X is not strictly convex, there is an x0 ∈ B′(0, 1) such
that x0 ∈ co (B′(0, 1) \ {0}). Hence, sx0 ∈ co {sx; x ∈ B′(0, 1) \ {x0}}.

3.2. Proposition. Suppose that P is an orthoposet and X is a strictly convex
normed linear space. Then

S′(P,X) ⊂ Ext coS(P,X).
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Proof. Suppose that s ∈ S′(P,X), t1, . . . , tn ∈ [0, 1], s1, . . . , s2 ∈ S(P,X), t1 +
· · · + tn = 1 and s = t1s1 + · · · + tnsn. Then s(1) = t1s1(1) + · · · + tnsn(1). Since
s(1) ∈ B′(0, 1), s1(1), . . . , sn(1) ∈ B(0, 1) and since X is strictly convex, we obtain
s1(1) = · · · = sn(1) = s(1). Suppose that a ∈ P . Then s(a) = t1s1(a)+· · ·+tnsn(a).
Since s(a) ∈ B′(s(1)/2, 1/2), s1(a), . . . , sn(a) ∈ B(s(1)/2, 1/2) and since X is strictly
convex, we obtain s1(a) = · · · = sn(a) = s(a). It means that s1 = · · · = sn = s and
therefore s is an extremal point of coS(P,X). The proof is complete.

For which P do we have the reverse inclusion, too? We shall see (Propositions
3.4 and 3.6) that in only restricted cases. Still, there are examples of orthoposets
significant within quantum theories where we do have the reverse inclusion. Let us
first recall a standard construction.3

3.3. Definition. Suppose that (Pα,≤α, ′α) are orthoposets (α ∈ I). Suppose further
that Pα ∩ Pβ = {0, 1} for distinct α, β ∈ I. Then by horizontal sum of orthoposets
Pα (α ∈ I) we mean the orthoposet (

⋃
α∈I Pα,

⋃
α∈I ≤α,

⋃
α∈I

′
α).

3.4. Proposition. Suppose that P is a horizontal sum of at most four-element
Boolean algebras and that X is a normed linear space. Then

Ext coS(P,X) ⊂ S′(P,X).

Proof. Suppose that P is the horizontal sum of Bα (α ∈ I) and suppose that
s ∈ S(P,X) \ S′(P,X). Then there is an α ∈ I and an a ∈ Bα such that s(a) /∈
B′(s(1)/2, 1/2), i.e., there is an x ∈ X \ {0} such that s(a) ± x ∈ B(s(1)/2, 1/2).
Let us define mappings sk : P → X (k = 1, 2) as follows:

sk(a) = s(a) + (−1)kx,

sk(a
′) = s(a′)− (−1)kx,

sk(b) = s(b) for any b ∈ P \ {a, a′}.

Then s1, s2 ∈ S(P,X) \ {s} and s = (s1 + s2)/2. Hence, s /∈ Ext coS(P,X). This
completes the proof.

Let us note that in the case X = R we do not have to assume that the Boolean
algebras in Proposition 3.4 are at most four-element.5

Let us now recall another standard notion.

3.5. Definition. Let P be an orthoposet. A state s on P is called Jauch–Piron if
for every a, b ∈ P such that s(a) = s(b) = 1 there is an element c ∈ P such that
c ≤ a, b and s(c) = 1.

The following result shows that the reverse of the inclusion of Proposition 3.2 is
often false.
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3.6. Proposition. Suppose that P is an orthomodular poset that has at least three
two-valued states out of which at least two are Jauch–Piron. Suppose that X is an
at least two-dimensional strictly convex normed linear space. Then

Ext coS(P,X) 6⊂ S′(P,X).

Proof. Suppose that s1, s2, s3 are distinct two-valued states on P and that s1, s2
are Jauch–Piron. There exists a partition of unity (x1, x2, x3) in X such that for
e = x1+x2+x3 we have x1+x2 ∈ B′(e/2, 1/2)\{e}, x1 /∈ B′(e/2, 1/2)∪{e/2}, x2 ∈
B′(e/2, 1/2). Then all the sums

∑
k∈I xk, I ⊂ {1, 2, 3} are distinct and, according

to Lemma 2.7, the mapping s = x1s1 + x2s2 + x3s3 is a vector state on P . Since
s1 6= s2, s3, there are a, b ∈ P such that s1(a) = s1(b) = 1 and s2(a) = s3(b) = 0.
Since s1 is Jauch–Piron state, there is a c ∈ P such that c ≤ a, b and s1(c) = 1.
Then s(c) = x1. Hence, s is not a vector ′-state.

Let us show that s is an extremal point of coS(P,X). It suffices to prove
that the only vector state t : P → X such that t|s−1{x} = s|s−1{x} for any x ∈
ExtB(e/2, 1/2) is the vector state s. It follows if we show that t|s−1{x2 + x3} =
s|s−1{x2 + x3}. Suppose that a ∈ s−1{x2 + x3}. Then s1(a) = 0, s2(a) = s3(a) =
1. Since s2 6= s3, there is a b ∈ P such that s2(b) = 1, s3(b) = 0. Since s2 is
a Jauch–Piron state, there is a c ∈ P such that c ≤ a, b and s2(c) = 1. Then
s(c) = x2 ∈ ExtB(e/2, 1/2) and therefore t(c) = s(c). Since a = c ∨ (a ∧ c′) and
c ⊥ (a ∧ c′), we obtain that s2(a ∧ c′) = s1(a ∧ c′) = 0 and s3(a ∧ c′) = 1. Thus,
s(a ∧ c′) = x3 ∈ ExtB(e/2, 1/2) and therefore t(a ∧ c′) = s(a ∧ c′). We obtain that
t(a) = t(c) + t(a ∧ c′) = s(a) + s(a ∧ c′) = s(a) and the proof is complete.

It should be noted that the assumptions of Proposition 3.6 are indeed fulfilled
for many orthoposets (e.g., for any Boolean algebra B with cardB > 4 and for much
more6).

3.7. Corollary. Suppose that P is a horizontal sum of orthomodular posets Pα
(α ∈ I) such that every Pα has at least three two-valued states out of which at least
two are Jauch–Piron. Suppose that X is at least two-dimensional strictly convex
normed linear space. Then the equality

Ext coS(P,X) = S′(P,X)

is valid if and only if every summand of P is at most four-element Boolean algebra.

Proof. It follows from Propositions 3.2, 3.4, and 3.6 and from the fact that a vector
state on a horizontal sum is extremal if and only if its restriction to every summand
is extremal.

IV. CONTEMPLATING OTHER TYPES OF VECTOR STATES

If the set of all vector states P → X is nonempty then it is not convex (the convex
combination of normed mappings s,−s is not normed). This flaw may be removed by
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taking a fixed element s(1) ∈ X in the definition of a normed mapping. The vector
state defined in such a way is a strightforward generalization of a state [compare
with Remark 2.2.(3)]. All results in this paper hold for such defined vector states,
too.

It should be noted that the definition of a monotone mapping s : P → X might
be simplified — we may require (f ◦s)(a) ≤ (f ◦s)(b) not for all appropriate f ∈ X∗
but only for one. Except for the above mentioned convexity property, all results
remain valid.

Another possibility to introduce vector states is to define the normed mapping
by the condition ‖s(1)‖ ≤ 1. The convexity of the set of all such defined vector
states is a consequence of a standard computation with the norm. Unfortunately,
the corresponding vector ′-state does not become a generalization of the orthogonal
state. As the following simple example shows, we are not allowed to replace the
radius 1/2 of the ball in the definition of a vector state by ‖s(1)‖/2.

4.1. Example. Let B = {0, a, a′, 1} be a four-element Boolean algebra. Let us
define vector states s1, s2 : B → R as follows: s1(a) = s1(1) = 1, s2(a

′) = s2(1) =
−1. Put s = (s1 + s2)/2. Then ‖s(1)‖ = 0 and s(a) ∈ B′(0, 1/2).

The vector states are sometimes7 defined as normed additive mappings s : P →
X such that s(P ) ⊂ B(0, 1). In this case the connection between extremal vector
states and the vector ′-states does not seem to be obvious.

4.2. Proposition. Suppose that P is an orthoposet and H is a Hilbert space. De-
note by BNA(P,H) the set of all normed additive mappings s : P → H such that
s(P ) ⊂ B(0, 1). Then

S′(P,H) ∩ Ext co BNA(P,H) = {s ∈ S′(P,H); s(P ) = {0, s(1)}}.

Proof. Suppose that s : P → H is a vector ′-state such that s(P ) 6= {0, s(1)}.
Suppose further that f ∈ H∗ such that f(x) = (x, s(1)) for any x ∈ H. Define a
linear mappings Tt : H → H such that Tt(x) = f(x)s(1) + t(x − f(x)s(1)). Then
Tt(s(1)) = s(1) and for any t ∈ [−

√
2,
√

2] and for any x ∈ B(s(1)/2, 1/2) we obtain
that

‖Tt(x)‖2 = ‖f(x)s(1)‖2 + t2‖x− f(x)s(1)‖2

≤ f(x)2 + 2 · (1/4− ‖f(x)s(1)− s(1)/2‖2)
= f(x)2 + 2 · (1/4− (f(x)− 1/2)2)

= −f(x)2 + 2f(x) ≤ 1.

Thus, Tt ◦ s ∈ BNA(P,H) for any t ∈ [−
√

2,
√

2] and therefore s = (T0.9 ◦ s +
T1.1 ◦s)/2 /∈ Ext co BNA(P,H). The rest follows from the strict convexity of Hilbert
spaces.
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V. EXTENSIONS OF VECTOR STATES

In this part we ask the question of the extension of a vector state from a Boolean
subalgebra of an orthoposet over the entire orthoposet (the extension from general
suborthoposets are usually impossible.8 We obtain the following result which links
vector states with the geometry of the range normed linear space (in some places,
we have adapted the technique of Ref. 8).

5.1. Theorem. Suppose that P is an orthoposet and X is a normed linear space
with predual. Then the following statements are equivalent:

(1) P is unital.
(2) Every vector state s : B → X on every Boolean subalgebra B of P can be

extended to a vector state s̃ : P → X.

Proof. (1)⇒(2). The unit ball B(0, 1) ⊂ X is compact in the w∗-topology.4 Ac-
cording to Tichonov’s theorem, B(0, 1)P is compact in the product topology. The
set of all vector states P → X is closed in this topology, hence it is compact. Sup-
pose that s : B → X is a vector state. Let us denote by D the set of all partitions of
unity in B and for any D ∈ D put FD = {s̄ ∈ S(P,X); s̄|D = s|D}. We shall show
that the set F = {FD; D ∈ D} is a base of a filter consisting of nonempty closed
subsets of S(P,X).

For any D ∈ D the set FD is obviously closed and, according to Proposition 2.8,
it is nonempty, too. Suppose that D and E are partitions of unity in B. Then
FD ∩FE ⊃ FD∧E\{0}, where D ∧E \ {0} = {d∧ e; d ∈ D, e ∈ E} \ {0} is a partition
of unity in B.

We have obtained that F is a centered system in a compact topological space.
Therefore, there is an s̃ ∈

⋂
F . According to definition of F , s̃|B = s.

(2)⇒(1). Suppose that a ∈ P \{0}. Then there is a vector state s : {0, a, a′, 1} →
X such that ‖s(a)‖ = 1. According to Theorem 1.5, there is an f ∈ X∗ such that
‖f‖ = 1 and (f ◦ s)(a) = 1. In view of Remark 2.2, f ◦ s is a state on P . The proof
of Theorem 5.1 is complete.

VI. OPEN PROBLEMS

Let us conclude this paper with two open questions whose solution could be a con-
siderable step forward in the study of vector states.

6.1. Problem. Characterize those orthomodular posets for which we have

Ext coS(P,X) = S′(P,X).

6.2. Problem. (the converse of Theorem 5.1) Suppose that X is a normed linear
space. Suppose that for any Boolean subalgebra B of any unital orthoposet P we
have the following statement valid: Every vector state s : B → X extends over the
entire P . Does then X have to have a predual?
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